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Abstract: The voluntary prisoner’s dilemma (VPD) game has sparked interest from 

various fields since it was proposed as an effective mechanism to incentivize cooperative 

behavior. Current studies show that the inherent cyclic dominance of the strategies of the 

VPD game results in periodic oscillations in population. This paper investigated the 

influence of the level of individual rationality and the size of a population on the 

evolutionary dynamics of the VPD game. Different deterministic dynamics, such as the 

replicator dynamic, the Smith dynamic, the Brown-von Neumann-Nash (BNN) dynamic 

and the best response (BR) dynamic, for the evolutionary VPD game were modeled and 

simulated. The stochastic evolutionary dynamics based on quasi birth and death (QBD) 

process was proposed for the evolutionary VPD game and compared with deterministic 

dynamics. The results indicated that with the increase of the loners’ fixed payoff, the loner 

is more likely to remain in the stable state of a VPD game under any of the dynamics 

mentioned above. However, the different speeds of motion under the dynamics in the cycle 

dominance proved to be diverse under different evolutionary dynamics and also highly 

sensitive to the rationality of individuals in a population. Furthermore, in QBD stochastic 

dynamics, the size of the population has a remarkable effect on the possibility distribution. 

When the population size increases, the limited distribution of the QBD process will be in 

accordance with the results in the deterministic dynamics. 
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1. Introduction 

The emerging trend of cooperation among selfish individuals, which seem to prefer defection, has 

stimulated interest from researchers in the fields of biology and social science. Among all of the forms 

of games that demonstrate the evolution of cooperation, the prisoners’ dilemma (PD) has drawn continuous 

attention since it was first formalized by Tucker [1]. Since then, various mechanisms aiming at helping 

to incentivize cooperative behavior have been proposed to investigate the PD game [2–7].  

In the original PD game, each player can choose to be a cooperator (C) or a defector (D) 

simultaneously. If cooperators face defectors, former players get a payoff T (temptation to defect), 

while the latter only get payoff S (sucker’s payoff). Mutual cooperation makes both players get the 

payoff R (reward for mutual cooperation), and mutual defection gives every player the payoff P 

(punishment for mutual defection). To be considered as a prisoner's dilemma game, the payoffs must 

satisfy the conditions: T > R > P > S and 2R > (T + S). The condition R > P implies that mutual 

cooperation yields higher payoff than mutual defection, while T > R and P > S imply that each player 

will get higher payoff if he or she chooses to be a defector, regardless of what choice the opponent 

makes in a single round of the game. Besides that, we also require 2R > (T + S), because if the 

condition did not hold, cooperation would be eliminated, because players would be able to gain more 

by alternatively exploiting each other rather than cooperating.  

Inspired by the idea that voluntary participation in public good games turned out to be a simple, but 

effective way to prevent the tragedy of the commons [8], Szabó and Hauert [9] introduced voluntary 

participation to the prisoner’s dilemma game and named it the voluntary prisoner’s dilemma (VPD) 

game in 2002. The VPD game presented by them can be briefly described as follows: “Apart from 

cooperators and defectors, a third type of strategy, the loner (L), is considered: the risk-averse loners 

who are unwilling to participate in the game and rather rely on small but fixed earnings.” Then, the 

payoff matrix of the voluntary prisoner’s dilemma game can be depicted as follows [9]: 

0

0 1

D C L

D b

C

L

σ
σ

σ σ σ

 
 
 
 
 

 (1)

In the VPD game, the parameter R is set to be one and T is set to be b, which satisfy 1 ≤ b ≤ 2. 

However, slightly different from the traditional PD game, P and S are equal and set to be zero. In 

addition, the loners will get a fixed payoff σ in any situation with the condition 0 < σ < 1, which can 

guarantee that loners perform better than two defectors, but are worse off than two cooperators. 

Obviously, (L, L), (D, L), (L, D) are the Nash equilibriums of the single-shot VPD game; only (L, L) is 

the unique symmetric Nash equilibrium, but not an evolutionarily-stable strategy (ESS). In the 
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evolutionary VPD game, the three strategies can coexist through cyclic dominance (D invades C 

invades L invades D), which efficiently prevents the system from getting into a frozen state. 

Since then, the VPD game has attracted numerous researchers to extensively research the theory. 

