
Entropy 2015, 17, 2094-2116; doi:10.3390/e17042094

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Research and Measurement of Software Complexity Based on
Wuli, Shili, Renli (WSR) and Information Entropy

Rong Jiang 1,2

1 School of Information, Yunnan University of Finance and Economics, Kunming 650221, China;

E-Mail: jiangrong@ynu.edu.cn; Tel.: +86-0871-6587-6862
2 School of Software, Yunnan University, Kunming, 650091, China

Academic Editor: J. A. Tenreiro Machado

Received: 30 December 2014 / Accepted: 1 April 2015 / Published: 8 April 2015

Abstract: Complexity is an important factor throughout the software life cycle. It is

increasingly difficult to guarantee software quality, cost and development progress with the

increase in complexity. Excessive complexity is one of the main reasons for the failure of

software projects, so effective recognition, measurement and control of complexity

becomes the key of project management. At first, this paper analyzes the current research

situation of software complexity systematically and points out existing problems in current

research. Then, it proposes a WSR framework of software complexity, which divides the

complexity of software into three levels of Wuli (WL), Shili (SL) and Renli (RL), so that

the staff in different roles may have a better understanding of complexity. Man is the main

source of complexity, but the current research focuses on WL complexity, and the research

of RL complexity is extremely scarce, so this paper emphasizes the research of RL

complexity of software projects. This paper not only analyzes the composing factors of RL

complexity, but also provides the definition of RL complexity. Moreover, it puts forward a

quantitative measurement method of the complexity of personnel organization hierarchy

and the complexity of personnel communication information based on information entropy

first and analyzes and validates the scientificity and rationality of this measurement method

through a large number of cases.

Keywords: software complexity; software project; WSR; information entropy

OPEN ACCESS

Entropy 2015, 17 2095

1. Introduction

American computer scientist Frederick Phillips Brooks, the winner of the Turing Award, known as

Nobel Award in the field of computers, pointed out that complexity is one of the four essential issues

of software and software project management in his paper No Silver Bullet: Essence and Accidents of

Software Engineering [1]. Famous computer expert, Grady Booch, one of the founders of Unified

Modeling Language (UML), believed that excessive complexity was one of the main reasons for the

failure of software projects. Narciso Cerpa [2] had made a thorough investigation and research of 70

failed software projects in America, Australia, Chile and other countries and found that the complexity

of 81.4% of the projects was underestimated.

Ludovic-Alexandre Vidal’s [3,4] results show that project complexity results in damages or failures

for the projects and project complexity is ever growing and needs to be understood, analyzed and

measured better to assist modern project management. Williams [5] considered that one of the reasons

for project failure would be the increasing complexity of projects. Marian Bosch-Rekveldt [6] claimed

that one of the reasons for project failure would be an underestimation of the project complexity.

Mendel Giezen [7] indicated that the reduction of complexity means that there are fewer unknowns

and fewer variables to predict, and thus, the project and planning of the project arguably becomes more

manageable. Marian Bosch-Rekveldt [6] and others stressed the importance of complexity in the

current research of project management. Gina C. Green’s [8] results show that the research of

complexity is very important for successful project leadership.

It is evident that it is very necessary to research the complexity of software from the viewpoint of

project management. Complexity is an important factor throughout the software life cycle, and it is

directly related to software quality, cost and the production schedule and is inversely proportional to

controllability. At the same time, it also brings a lot of hidden safety dangers: projects’ ever growing

complexity is an ever growing source of project risks [3,4]. To the extent that the complexity is beyond

the control of the software project manager, the project’s failure is inevitable. Deep research of

complexity is the prerequisite for control, and the recognition, understanding and measurement of

complexity is the basic work that must be done for research.

This paper studies software project management from the viewpoint of complexity, which is a

challenging job and also a direction very worthy of further study. It will make people understand

complexity more clearly in order to make complexity easier to control and to upgrade the software

project management level. This paper proposes a WSR framework of software complexity, which

divides the complexity of software into three levels of Wuli (WL), Shili (SL) and Renli (RL). Because

the current research focuses on WL complexity, but project management is most in need of the results

of RL complexity, this paper presents a measurement method of RL complexity based on the

information entropy theory.

The remaining parts of this paper are organized as follows. Section 2 describes the complexity

definition and the software complexity research status. Section 3 presents a WSR framework of

software complexity. Section 4 explains software project RL complexity and proposes the complexity

metrics. In Section 5, case analyses are presented, to show the applicability of the approach. Finally,

Section 6 outlines the summary and contributions of this study.

Entropy 2015, 17 2096

2. Software Complexity: A Literature Review

2.1. The Definition

Complexity is the reciprocal of simplicity. It is increasingly difficult to understand, manage and

control with the increase in complexity, which is people’s common understanding of complexity.

Complexity was proposed by Ludwig Von Bertalanffy, a system science pioneer and American scientist

in Austria, in the 1940s. He foresaw that the nature of system science lies in the research of

complexity. In the 1990s, the famous Chinese scholar Qian Xuesen [9] said: “those that can’t or

shouldn’t be solved by the reductionism method but new scientific methods are complexity problems”.

Ludovic-Alexandre Vidal et al. [3,4] stated: “Project complexity is the property of a project which

makes it difficult to understand, foresee and keep under control its overall behavior, even when given

reasonably complete information about the project system.”

Turing Award winner Brooks said [10]: “the meaning of complexity is confusing and complicated.

Computer software is the most complex entity of all artificial products”. Software complexity is a

sub-problem of complexity research. Zuse [11] defines it as: “the true meaning of software complexity

is to analyze, implement, test, maintain, change and understand the difficulty of software”. Lin [12]

and others believe that the complexity of software development mainly comes from the complexity of

the development system and the complexity of the implementation of the development process within

the framework of the development system, and man is the major source of complexity.

2.2. Existing Software Complexity

The current research [13] of software complexity is mainly involved in the fields as shown in

Figure 1.

Figure 1. A framework of software complexity.

• Program Complexity

Program complexity normally refers to an abstraction of the software scale, software development

difficulty and the quantity of possible hidden errors in software. In Figure 1, the measurement of

Software
complexity

program
complexity

component
complexity

architecture
complexity

requirement
complexity

project
complexity

other

web
complexity

Entropy 2015, 17 2097

program complexity has the earliest research history and is fruitful. It can be divided into process-oriented

structured measurement of program complexity and object-oriented program complexity. Classical

measurement methods are shown in Table 1.

Table 1. Several classical measurement methods of program complexity.

