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Abstract: For conditional probabilistic knowledge bases with conditionals based on
propositional logic, the principle of maximum entropy (ME) is well-established, determining
a unique model inductively completing the explicitly given knowledge. On the other hand,
there is no general agreement on how to extend the ME principle to relational conditionals
containing free variables. In this paper, we focus on two approaches to ME semantics that
have been developed for first-order knowledge bases: aggregating semantics and a grounding
semantics. Since they use different variants of conditionals, we define the logic PCI, which
covers both approaches as special cases and provides a framework where the effects of
both approaches can be studied in detail. While the ME models under PCI-grounding and
PCI-aggregating semantics are different in general, we point out that parametric uniformity
of a knowledge base ensures that both semantics coincide. Using some concrete knowledge
bases, we illustrate the differences and common features of both approaches, looking in
particular at the ground instances of the given conditionals.
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1. Introduction

Probabilistic conditional knowledge bases containing conditionals of the form (B|A)[d] with the
reading “if A, then B with probability d” are a powerful means for knowledge representation and
reasoning when uncertainty is involved [1,2]. If A and B are propositional formulas over a propositional
alphabet Σ, possible worlds correspond to elementary conjunctions over Σ, where an elementary
conjunction is a conjunction containing every element of Σ exactly once, either in non-negated or
in negated form. A possible worlds semantics is given by probability distributions over the set of
possible worlds, and a probability distribution P satisfies (B|A)[d] if for the conditional probability
P (B|A) = P (A∧B)

P (A)
the relation P (B|A) = d holds. For a knowledge base R consisting of a set of

propositional conditionals, P is a model of R if P satisfies each conditional in R. The principle of
maximum entropy (ME principle) is a well-established concept for choosing the uniquely determined
model of R having maximum entropy. This model is the most unbiased model of R in the sense
that it completes the knowledge given by R inductively but adds as little additional information as
possible [3–9].

While for a set of propositional conditionals there is a general agreement about its ME model, the
situation changes when the conditionals are built over a relational first-order language. As an illustration,
consider the following example.

Example 1 (Elephant Keeper). The elephant keeper example, adapted from [10,11], models the
relationships among elephants in a zoo and their keepers. Elephants usually like their keepers, except
for keeper Fred. However, elephant Clyde gets along with everyone, and therefore he also likes Fred.
The knowledge baseREK consists of the following conditionals:

ek1 : (likes(E,K) | elephant(E), keeper(K))[0.9]

ek2 : (likes(E, fred) | elephant(E), keeper(fred))[0.05]

ek3 : (likes(clyde, fred) | elephant(clyde), keeper(fred)[0.85]

Conditional ek1 models statistical knowledge about the general relationship between elephants and
their keepers, whereas conditional ek2 represents knowledge about the exceptional keeper Fred and his
relationship to elephants in general. Conditional ek3 models the subjective belief about the relationship
between the elephant Clyde and keeper Fred. From a common sense point of view, the knowledge base
REK makes perfect sense: conditional ek2 is an exception from ek1, and ek3 is an exception from ek2.

When trying to extend the ME principle from the propositional case to such a relational
setting, a central question is how to interpret the free variables occurring in a conditional. For
instance, note that a straightforward complete grounding of REK yields a grounded knowledge
base that can be viewed as a propositional knowledge base. However, this grounded knowledge
is inconsistent since it contains both (likes(clyde, fred)|elephant(clyde), keeper(fred))[0.9]

and (likes(clyde, fred)|elephant(clyde), keeper(fred))[0.05], and no probability distribution
P can satisfy both P (likes(clyde, fred)|elephant(clyde), keeper(fred)) = 0.9 and
P (likes(clyde, fred)|elephant(clyde), keeper(fred)) = 0.05.

Thus, when extending the ME principle to the relational case with free variables as inREK , the exact
role of the variables has to be specified. There are various approaches dealing with a combination of



Entropy 2015, 17 854

probabilities with a first-order language (e.g., [12,13]); a comparison and evaluation of some approaches
is given [14]). In the following, we focus on two semantics that both employ the principle of
maximum entropy for probabilistic relational conditionals, the aggregation semantics [15] proposed by
Kern-Isberner and the logic FO-PCL [16] elaborated by Fisseler. While both approaches are related in
the sense that they refer to a set of constants when interpreting the variables in the conditionals, there is
also a major difference. FO-PCL requires all groundings of a conditional to have the same probability
d given in the conditional, and in general, FO-PCL needs to restrict the possible instantiations for the
variables occurring in a conditional by providing constraint formulas like U 6= V or U 6= a in order to
avoid inconsistencies. On the other hand, under aggregation semantics the grounded instances may have
distinct probabilities as long as they aggregate to the given probability d, and aggregation semantics is
defined only for conditionals without constraint formulas.