With exploring the effect of partially random partnership on the measure of cooperation in a society 

where the pairwise interaction between members is approximated by the VPD game, Szabó and Vukov 

found that the exploiting strategy (defector) benefits from the increase of randomness in the 

partnership for the VPD game [10]. Lei explored the impact of aspiration on the VPD game via a 

selection parameter ω and discovered that the positive impact of preferential selection is suppressed by 

the voluntary strategy in prisoner’s dilemma [11]. Wu et al. studied the spatial prisoner’s dilemma 

game with voluntary participation in Newman–Watts small-world networks with the addition of some 

reasonable variables and drew a conclusion that in the case of a very low temptation to defect, agents 

are willing to participate in the game and in the typical small-world region, whereas intensive 

collective oscillations arise in more random regions [12]. Chen et al. made simulations for the VPD game 

on regular lattices and scale-free networks, and the results indicated that system behavior is sensitive to 

the population structure [13]. 

In summary, existing studies have investigated the effect that the value of b (temptation to defect), 

the value of selection parameter ω, the spatial structure of local interaction and other factors have on 

the VPD game. However, the inherent cyclic dominance of the strategies (D invades C invades L invades 

D) results in periodic oscillations in well-mixed populations. Therefore, the difference of evolutionary 

dynamics, the level of rationality of individuals in the dynamics and the size of a population also will 

have great influence on the evolutionary equilibrium of the VPD game. Thus, this paper will pay 

attention to making a comparison between several results of the evolutionary VPD game based on 

different kinds of deterministic and stochastic evolutionary dynamics. 

As previously determined, there are already a variety of deterministic dynamics that have been 

proposed to study the evolutionary game, such as the replicator dynamic, the Smith dynamic, the 

Brown-von Neumann-Nash (BNN) dynamic, the best response (BR) dynamic, etc. [14,15]. Among 

them, the replicator dynamic, which was put forward by Taylor and Jonker in 1978 [16], is the most 

widely applied one among all evolutionary dynamics. The Smith dynamic is a dynamic model used by 

Maynard Smith [17] to investigate traffic assignment in 1984. The BNN had been considered earlier 

by Brown and von Neumann when they studied the zero-sum game and proved global convergence to 

the set of equilibrium in 1950 [18]. The BR was proposed under the assumption of rational individuals 

by Gilboa and Matsui in 1991 [19].  

Going forward, if we assume a population of finite size, where the random fluctuations, due to, for 

instance, sampling effects, have to be taken into account, we can no longer rely on deterministic 

models. Thus, we must employ the stochastic process rather than ordinary differential equations to 

investigate the evolutionary game in a finite population consisting of bounded rational individuals. 

As a birth-death process, the Moran process is a simple stochastic process employed to investigate 

evolutionary game dynamics. The selection dynamics of the game with N players can be formulated as 

a Moran process [20] with frequency-dependent fitness. The process has two absorbing states, i = 0 

and i = N, i.e., if the population has reached either one of these states, then it will stay there forever. 

Nowak et al. [21] found that apart from the payoff matrix, population size also plays an important role 

in evolutionary game dynamics. In the two-strategy game, there are eight selection scenarios, and the 
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selection scenario can change as a function of population size N. The selection scenarios will converge 

into one of the three generic selection scenarios of the deterministic replicator dynamics when the 

population size approaches infinity. Later, Imhof and Nowak [22] further studied the evolutionary 

game based on the Wright–Fisher process, which can describe a biological population with discrete 

generations instead of assuming overlapping generations, as the Moran process does, and obtain the 

famous 1/3 law in the limit of weak selection. Furthermore, Antal et al. [23] focused on stochastic 

properties of fixation in two strategies games under stochastic evolutionary dynamics and concluded 

that the time of fixation is identical for both strategies in any particular game. They also discussed the 

asymptotic behavior of the fixation time and fixation probabilities in the large population size limit. 

The general conclusion is that if there is at least one pure evolutionarily-stable strategy (ESS) in the 

infinite population size limit, fixation is fast, while if the ESS is the coexistence of the two strategies, 

fixation will be slow.  

To investigate learning behavior in the evolutionary game, Kandori [24] firstly introduced the 

Markov process model to describe the learning dynamics in evolutionary games. Particularly, Tadj and 

Touzene [25] proposed the state-dependent quasi birth and death (QBD) process model to describe the 

learning dynamics for more complicated models, including for games with three strategies. 

For games with more than two strategies, the dynamics become much more complex, even in the 

deterministic model. We will therefore introduce the five classic evolutionary dynamics to study the 

VPD game, including the replicator dynamic, the Smith dynamic, the BNN dynamic, the BR dynamic 

and the QBD stochastic dynamics. Furthermore, we will go on to investigate the evolutionary VPD 

game under the four kinds of classic deterministic dynamics, as well as the QBD stochastic dynamic, 

in order to discuss the different results arising from these different evolutionary dynamics. 