Category Name Introduction

Complexity

Measurement of

Structured

Program

Line of Code (LOC)

Measurement

With the total number of LOC of a program as a measure of program

complexity, it is generally used to estimate the workload for program

development. Generally speaking, the program is increasingly

complex with the increase in the number of LOC.

Program Control Structure

Complexity Measurement

(namely the McCabe

Measurement Method [14])

This is a complexity measurement model based on the topological

structure of a program, which measures the program complexity by

calculating the number of linearly-independent directed cycles in the

strongly-connected program chart.

Program Text Complexity

Measurement (namely the

Halstead Measurement

Method [15])

This measures the program complexity by calculating the number of

operators in the program.

Harrison Complexity

Measurement [16]

This is a measurement method of program complexity based on

decomposing of the flow graph into ranks. It can determine the

nesting levels of nodes in the flow chart.

Complexity

Measurement of

Object-oriented

Program

Chidamber & Kemerer

(C&K) Measurement

[17,18]

This is a measurement method based on the inheritance tree and

composed of six measurement standards: complexity of all methods

of each class (WMC), depth of inheritance (DIT), number of

children (NOC), number of responses of each class (RFC), coupling

degree between objects (CBO) and lack of cohesion in method

(LCOM).

Metric for Object-Oriented

Design (MOOD)

Measurement [18]

Six measurement indicators are given from four aspects of

encapsulation, inheritance, coupling and polymorphism, namely

method hiding factor (MHF), attribute hiding factor (AHF), method-

inherited factor (MIF), attribute-inherited factor (AIF), coupling

factor (CF) and polymorphism factor (PF).

Chen and Liu Measurement

[18,19]

This measures from eight aspects of operation complexity, operation

parameter complexity, attribute complexity, operation coupling

factor, class inheritance, cohesion, class coupling and reusability.

In addition, other research on program complexity are fruitful. For example, reference [20]

introduces a computation method for structured program complexity based on entropy evaluation of

random single-value response functions and characteristic software functions. Based on class and

object, reference [21] introduces two kinds of object-oriented measurement methods of software

space complexity.

• Component Complexity

In traditional research on the complexity of structured software, more attention is paid to the

internal details of the module, but component software pays more attention to the interaction

Entropy 2015, 17 2098

relationship between components. The work in [22] proposes a measurement model of component

software complexity based on the dependency matrix.

• Architecture Complexity

Too complex of an architecture may cause low comprehensibility and maintainability, but too

simple of an architecture may cause reduced reliability and safety. The work in [23] proposes an

approach to evaluate the complexity of software architecture. The work in [24] measures the visual

complexity of the software architecture by the use of an algebraic expression. The work in [25] studies

software complexity metrics based on complex networks.

• Requirement Complexity

Requirement analysis is a very important link in the process of software development. If

requirement analysis fails, all may fail. Based on requirement statement templates, [26] puts forward a

quantitative measurement method of complexity during the phase of software requirements. Based on

quantitative cases, [27] studies the complexity of cases.

• Software Project Complexity

The complexity of software projects is a very important indicator in software project management.

The work in [28] proposes some evaluation models and methods for the complexity of software

projects based on evidence reasoning.

• Web Application Complexity

The work in [29] proposes entropy-based complexity measures, WCOXIN and WCOXOUT, for

web applications. The work in [30] proposes a complexity measure for web application, WCOX,

which is defined by entropy theory, and a web model extracted by static analysis.

• Other

The work in [12] analyzes the causes of the complexity of the software development system and its

development processes from the perspective of complexity science. It believes that the software

development complexity mainly comes from the development system complexity and the development

process implementation complexity within the framework of development system, and man is the main

source of complexity. The work in [31] designs a new model of the development prototype and related

measurement methods of software complexity to study the synthetic complexity in software

maintenance environment. The work in [8] shows that cognitive complexity is very important for the

performance of project leadership.

2.3. Limits of Existing Software Complexity

• Misunderstood Definition of Software Complexity

In the early stage, software development almost just involves programming, so many scholars think

that software complexity is identical to program complexity, the idea of which is carried by numerous

scholars and literature works.

Entropy 2015, 17 2099

• Ambiguous Research Contents

The research on software complexity has a history of more than 40 years, but what aspects does

software complexity cover? There is little literature to answer this question, but the author finds that

only [12] is related to this question, and it summaries software development complexity as structural

complexity, boundary complexity, evolution complexity, concept diversity, limited knowledge and

multiple contingency.

• Plentiful Abundant “Micro” Research and Insufficient “Macro” Research

The research on program complexity is most mature and fruitful. It concerns microcosmic program

complexity, namely it remains in the interior microscopic properties of the program and lacks overall

research on the complexity. Compared with the program, software components, software architecture

and requirement analysis and the software project are more macroscopic. Research on these aspects is

not fruitful and has not formed a relatively complete theory system.

• Much Research on the Complexity of Technical Factors and Little Research on the Complexity of

Non-technical Factors (Especially Personnel Complexity)

In the industry, there is a saying that non-technical factors often more easily lead to the failure of

software projects. The software is composed of programs and documents, and it involves many

non-technical factors, because of document complexity, so there is not much research. Besides, bad

organization structure and management are also important non-technical factors for the failure of

software projects, but few scholars study the complexity from this aspect.

3. A WSR Framework of Software Complexity

Wuli-Shili-Renli systems approach [32,33] (WSR methodology), put forward by Jifa Gu, Zhichang

Zhu and other scholars at the University of Hull in 1994, is the outcome of the collective efforts

between many Chinese and British researchers since the mid-1990s; is a kind of oriental system

methodology with Chinese traditional philosophical speculations; and its basic contents are shown in

Table 2.

Table 2. Contents of the Wuli-Shili-Renli system.

 Wuli Shili Renli

Object and
Content

Objective material
world rules, rules.

Organization, system
management and work

principles.

People, groups, relationships, truth of doing
things.

Focuses
What is the focus?

Functional analysis.
How to do? Logic

analysis.
What is the best thing to do? Maybe?

Humanistic analysis.

Principles
Honesty; pursuit of

truth.
Coordination; pursuit

of efficiency.
Humanity, harmony; pursuit of effectiveness.

Required
Knowledge

Natural science.
Management science,

systems science.
Humanistic knowledge, behavioral science

and psychology.

Entropy 2015, 17 2100

“Wuli” refers to the mechanism involving the motion of matter, and it usually uses the knowledge

of natural science to mainly answer what the “matter” is and to solve the problem of “what it is”.

“Shili” refers to work principles to mainly solve the problem of how to do. It usually uses the

knowledge of engineering, operations research and other aspects to answer “how to do” and to solve

the problem of “how to do” mainly. “Renli” refers to the principles of conducting one’s self, including

organizational and interpersonal relationships. It usually uses the knowledge of humanities and social

science to answer “how to do” and to solve the problem of “what is the best thing to do”.

System methodology is a set of working procedures, methods, tools and techniques to solve

complex system problems under the guidance of a certain system philosophy. As a kind of

methodology and thinking, WSR’s core lies in dealing with complex problems in consideration of both

WL and how to apply WL in SL better; besides, because the understanding and solving of problems

and the implementation of management decisions cannot be separated from man, as a system, WSR

achieves the knowledge of WL, familiarity of SL and mastery of RL to carry on a systematical,

complete and hierarchical research on complex problems.

Software is a kind of invisible logical entity and a pure product of human wisdom, and the

invisibility and uncertainty of its production process is higher than that of traditional industries (such

as construction and manufacturing), which causes its high complexity. In this paper, software

complexity is divided into WL complexity, SL complexity and RL complexity.

WL [34] refers to the objective existence of a project or problem that people face in the treatment

process. It is the sum of laws of matter and motion, a symbol of the objective existence of ontology

and is independent of man’s will. The scientific problems of software complexity belong to this

category, for example algorithm complexity, program complexity and software science problems, all

of which give expression to WL in WSR theory. SL [34] refers to the mechanisms involved in the

objective existence and laws of a project or problem that people face in the treatment process and the

effective methods that help people to deal with affairs based on the world and objectively existing

mechanisms, namely a kind of “man-matter” interface, including all software technical problems. RL [34]

refers to all organizations involved in the treatment process of a project or problem and mutual

relationships between people and their change processes, that is, a kind of “man-man” interface,

including personnel problems. Software engineering includes engineering technology and engineering

management, the former belonging to SL and the latter belonging to RL. Software development tools,

requirement analysis technology, software design, component complexity and architecture complexity

belong to technological problems in the field of software engineering and are included in SL. In

software engineering management, personnel organization, human resource management and

personnel communication belongs to RL, so research and straightening out of RL relationships can

stimulate people to realize the predetermined target of a project or problem in accordance with

acceptable SL.

Entropy 2015, 17 2101

Figure 2. A WSR framework of software complexity.

Therefore, software complexity can be defined as follows.

Definition 1. Software_Complexity = <Software_Wuli_Complexity, Software_Shili_Complexity,

Software_Renli_Complexity>.

Because the staff in different roles are concerned with different sides in the process of software

development, it is conducive to understand and control the complexity better after dividing software

development into the three levels of WL complexity, SL complexity and RL complexity. A good

software science worker should have a good command of WL, be familiar with SL and have

knowledge of RL, but focus on WL complexity; a good software engineer should be familiar with WL,

have a good command of SL and have knowledge of RL, but focus on SL complexity; a software

project manager should have knowledge of WL, be familiar with SL and have a good command of RL,

but focus on SL complexity.

4. Software Project Renli Complexity and Its Measurement

Software projects and software have both connections and differences, and software is the final

result of a software project. It can be seen from the definition of [12] that software complexity should

contain the complexity of the software project obviously. The level of complexity of the software

project is inversely proportional to the controllable degree of the project. The research on project

complexity can provide an important basis and reference for project management and decision-making,

but there is little research on the complexity of software projects. Statistics show that the vast majority

of software project failures are caused by non-technical factors, namely non-WL or SL complexity.

Research shows that the reason for delayed delivery of 45% of software projects is related to personnel

organization [35], while man is the main cause of software development complexity [12]. The biggest

complexity of software project management lies in the personnel management, but research on RL

complexity is the weakest. Therefore, there is important practical significance to understanding,

measuring, controlling, managing and reducing the complexity of a software project. Therefore, this

section is devoted to discussing the RL complexity of the software project.

Wuli

Renli

Shili

Software science problems
(e.g., algorithm complexity,
program complexity, …)

Software technical problems
(e.g., component complexity,
architecture complexity, …)

Personnel problems
(e.g., personnel organization hierarchy
structure complexity, personnel communication
information complexity, …)

Entropy 2015, 17 2102

4.1. Software Project RL Complexity

In system science, the system is not classified according to the number of subsystems in the system,

but by the hierarchical relationship of subsystem components. Simple giant systems do not differ much

in the number of subsystems from complex giant systems, and the interaction between subsystems is

little. In some complex giant systems, the interaction between subsystems is not complicated, but the

nature of the whole system is very complex, rich and colorful, the difference of which is mainly caused

by the hierarchy, namely the presence of a hierarchical structure is one of the main symbols of the

complexity of this system. The development of a software system is usually completed by project team

members. A software project team is a small social system that belongs to one of the most complex

systems and differs in its composition of man from complex giant systems. The human society has a

hierarchical structure, and all systems composed of people have a hierarchical structure, which is

obvious. In short, one of the main reasons resulting in system complexity is the hierarchical structure

of the system, namely the levels create complexity. Therefore, the personnel organization hierarchy

structure of a software project is one of the main reasons causing the RL complexity of software.

Chester I. Barnard thinks that the effective operation of an organization depends on three basic

elements: common goal, cooperation intention and contact information. The core function of a

manager is contact information; without information communication, there will be no organization,

because the organization cannot command, guide and control individual behaviors without information

communication [36]. The relationship among the staff is an important aspect of RL complexity. Any

software project organization must have cooperation and leadership relationships among members,

which are the basic relations among the staff. These relationships are represented by information

communication among the staff, and there will be no cooperation and leadership relationships without

information communication. Dr. Kathryn Schwalbe thinks that information communication among the

staff is one of the three major causes of the high rates of the failure of software projects. The work

in [37] stated: “communication failure is the biggest lion in the way of software project survival.”

Therefore, the importance of information communication is visible. However, more information

communication, a more complex relationship among the staff and the average efficiency of staff

development is reduced [37]. Therefore, the amount of communication information becomes an

important part of the RL complexity of software.

According to statistics, staff turnover in the software industry increases from traditional 6%–10%

to about 20% [38], some companies even as high as 35%; Fortune Magazine reports that staff turnover

has become a culture of the IT industry, and the average in-service time of software engineers is only

13 months [39]. It is visible that the mobility and uncertainty of software project staff has become one

of the basic characteristics of a software project. It is easy to manage and control certain things, and on

the contrary, the bigger the mobility is, the more complex the staff management of a software project

will become. Therefore, the mobility and uncertainty of the staff is also one of the important reasons

for the RL complexity of software.