2. Method 

Assume an evolutionary VPD game in a population consisting of N individuals; let ix  be the 

frequency of strategy i . Thus, the state of the population is given by nx S∈ . Then, ( )iF x  is the 

expected payoff for an individual of strategy i  , and ( )F x  is the average payoff in the population 

state x . Therefore,  

( )1 2 3F x bx xσ= +  (2)

( )2 2 3F x x xσ= +  (3)

( )3F x σ=  (4)

( ) ( ) 2
1 3 1 2 2 2 3 3

n

j j
j S

F x x F x x x bx x x x x xσ σ σ
∈

= = + + + +  
(5)

In order to investigate the effect of parameter σ on the results of the simulations, we will set three 

different values of σ, which are 0.2, 0.4 and 0.6, in every respective dynamic, while modeling the 

dynamics under the same conditions, such as the initial conditions, durations and noise, to make a clear 

comparison between these dynamics in evolution. 
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2.1. The Replicator Dynamic for the Evolutionary VPD Game 

The replicator dynamic, which was put forward by Taylor and Jonker in 1978 [16], is the most 

widely applied among all evolutionary dynamics. The game has been developed to study the dynamics 

of many complex systems, which even include inhomogeneous communities [26]. The original 

equation is denoted by: 

( ) ( )
n

i i i j j
j S

x x F x x F x
∈

 
= − 

 
  (6)

Thus, in the VPD game, denote the three strategies D, C, L with 1, 2, 3. Then, we can define the 
evolutionary VPD game under the replicator dynamic as follows: 

2
1 1 2 3 1 3 1 2 2 2 3 3( ) ( )x x bx x x x bx x x x x xσ σ σ σ = + − + + + +   (7)

2
2 2 2 3 1 3 1 2 2 2 3 3( ) ( )x x x x x x bx x x x x xσ σ σ σ = + − + + + +   (8)

2
3 3 1 3 1 2 2 2 3 3( )x x x x bx x x x x xσ σ σ σ = − + + + +   (9)

The replicator dynamic just requires that players know the payoff of the chosen strategies of the 

population in that moment well; there is no need to get information about the other strategies. Whether 

strategy i  will be chosen in the next instant or not depends on the frequency rather, than the payoff of 

it in this instant, which means a certain strategy will not be chosen anymore if it is not adopted in this 

instant. Consequently, the replicator dynamic indeed is an imitation based on the experiences of 

players and does not require players to be rational. 

2.2. The Smith Dynamic for the Evolutionary VPD Game 

The Smith dynamic is a dynamic model used by Maynard Smith to investigate traffic assignment in 

1984 [17]. The equation is: 

( ) ( ) ( ) ( )
n n

i j i j i j i
j S j S

x x F x F x x F x F x
+ +

∈ ∈

   = − − −      
(10)

Here, [ ] { }max 0,x x
+

= . Then, we can define the Smith dynamic in the VPD game as follows: 

[ ] [ ]2
1 2 3 2 3 1 2 3( 1)x b x x bx x x bx xσ σ σ σ

+ +
= − + + − − − −  (11)

[ ] [ ]2
2 3 2 3 2 2 2 3( 1)x x x x b x x x xσ σ σ σ

+ +
= + − − − − − −  (12)

[ ] [ ] [ ] [ ]3 1 2 3 2 2 3 3 2 3 3 2 3x x bx x x x x x x x x bx xσ σ σ σ σ σ σ σ
+ + + +

= − − + − − − + − − + −  (13)

Under this dynamic, when, and only when, the payoff of an alternative strategy is greater than the 

current one will players switch to the alternative strategy with an increased positive possibility, which 

is proportional to the difference between their payoffs. It only requires the knowledge of the payoffs of 

both alternatives and current strategies, which can be obtained from the players’ own experiences or 

communication with other players. 
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2.3. The BNN Dynamic for the Evolutionary VPD Game 

The BNN was considered earlier by Brown and von Neumann when they studied the zero-sum 

game and proved global convergence to the set of equilibrium in 1950 [18]. It is therefore defined as: 

( ) ( ) ( ) ( )
n

i i i j
j S

x F x F x x F x F x
+ +

∈

  = − − −     
(14)

Here, ( ) ( )
n

i i
i S

F x x F x
∈

= . Additionally, in 1951, Nash used the BNN dynamic to prove the 

existence of equilibrium [27]. The BNN dynamic requires players to be aware of the current strategy’s 

payoff and the average payoff of all available strategies. To get information about the above, players 

should be in a higher level of rationality. 