Therefore, in this section, software RL complexity can be defined as follows.

Entropy 2015, 17 2103

Definition 2. Software Project RL Complexity: Software_Renli_Complexity =

<Software_Renli_Complexity (X1), Software_Renli_Complexity (X2), Software_Renli_Complexity (X3)>,

where Software_Renli_Complexity (X1) represents the personnel organization hierarchy structure,

Software_Renli_Complexity (X2) represents the amount of personnel communication information,

Software_Renli_Complexity (X3) represents the mobility and uncertainty of the staff and:

|Software_Renli_Complexity|

= α|Software_Renli_Complexity(X1)| + β|Software_Renli_Complexity(X2)| +

γ|Software_Renli_Complexity(X3)| ܵݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋| denotes the RL complexity degree, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|
denotes the complexity degree of the personnel organization hierarchy structure of the software

project, |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋| denotes the complexity degree of the personnel

communication information, |ܵ(3ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋| denotes the degree of mobility and

uncertainty of the staff, where ߙ, ,ߚ γ ∈ (0,1) are parameters.

On the basis of existing achievements [40], in the following two sections, information entropy is

used to measure the complexity of the software project personnel organization hierarchy structure of

and the complexity of personnel communication information. The complexity of systems can be

measured by a methodology derived from Shannon’s theorem [41–46].

4.2. Measurement of the Complexity of the Software Project Personnel Organization Hierarchy

Structure Based on Information Entropy

A software project is completed by the team, so how to form a team that works effectively and is

easy to manage becomes the subject in need of research for software project management. In software

project management, there are various organizational structure forms with their own advantages and

disadvantages and suitable for different occasions. There is no absolutely superior organizational

structure. Among them, the project-based organization structure and matrix organization structure are

common. From the aspects of the management hierarchy and the span of control, they can also be

divided into the traditional towering bureaucratic organization structure and a flat organization

structure. A flat organization structure has a small management hierarchy and a short chain of

command, so it may obtain a more flexible command and higher management efficiency.

Generally [37,47], the project personnel organization structure is relatively simple, so each other’s

communication in the project team is smoother and faster. The matrix personnel organization structure

is more complex, so it is more difficult to manage the project team.

This paragraph measures the complexity of the personnel organization hierarchy structure of a

software project based on information entropy. Before the measurement formula of complexity is

given, several concepts should be defined first.

Definition 3. Direct control/subordinate relationship: A software project group ܲܩ ܯ , = ሼܯଵ, ,ଶܯ … , ௝ have a direct rank relationship with a directܯ ௜ andܯ ;௡ሽ, is the set of membersܯ

communication path, where ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ , that is ܯ௜ and ܯ௝ have a direct control/subordinate

relationship, expressed as ܯ௜ ≺≻ ௜ܯ ௝; ifܯ is superior to ܯ௝ ௜ܯ ; can control ܯ௝ directly, and ܯ௝ is

directly subordinate to ܯ௜, expressed as ܯ௜ ≺ ௝ܯ ,௝ܯ ≻ .௜, respectivelyܯ

Entropy 2015, 17 2104

Definition 4. Indirect control/subordinate relationship: A software project group ܲܩ ܯ , = ሼܯଵ, ,ଶܯ … , ௜ܯ ௡ሽ, is the set of members; ifܯ ≺≻ ௜ܯ ௝ andܯ ≺ ௝ܯ ,௝(namelyܯ ≻ ௝ܯ ,(௜ܯ ≺≻ ௞ܯ

and ܯ௝ ≺ ௞ܯ ; where ݅, ݆, ݇߳ሾ1, ݊ሿ, ݅, ݆, ݇߳ܰ ; that is, ܯ௜ and ܯ௞ have a indirect control/subordinate

relationship, expressed as ܯ௜ ≺∘≻ ௜ܯ ௜, expressed asܯ ௞ is directly subordinate toܯ ௞ indirectly, andܯ ௜ can controlܯ ,௞ܯ ≺∘ ௞ܯ ,௞ܯ ∘≻ ௞ܯ ௜, respectively. Ifܯ ≺≻ ௞ܯ ௟ orܯ ≺∘≻ ,௟, where ݈߳ሾ1ܯ ݊ሿ, ݈߳ܰ,

then ܯ௜ ≺∘≻ .௟ܯ
Definition 5. Control depth: A software project group ܲܩ ܯ , = ሼܯଵ, ,ଶܯ … , ௡ሽܯ , is the set of
members; ܿ݀(ܯ௜, (௝ܯ is known as the depth of control of ܯ௜ and ܯ௝ ; if ܯ௜ ≺≻ ௝ܯ , then ܿ݀൫ܯ௜, ௝൯ܯ = 1; if ܯ௜ ≺ ௝ܯ ,௝ܯ ≺ ,௜ܯ)݀ܿ ௞, thenܯ (௞ܯ = 2; if ܯ௜ ݊ݐ݋ ≺≻ ,௜ܯ௝, then ܿ݀൫ܯ ௝൯ܯ = 0;

where ݅, ݆, ݇߳ሾ1, ݊ሿ, ݅, ݆, ݇߳ܰ.

Definition 6. Hierarchy entropy: A software project group ܲܩ ܯ , = ሼܯଵ, ,ଶܯ … , ௡ሽ, is the set ofܯ
members, ∀ ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ; if ܯ௜ ≺≻ ௜ܯ ௝ orܯ ≺∘≻ ,௜ܯ൫ܪ :௝, thenܯ ௝൯ܯ = ,௜ܯ൫݌− ௝൯݈݊ܯ ,௜ܯ)݌ ௝) (1)ܯ

is known as the hierarchy entropy of ܯ௜ and ܯ௝where ݌൫ܯ௜, ௝൯ܯ = ௖ௗ൫ெ೔,ெೕ൯∑ ∑ ௖ௗ൫ெ೔,ெೕ൯೙ೕసభ೙೔సభ is the contribution

ratio, and ܿ݀൫ܯ௜, ௝൯ܯ = 1 is the depth of control of ܯ௜ and ܯ௝.

Definition 7. Complexity degree of personnel organization hierarchy structure: A software project

group ܲܯ ,ܩ = ሼܯଵ, ,ଶܯ … , |(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ| ,௡ሽ, is the set of membersܯ = ෍ ෍ ,௜ܯ൫ܪ ௝൯௡ܯ
௝ୀଵ

௡
௜ୀଵ

namely: |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|= − ෍ ෍ ܿ݀൫ܯ௜, ∑௝൯ܯ ∑ ܿ݀൫ܯ௜, ௝൯௡௝ୀଵ௡௜ୀଵܯ
௡

௝ୀଵ
௡

௜ୀଵ ݈݊ ܿ݀൫ܯ௜, ∑௝൯ܯ ∑ ܿ݀൫ܯ௜, ௝൯௡௝ୀଵ௡௜ୀଵܯ (2)

is known as the complexity degree of the personnel organization hierarchy structure of the software

project, where ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ.

4.3. Measurement of the Complexity of Personnel Communication Information for Software Projects

Based on Information Entropy

This section analyzes and measures the complexity of personnel relations from the amount of

personnel communication information. A software project group ܲܯ ,ܩ = ሼܯଵ, ,ଶܯ … , ௡ሽ , is the setܯ
of members, ∀ ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ. If members ܯ௜ and ܯ௝ have a direct exchange of information, there is

a direct communication path between them, expressed as ܯ௜ ↔ ௜ܯ ௝; otherwise expressed asܯ ↮ ,௝ܯ

so a connected graph can be constructed for ܲܩ.

Entropy 2015, 17 2105

Definition 8. Amount of information provided by ܯ௜ for project team ܲܩ: A software project group ܲܩ ܯ , = ሼܯଵ, ,ଶܯ … , ௡ሽܯ , is the set of members; ܫ(ܯ௜) is known as the amount of information

provided by ܯ௜ for project team ܲܩ, where ݅߳ሾ1, ݊ሿ, ܩܲ is the connected graph of project group ܩܩܲ .ܰ߳݅ on the staff, ܲܩܩ =< ,ܯ ܲ > ܯ ; = ሼܯଵ, ,ଶܯ … , ௡ሽܯ is the set of members; ܲ =൛ ଵܲଶ, ଵܲଷ, … , ଵܲ௡, ଶܲଵ, ଶܲଷ, … , ଶܲ௡, … , ௜ܲ௝, … , ܲ(௡ିଵ)௡ൟ represents the path set, where ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ ,

and ݅ ≠ ݆, ௜ܲ௝ indicates whether there is a direct communication path between two members and

௜ܲ௝ = ൜ ௜ܯ ݂݅ 1 ↔ ௜ܯ ݂݅ ௝0ܯ ↮ ,݅, ௝ܯ ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ, ݅ ≠ ݆

Then, the amount of information provided by ܯ௜ for project team ܲܫ ,ܩ(ܯ௜) = −݈݊ ∑ ௜ܲ௝(݅ ≠ ݆)௡௝ୀଵ∑ ∑ ௜ܲ௝(݅ ≠ ݆)௡௝ୀଵ௡௜ୀଵ (3)

Definition 9. Complexity degree of personnel communication information: A software project group ܲܯ ,ܩ = ሼܯଵ, ,ଶܯ … , |(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ| ,௡ሽ, is the set of membersܯ = ෍ ௡(௜ܯ)ܫ
௜ୀଵ

namely, |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|= − ෍ ෍ ௜ܲ௝(݅ ≠ ݆)∑ ∑ ௜ܲ௝(݅ ≠ ݆)௡௝ୀଵ௡௜ୀଵ
௡

௝ୀଵ
௡

௜ୀଵ ݈݊ ௜ܲ௝(݅ ≠ ݆)∑ ∑ ௜ܲ௝(݅ ≠ ݆)௡௝ୀଵ௡௜ୀଵ (4)

is known as the complexity degree of personnel communication information for software projects,

where ݅, ݆߳ሾ1, ݊ሿ, ݅, ݆߳ܰ.

5. Case Analysis

5.1. Measurement of the Complexity of Software Project Personnel Organization Hierarchy Structure

5.1.1. Cases

(1) Case 1: Any software project organization structure is hierarchical. According to the Capability

Maturity Model (CMM) organization model, a software project organization sets up a software

engineering process group (SEPG), a software quality assurance group (SQAG) and a software

engineering group (SEG) to form a system of checks and balances of legislation, supervision and

enforcement. The personnel hierarchy structure is shown in Figure 3, and then, the complexity of

the personnel organization hierarchy is calculated.

Entropy 2015, 17 2106

Figure 3. Personnel hierarchy structure (Case 1).

According to Definition 5, the depth of control of M୧ and M୨ is shown in Table 3.

Table 3. Control depth.

 ૚૚ 3 0 0 2 0 0 1 0 0 0 0ࡹ ૚૙ 3 0 0 2 0 0 1 0 0 0 0ࡹ 0 0 0 0 0 1 0 2 0 0 3 ૢࡹ ૡ 3 0 0 2 0 1 0 0 0 0 0ࡹ ૠ 2 0 0 1 0 0 0 0 0 1 1ࡹ ૞ 2 0 0 1 0 0 0 1 1 0 0ࡹ ૞ 2 1 0 0 0 0 0 0 0 0 0ࡹ ૝ 1 0 0 0 0 1 1 2 2 2 2ࡹ ૜ 1 0 0 0 0 0 0 0 0 0 0ࡹ ૛ 1 0 0 0 1 0 0 0 0 0 0ࡹ ૚ 0 1 1 1 2 2 2 3 3 3 3ࡹ ૚૚ࡹ ૚૙ࡹ ૢࡹ ૡࡹ ૠࡹ ૟ࡹ ૞ࡹ ૝ࡹ ૜ࡹ ૛ࡹ ૚ࡹ

According to Formula (1), ܪ൫ܯ௜, ௝൯ܯ = ,௜ܯ൫݌− ,௜ܯ)݌ ௝൯lnܯ .௝ is shown in Tables 4 and 5ܯ ௜ andܯ ௝), the hierarchy entropy ofܯ

Entropy 2015, 17 2107

Table 4. Contribution ratio.