2.4. The BR Dynamic for the Evolutionary VPD Game 

The BR was proposed by Gilboa and Matsui in 1991 [19] and is defined as:  

( )x BR x x∈ −  (15)

That means that players should be rational enough to determine the state of the current population 

and to respond optimally. Specifically, under the BR dynamic, players should grasp information about 

the payoffs of all available strategies and then make the best response to the current population state. 

That means that the players need to be rational agents and have the ability to imitate quickly. 

2.5. The QBD Stochastic Dynamic for the Evolutionary VPD Game 

In the QBD stochastic dynamic, suppose that the general VPD games are repeatedly played  

between individuals in a finite population with a size of N, and a stochastic process can be defined as 
follows: the state at time t is a two-dimensional stochastic variable ( ) ( ) ( )( )1 2,t t tω ω ω= , where 

( ) ( 1,2)i t iω =  are the number of players in the population who choose Strategies D and C, while the 

number of players in the population who choose Strategy L is ( ) ( )1 2N t tω ω− +   . Hence, the profile 

and the average payoffs of players can be decided by ( ) ( 1,2)i t iω =  and ( ) ( )1 2N t tω ω− +    at time t. 

Then, the average payoff of a player choosing strategy i  will be ( ) ( 1,2,3)i iπ ω = , 

where ( ) ( )( )1 2,t tω ω ω= . Therefore, 

( ) ( )1 2 1 2
1

0 b N

N

ω ω σ ω ω
π ω

⋅ + ⋅ + ⋅ − −
=  (16)

( ) ( )1 2 1 2
2

0 N

N

ω ω σ ω ω
π ω

⋅ + + ⋅ − −
=  (17)

( )3π ω σ=  (18)

Next, let us assume ( )1 t iω =  and ( )2 t jω = ; then, the individuals in the population will switch 

from strategy l  to strategy k  ( , 1, 2,3; )l k l k= ≠  with rate: 



Entropy 2015, 17 1666 
 

 

( ) ( ) ( ), , ,kl k li j i j i jτ ε π π +
= + −    (19)

( ) ( )( )( ){ }, 0, ,0 0,0i j N N≠  and ( ) ( ) ( )0, N N,0 0,0 0kl kl klτ τ τ= = = , where 
, 0

0, 0

f f
f

f
+ ≥

=  <
 is defined 

for an arbitrary real function f. 

We can then describe the QBD process for the VPD game, which can be viewed as a two-dimensional 

Markov process defined on the state space, as follows: the individuals choosing the strategy l  in  
the population will switch to strategy k  with rate ( , )kl i jτ , if ( , ) ( , ) 0k li j i jπ π− ≥ , and the transition 

rate will be 0, if the number of individuals adopting the same strategy in the population reach N, the 

size of population. 

3. Results and Analysis 

In this section, the simulation results of the four deterministic dynamics and stochastic dynamic 

were demonstrated. First, the VPD game under different deterministic dynamics was simulated by 

Dynamo software [28], and the phase diagrams are mapped out in Figure 1.  

The simulation results showed that there are three unstable rest points under the replicator dynamic. 

From the solution trajectories with three different σ values, it could be concluded that with larger σ, the 

points near D move towards L more quickly, and the points near C move towards D slowly. 

Figure 1 also shows the simulation results of the Smith dynamic with three different σ. Similar to 

the simulations of the replicator dynamic, they also have no stable rest points and only have a unique 

unstable rest point (0, 0, 1), which is the Nash equilibrium of the VPD game. When σ is smaller, such 

as 0.2 or 0.4, the points near (0, 1, 0) move towards D quickly, while the points near (1, 0, 0) move 

towards the unstable rest point L slowly. However, as σ increases, all points move towards L. The 

movement of those points far away from L is faster compared to the other ones. 

The characteristics in the BNN dynamic are analogous to those in the Smith dynamic. The 

simulations have a similarly unstable rest point, which is the Nash equilibrium. The solution 

trajectories are also analogous. All points of the game in the BNN dynamic have a slower speed of 

movement than that in the Smith dynamic. 

As for the BR dynamic, the properties of the rest points are similar to those in the BNN dynamic 

and Smith dynamic, while the solution trajectories are obviously different. There seems to exist a split 

line from (0, 0, 1) to one point on the line between C and D that divides the whole region into two 

parts. The points above the split line will move along the line, and the points below the split line will 

move towards it. Comparing the phase diagrams, we can see that when σ increases, the right endpoint 

of divide will shift down along the C-D line. 