 ૚૚ 0.041667 0 0 0.027778 0 0 0.013889 0 0 0 0ࡹ ૚૙ 0.041667 0 0 0.027778 0 0 0.013889 0 0 0 0ࡹ 0 0 0 0 0 0.013889 0 0.027778 0 0 0.041667 ૢࡹ ૡ 0.041667 0 0 0.027778 0 0.013889 0 0 0 0 0ࡹ ૠ 0.027778 0 0 0.013889 0 0 0 0 0 0.013889 0.013889ࡹ ૞ 0.027778 0 0 0.013889 0 0 0 0.013889 0.013889 0 0ࡹ ૞ 0.027778 0.013889 0 0 0 0 0 0 0 0 0ࡹ ૝ 0.013889 0 0 0 0 0.013889 0.013889 0.027778 0.027778 0.027778 0.027778ࡹ ૜ 0.013889 0 0 0 0 0 0 0 0 0 0ࡹ ૛ 0.013889 0 0 0 0.013889 0 0 0 0 0 0ࡹ ૚ 0 0.013889 0.013889 0.013889 0.027778 0.027778 0.027778 0.041667 0.041667 0.041667 0.041667ࡹ ૚૚ࡹ ૚૙ࡹ ૢࡹ ૡࡹ ૠࡹ ૟ࡹ ૞ࡹ ૝ࡹ ૜ࡹ ૛ࡹ ૚ࡹ

Table 5. Hierarchy entropy.

 ૚૚ 0.132419 0 0 0.099542 0 0 0.059398 0 0 0 0ࡹ ૚૙ 0.132419 0 0 0.099542 0 0 0.059398 0 0 0 0ࡹ 0 0 0 0 0 0.059398 0 0.099542 0 0 0.132419 ૢࡹ ૡ 0.132419 0 0 0.099542 0 0.059398 0 0 0 0 0ࡹ ૠ 0.099542 0 0 0.059398 0 0 0 0 0 0.059398 0.059398ࡹ ૞ 0.099542 0 0 0.059398 0 0 0 0.059398 0.059398 0 0ࡹ ૞ 0.099542 0.059398 0 0 0 0 0 0 0 0 0ࡹ ૝ 0.059398 0 0 0 0 0.059398 0.059398 0.099542 0.099542 0.099542 0.099542ࡹ ૜ 0.059398 0 0 0 0 0 0 0 0 0 0ࡹ ૛ 0.059398 0 0 0 0.059398 0 0 0 0 0 0ࡹ ૚ 0 0.059398 0.059398 0.059398 0.099542 0.099542 0.099542 0.132419 0.132419 0.132419 0.132419ࡹ ૚૚ࡹ ૚૙ࡹ ૢࡹ ૡࡹ ૠࡹ ૟ࡹ ૞ࡹ ૝ࡹ ૜ࡹ ૛ࡹ ૚ࡹ

According to Formula (2), calculate the complexity of the personnel organization hierarchy, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଵ = 3.640904786.
(2) Case 2: Based on Case 1, this case combines Group G1 and Group G2 of SEG into one group

with the remaining unchanged, and the number of members of the whole project group is

identical to that in Case 1. Figure 4 shows the project personnel organization hierarchy.

Compared with the bureaucratic personnel organization hierarchy in Case 1, the software project

organization structure tends to be more flat. Then, calculate the complexity of the personnel

organization hierarchy.

Entropy 2015, 17 2108

Figure 4. Personnel hierarchy structure (Case 2).

According to Formula (2), calculate the complexity of the personnel organization hierarchy, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଶ = 3.275571498.
(3) Case 3: Software enterprise C mainly specializes in software development and adopts the matrix

organization structure. Figure 5 shows the project personnel organization hierarchy in which the

shaded background refers to software project personnel P. Then, the complexity of the project

personnel organization hierarchy is calculated.

Figure 5. Personnel hierarchy structure (Case 3).

According to Formula (2), calculate the complexity of the personnel organization hierarchy, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଷ = 3.275453525.
(4) Case 4: Because project P brings large risks, the quality, schedule and cost requirements are

higher. In order to adapt to the environment, enterprise C undergoes restructuration and adjusts

the original matrix organization structure to the project-based organizational structure. The

Entropy 2015, 17 2109

project organization personnel hierarchy is shown in Figure 6, and project P still maintains the

original number and personnel. Then, the complexity of the project personnel organization

hierarchy is calculated.

Figure 6. Personnel hierarchy structure (Case 4).

According to Formula (2), calculate the complexity of personnel organization hierarchy, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ସ = 2.831544427.
5.1.2. Contrast Analysis

(1) Analysis of the Contrast between Case 1 and Case 2.

Two cases have exactly an identical number of project personnel. Case 1 is a traditional

bureaucratic project organization structure, including four hierarchies, while Case 2 is a flat project

organizational structure, including three hierarchies only. By measurement according to Formula (2),

the results show that, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଵ > ଶ|(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ|

The complexity of the personnel organization hierarchy is reduced from 3.640904786 to

3.275571498 with a difference of 0.365333288.

Conclusion: Compared with the bureaucratic organization structure, flat management reduces the

complexity of personnel organization hierarchy.

(2) Analysis of Contrast between Case 3 and Case 4.

These two cases are identical in the enterprise, project, number of project personnel, project

manager and developers, but only differ in the personnel organization structure, which has been

Entropy 2015, 17 2110

changed from the matrix organization structure to the project-based organization structure. By

measurement according to Formula (2), the results show that, |ܵ(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଷ > ସ|(1ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ|

The complexity of the personnel organization hierarchy is reduced from 3.275453525 to

2.831544427 with a difference of 0.4439099098.

Conclusion: Because there are many leaders of software project personnel in the matrix

organization structure (department manager, project manager), more collaboration between

departments is needed than in the project-based organization structure; and the complexity of the

personnel organization hierarchy is higher, but all members of the project-based organization belong to

the same department, leading to a simple structure and a lower complexity of the personnel

organization hierarchy.

5.2. Measurement of the Complexity of the Personnel Communication Information for Software Projects

5.2.1. Cases

(1) Case 5: For a software project group, its personnel organization and information interaction is

shown in Figure 7, then the complexity of the personnel communication information is

calculated.

Figure 7. Personnel information interaction (Case 5).

According to Definition 8, M = {M1, M2, …, M10}, P = {P0102, P0103, …, P0110, P0201, P0203, …,

P0210, …, P1001, P1002, …, P1010}, and

௜ܲ௝ =
ۈۉ
ۈۈۈ
ۇۈۈ

1 1 01 1 11 1 0 0 0 01 0 00 1 1 0 0 00 0 01 1 1000 1 01 0 10 1 0 1 0 00 00 1 0 0 00 0 01 1 10000
0 1 00 1 000 11 00

0 10 1 100 11 11
1 1 11 111 1 1 ۋی

ۋۋۋ
ۊۋۋ

Entropy 2015, 17 2111

According to Formula (4): |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ହ = 2.224303443

(2) Case 6: Figure 8 shows the personnel organization and information interaction. It has the same

organization structure as Case 5; however, it has one more person.

Figure 8. Personnel information interaction (Case 6).

According to Formula (4): |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|଺ = 2.346652816

(3) Case 7: After readjustment of the structure of the project group in Case 5, the personnel

organization and information interaction is shown in Figure 9. Compared with Case 5, the

personnel organization structure management tends to be more flat, and then, the complexity of

the personnel communication information is calculated.

Figure 9. Personnel information interaction (Case 7).

According to Formula (4):

Entropy 2015, 17 2112

଻|(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ| = 2.302585093

(4) Case 8: Calculate the complexity of the personnel communication information based on the

matrix organization structure in Case 3.

According to Formula (4): |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|଼ = 2.602876917

(5) Case 9: Calculate the complexity of the personnel communication information based on the

project-based organization structure in Case 4.

According to Formula (4): |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ଽ = 1.717047029

5.2.2. Contrast Analysis

(1) Analysis of Contrast between Case 5 and Case 6

Case 5 and Case 6 have the same organization structure, but Case 6 has one more person. By

measurement according to Formula (4), the results show that, |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ହ < ଺|(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ|

the complexity of the personnel communication information increases from 2.224303443 to

2.346652816 with a difference of 0.122349373.

Conclusion: In the same organization structure cases, the more people, the higher the complexity of

the personnel communication information.

(2) Analysis of Contrast between Case 5 and Case 7

The above two cases are identical in the number of members of the project group, but differ in the

personnel organization structure. Case 5 has three hierarchies, and Case 7 has two hierarchies. The

former is taller than the latter in structure, and the latter is more flat than the former in structure. By

measurement according to Formula (4), the results show that, |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|ହ > ଻|(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ|

When the personnel organization structure is changed from a bureaucratic organization structure to

a flat organization structure, the complexity of the personnel communication information increases

from 2.224303433 to 2.302585093 with a difference of 0.07828165.

Conclusion: The large span of control of the flat management organization increases the horizontal

information exchanges and the complexity of the personnel communication information.

(3) Analysis of Contrast between Case 8 and Case 9

Case 8 shows a matrix project personnel organization structure, and the latter is the project-based

personnel one; by measurement according to Formula (4), the results show that, |ܵ(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋|଼ > ଽ|(2ܺ)ݕݐ݅ݔ݈݁݌݉݋ܥ_݈ܴ݅݊݁_݁ݎܽݓݐ݂݋ܵ|

Entropy 2015, 17 2113

the complexity of the personnel communication information is reduced from 2.602876917 to

1.717047029 with a difference of 0.885829888.

Conclusion: Compared with the project-based organization structure, the matrix software project

organization structure has a higher complexity of personnel communicate information under the same

scale of personnel due to the existence of multiple leadership roles.

6. Summary

Excessive complexity is one of the main reasons for the failure of software projects. To the extent

that the complexity is beyond the control of software project managers, the project’s failure is

inevitable. Therefore, how to recognize, measure, manage, control and reduce software complexity

becomes one of the key problems of software project management. However, this is also a very

challenging research topic. At first, this paper analyzes the current research situation of software

complexity systematically and points out existing problems in current research. Then, based on system

science, it proposes a WSR framework of software complexity, which divides the complexity of

software into the three levels of WL, SL and RL, so that the staff in different roles may have a better

understanding of the complexity. Because man is the main source of complexity and personnel is the

core problem of software project management, the current research focuses on WL complexity;

additionally, the research of RL complexity is extremely scarce, so this paper emphasizes the research

on the RL complexity of software projects. This paper not only analyzes the composing factors of RL

complexity, but also provides the definition of RL complexity. Moreover, it puts forward a quantitative

measurement method of the complexity of personnel organization hierarchy and the complexity of

communication information based on information entropy, first, and analyzes and validates the

scientificity and rationality of this measurement method through a large number of cases. Case analysis

indicates that, in the same organization structure cases, the more people, the higher the complexity of

personnel communication information. Case analysis also shows that flat management reduces the

complexity of the personnel organization hierarchy, but increases the complexity of personnel

communication information by comparison with a towering bureaucratic project organization structure.

However, project-based personnel organization structure is lower than the matrix software project

organization structure in both the complexity of the personnel organization hierarchy and the

complexity of the personnel communication information; so it is simpler, but the management and

communication of the matrix project organization is very complex, because of high complexity.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos.

61263022 and 61303234), the National Social Science Foundation of China (Grant No. 12XTQ012),

the Humanities and Social Sciences Youthful Foundation of the Ministry of Education of China (Grant

No. 11YJCZH073), the Natural Science Foundation of Yunnan Province of China (Grant No.

2010ZC100), and the Introduction of Talents Project of Science Research Foundation of Yunnan

University of Finance and Economics (Grant No. YC2012D07). The author would like to thank the

anonymous reviewers and the editors for their suggestions.

Entropy 2015, 17 2114

Conflicts of Interest

The author declares no conflict of interest.

References

1. Brooks, F.P. No silver bullet: Essence and accidents of software engineering. IEEE Comput. 1987,

20, 10–19.

2. Cerpa, N.; Verner, J.M. Why did your project fail? Commun. ACM 2009, 52, 130–134.

3. Vidal, L.A.; Marle, F.; Bocquet, J.C. Using a Delphi process and the Analytic Hierarchy Process

(AHP) to evaluate the complexity of projects. Expert Syst. Appl. 2011, 38, 5388–5405.

4. Vidal,L.A.; Marle, F.; Bocquet, J.C. Measuring project complexity using the Analytic Hierarchy

Process. Int. J. Proj. Manag. 2011, 29, 718–727.

5. Williams, T.M. Assessing and moving on from the dominant project management discourse in the

light of project overruns. IEEE Trans. Eng. Manag. 2005, 52, 497–508.

6. Bosch-Rekveldt, M.; Jongkind, Y.; Mooi, H.; Bakker, H.; Verbraeck, A. Grasping project

complexity in large engineering projects: The TOE (Technical, Organizational and

Environmental) framework. Int. J. Proj. Manag. 2011, 29, 728–739.

7. Giezen, M. Keeping it simple? A case study into the advantages and disadvantages of reducing

complexity in mega project planning. Int. J. Proj. Manag. 2012, 30, 781–790.

8. Green, G.C. The impact of cognitive complexity on project leadership performance. Inf. Softw.

Technol. 2004, 46, 165–172.

9. Xu, G.Z.; Gu, J.F.; Che, H.A. Systems Science; Shanghai Education Press of Science and

Technology: Shanghai, China, 2000. (in Chinese)

10. Brooks, P.F., Jr. No silver bullet: Essence and accidents of software engineering. IEEE Comput.

1987, 20, 10–19.