Finally, we simulate the evolutionary VPD game under the QBD process by coding a program and 

running it on MATLAB 7. The simulation results are shown in Figure 2. Generally, the red region is 

where points with a higher probability of being in the stable state move towards L along with the 

increasing of σ regardless of the size of the population. When σ is 0.2, which represents a low fixed 

payoff of L, a red region appears at the bottom zone near C, as shown in Figure 2. The red region will 

move towards L when σ gets larger.  
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Figure 1. Evolution of the voluntary prisoner’s dilemma (VPD) game under deterministic 

dynamics with b = 1.5. D represents defector, L represents loner, and C represents 

cooperator. The speed of movement is represented by different colors: red for high speed, 

yellow for mid-values and blue for low speed. The black and white dots denote stable and 

unstable rest points, respectively.  
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Figure 2. Evolution of the VPD game under the quasi birth and death (QBD) process with 

b = 1.5 and population size N = 10, 20, 30 respectively. The colors represent values of 

probabilities in the stable state of the QBD process: red for high values, yellow for mid-values 

and blue for low values. 

To analyze how the population size will influence the stochastic evolutionary game dynamic, we 

compared the results under different population sizes, but the same b and σ. After obtaining the 

limiting distribution of the QBD process for the VPD game with b = 1.5, σ = 0.6, we can define the 

“main region” of the stable states in the simplex, which contains points in the simplex around L within 

a radius of 0.3. The total probability of points in the main region represents the concentration trend of 

the stable state of QBD. From Figure 3, it is interesting to discover that the total probability of the 

points in the main region increases along with the increase in population size. When N increases to 50, 

the total probability of the region climbs to over 0.8. We can infer that the stable states may ultimately 

converge into the strategy “loner” if the population size is big enough. 
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Figure 3. The Y-axis represents the total probability of the points in the “main region”, 

while the X-axis represents the population size. The red line is the fitted curve of these points. 

4. Conclusions 

In this paper, we have investigated the influence of the level of individual rationality and the size of 

a population on the evolutionary dynamics of the VPD game. Then, the five evolutionary dynamics, 

such as the replicator dynamic, the Smith dynamic, the BNN dynamic, the BR dynamic and the QBD 

stochastic process, for the evolutionary VPD game were modeled and simulated. 

Simulation results first show that with the increase of σ, the homogenous loner is more likely to be 

in a stable state in the VPD game regardless of the dynamic. Specifically, under all of the four 

mentioned deterministic dynamics, L is the rest point of them. Moreover, under stochastic dynamics, 

the loners have a very high probability to be in a stable state. 

Secondly, although the three strategies in the VPD game can coexist by cyclic dominance (D 

invades C invades L invades D), which efficiently prevents the system from getting into a frozen state, 

the different speeds of dynamics in the cycle appeared to vary under different evolutionary dynamics. 

In fact, the speed of the replicator dynamic is the slowest among these four deterministic dynamics, 

and the speed of the BR dynamic is the highest. This may be attributed to the rationality degree of the 

individuals in the population, because the individuals in the BR dynamic are supposed to be in complete 

rationality in the evolution, but the replicator dynamic does not have any rationality assumptions. 

Therefore, we can conclude that a more rapid evolution will occur in a more rational population. 

Finally, when studying the simulation results under the QBD process, we can conclude that as the 

size of the population increases, the red region in the simplex will be more concentrated, which 

indicates that the randomness of this model becomes weaker. Thus, we expect that when the size of the 

population tends to infinity, the limited distribution of the QBD process will be in accordance with the 

results in the deterministic dynamics. 

After Nowak and May originally announced that the spatial structure of populations can induce the 

emergence of cooperation [29,30], many studies explored the spatial prisoner’s dilemma game on a 

variety of networks, including regular lattices, random regular graphs, random networks with a fixed 
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mean degree distribution, small-world networks and real-world acquaintance networks [31–35]. Then, 

the spatial prisoner’s dilemma game with volunteering was investigated for several random networks 

by Szabó and Vukov [10], and the effects of cyclic dominance for other three-strategy games were also 

investigated on different networks. In fact, not only evolutionary dynamics are strongly affected by 

population structure, but population structure also will be affected by evolutionary dynamics. 

Therefore, future research will focus on investigating the co-evolutionary of the population structure 

and dynamics for the VPD game based on evolutionary set theory or the hyper-network method [36]. 
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