11. Zuse, H. Software Complexity Measures and Models; De Gruyter: New York, NY, USA, 1990.

12. Lin, Z.K.; Yang, D.L.; Yang, H. Six elements structure model and complexity analysis for

software development system. J. Syst. Eng. 2006, 21, 368–374.

13. Jiang, R.; Yang, M. Survey on Software Complexity Research. Comput. Syst. Appl. 2014, 23.

Available online: http://www.c-s-a.org.cn/ch/reader/view_abstract.aspx?file_no=20140901&flag=1

(accessed on 2 April 2015). (in Chinese)

14. McCabe, T.J. A Complexity Measurement. IEEE Trans. Softw. Eng. 1976, 2, 302–308.

15. Halstead, M.H. Elements of Software Science; Elsevier: New York, NY, USA, 1977.

16. Harrison, W.M.; Magel, K.I. A Complexity Measure Based on Nesting Level. ACM Sigplan Not.

1981, 6, 63–74.

17. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw.

Eng. 1994, 20, 476–493.

18. Lun, L.J.; Ding, X.M.; Li, Y.M.; Zhang, Y. Research on Object-Oriented Software Complexity

Metrics Based on Inheritance Graph. Comput. Eng. Appl. 2006, 27, 93–95.

19. Chen, J.-Y.; Lu, J.-F. A New Metric for Objec-Oriented Design. Inf. Softw. Technol. 1993, 35,

232–240.

Entropy 2015, 17 2115

20. Roca, J.L. An entropy-based method for computing software structural complexity.

Microelectron. Reliab. 1996, 36, 609–620.

21. Chhabra, J.K.; Aggarwal, K.K.; Singh, Y. Measurement of object-oriented software spatial

complexity. Inf. Softw. Technol. 2004, 46, 689–699.

22. Jiao, F.; Wang, L.; Hou, J. dependency-matrix based metric model for complexity of component-

based software. Comput. Appl. Softw. 2009, 26, 55–56.

23. Jiao, F.; Wang, L.; Hou, J. Approach to eValuating for complexity of software architecture. Appl.

Res. Comput. 2008, 25, 2377–2379.

24. Huang, W.; Chen, S. Software architecture and its complexity metrics based on component

operations. Comput. Eng. Appl. 2007, 43, 66–70.

25. Li, B.; Wang, H.; Li, Z.; He, K.; Yu, D. Software complexity metrics based on complex networks.

Chin. J. Electron. 2006, 34, 2371–2375.

26. Zhang, S. Evaluation of software requirement complexity and testing method of its effectiveness.

China Railw. Sci. 2002, 23, 30–35.

27. Wang, Y.; Zhang, X. Estimating complexity of use cases driven software and its application.

Comput. Eng. Design 2007, 28, 2543–2546.

28. Jiang, G.; Chen, Y. Software projeet complexity evaluation based on evidence reasoning. Comput.

Eng. Appl. 2005, 2, 4–7.

29. Jung, W.S.; Lee, E.J.; Kim, K.S.; Wu, C.S. an entropy-based complexity measure for web

applications using structural information. J. Inf. Sci. Eng. 2011, 27, 595–619.

30. Jung, W.S.; Lee, E.J.; Kim, K.S.; Wu, C.S. A complexity metric for web applications based on the

entropy theory. In Proceedings of the 15th Asia-Pacific Software Engineering Conference

(APSEC), Beijing, China, 3–5 December 2008.

31. Hops, J.M.; Sherif, J.S. Development and application of composite complexity models and a

relative complexity metric in a software maintenance environment. J. Syst. Softw. 1995, 31, 157–169.

32. Gu, J.F. Wuli-Shili-Renli System Approach: Theory and Applications; Shanghai Education Press

of Science and technology: Shanghai, China, 2006. (in Chinese)

33. Gu, J.F.; Zhu, Z. The Wu-li Shi-li Ren-li approach(WSR): An oriental systems methodology. In

Midgley GL and Wiley Jeds. Systems Methodology I: Possibilities for Cross-Cultural Learning

and Integration. University of Hull: Kingston upon Hull, UK, 1995; pp. 29–38.

34. Zhang, C.; Sun, D. Some Concepts and Understandings about WSR. Syst. Eng. 2001, 19, 1–8. (in

Chinese)

35. Mao, M.; Ge, X. Research on risk management model of software project. Sci. Technol. Manag.

Res. 2005, 6, 148–151.

36. Markus, M.L.; Robey, D. Information technology and organizational change:casual structrure in

theory and research. Manag. Sci. 1988, 28, 583–593.

37. Guo, N. IT Project Management; Tsinghua University Press: Beijing, China, 2009. (in Chinese)

38. Maddem, S. High-tech Brain Drain. Am. Netw. 2000, 104, 70–72.

39. Daniels, C.; Vinzant, C. The Joy of Quitting. Fortune, 2000, 141, 199–202.

40. Qiu, W. Management Decisions Entropy and the Application; China Electric Power Press:

Beijing, China, 2011. (in Chinese)

Entropy 2015, 17 2116

41. Menhorn, B.; Slomka, F. Design entropy concept: a measurement for complexity. In Proceedings

of the 7th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System

Synthesis. Taipei, Taiwan, 9–14 October 2011; pp. 285–294.

42. Menhorn, B.; Slomka, F. Quantitative Analysis of Software Code by States. In Proceedings of the

8th IASTED International Conference on Advances in Computer Science, Phuket, Thailand, 10–12

April 2013.

43. Menhorn, B.; Brix, L.; Slomka, F. Digital hardware projects: A new tool for automated

complexity analysis. In Proceedings of the 8th IEEE International Symposium on Industrial

Embedded Systems, Porto, Portugal, 19–21 June 2013.

44. Menhorn, B.; Slomka, F. Confirming the design gap. In Advances in Computational Science,

Engineering and Information Technology; Nagamalai, D., Kumar, A., Annamalai, A., Eds.;

Springer: Berlin/Heidelberg, Germany, 2013.

45. Menhorn, B.; Slomka, F. States and complexity. In Proceedings of the First International

Conference on Coping with Complexity, Cluj-Napoca, Romania, 19–20 October 2011.

46. Menhorn, B.; Slomka, F. Project Management through States. In Proceedings of International

Conference on Management and Service Science, Wuhan, China, 20–22 September 2009.

47. Han, W.; Jiang, L. Software Project Management Case Course, 2nd ed.; China Machine Press:

Beijing, China, 2009. (in Chinese)

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