In this paper, a logical framework PCI extending aggregation semantics to conditionals with
instantiation restrictions and also providing a grounding semantics is proposed. From a knowledge
representation point of view, this provides greater flexibility, e.g., when expressing knowledge about
individuals known to be exceptional with respect to some relationship. We show that both the aggregation
semantics of [15] and the semantics of FO-PCL [16] come out as special cases of PCI, thereby also
helping to clarify the relationship between the two approaches. Moreover, we investigate the ME models
under PCI-grounding and PCI-aggregating semantics, which are different in general, and we give a
condition on knowledge bases ensuring that both ME semantics coincide.

This paper is a revised and extended version of [17] and is organized as follows. In Section 2, we very
briefly recall the background of FO-PCL and aggregation semantics. In Section 3, the logic framework
PCI is developed and two alternative satisfaction relations for grounding and aggregating semantics
are defined for PCI by extending the corresponding notions of [15,16]. In Section 4, the maximum
entropy principle is employed with respect to these satisfaction relations; we show that the resulting
semantics coincide for knowledge bases that are parametrically uniform [11,16]. In Section 5, we
present and discuss ME distributions for some concrete knowledge bases both under PCI-grounding and
PCI-aggregating semantics, and point out their differences and common features, covering in particular
the groundings of the given conditionals. Finally, in Section 6 we conclude and point out further work.

2. Background: FO-PCL and Aggregation Semantics

As already pointed out in Section 1, simply grounding a relational knowledge base R easily leads
to inconsistency. Therefore, the logic FO-PCL [11,16] employs instantiation restrictions for the free
variables of a conditional. An FO-PCL conditional has additionally a constraint formula determining
the admissible instantiations of free variables, and the grounding semantics of FO-PCL requires that all
admissible ground instances of a conditional c must have the probability given by c.

Example 2 (Elephant Keeper with instantiation restrictions). In FO-PCL, adding K 6= fred to
conditional ek1 and E 6= clyde to conditional ek2 inREK yields the knowledge baseR′EK with:

ek′1 : 〈(likes(E,K) | elephant(E), keeper(K))[0.9], K 6= fred〉
ek′2 : 〈(likes(E, fred) | elephant(E), keeper(fred))[0.05], E 6= clyde〉
ek′3 : 〈(likes(clyde, fred) | elephant(clyde), keeper(fred))[0.85], >〉
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Note that, e.g., the ground instance (likes(clyde, fred)|elephant(clyde), keeper(fred))[0.05] of
conditional ek′2 is not admissible, and that the set of admissible ground instances of R′EK is indeed
consistent under probabilistic semantics for propositional knowledge bases as considered, e.g., in [8,18].

Thus, under FO-PCL semantics, R′EK is consistent, where a probability distribution P satisfies
an FO-PCL conditional r, denoted by P |=fopcl r, iff all admissible ground instances of r have the
probability specified by r.

In contrast, the aggregation semantics, as given in [15], does not consider instantiation restrictions,
since its satisfaction relation (in this paper denoted by |=no-ir

� to indicate no instantiation restriction), is
less strict with respect to probabilities of ground instances: P |=no-ir

� (B|A)[d] iff the quotient of the sum
of all probabilities P (Bi ∧ Ai) and the sum of P (Ai) is d, where (B1|A1), . . . , (Bn|An) are the ground
instances of (B|A). In this way, the aggregation semantics is capable of balancing the probabilities of
ground instances, resulting in greater flexibility and higher tolerance with respect to consistency issues.
Provided that there are enough individuals so that the corresponding aggregation over all probabilities
is possible, the knowledge base REK that is inconsistent under FO-PCL semantics is consistent under
aggregation semantics.

3. PCI Logic

The logical framework PCI (probabilistic conditionals with instantiation restrictions) uses
probabilistic conditionals with and without instantiation restrictions and provides different options for
a satisfaction relation. The syntax of PCI given in [19] uses the syntax of FO-PCL [11,16]. In the
following, we will precisely state the formal relationship among |=no-ir

� , |=fopcl, and the satisfaction
relations offered by PCI.

As FO-PCL, PCI uses function-free, sorted signatures of the form Σ = (S,D,Pred). In a
PCI-signature Σ = (S,D,Pred), S = {s1, . . . , sk} is a set of sort names or just sorts. The set D is
a finite set of constants symbols where each d ∈ D has a unique sort s ∈ S . With D(s) we denote the
set of all constants having sort s; thus D =

⋃
s∈S D(s) is a set being the union of (disjoint) sets of sorted

constant symbols. Pred is a set of predicate symbols, each having a particular number of arguments. If
p ∈ Pred is a predicate taking n arguments, each argument position i must be filled with a constant or
variable of a specific sort si. Thus, each p ∈ Pred comes with an arity of the form s1 × . . . × sn ∈ Sn

indicating the required sorts for the arguments. Variables V also have a unique sort, and all formulas and
variable substitutions must obey the obvious sort restrictions. In the following, we will adopt the unique
names assumption, i.e., different constants denote different elements. The set of all terms is defined as
TermΣ := V ∪ D. Let LΣ be the set of quantifier-free first-order formulas defined over Σ and V in the
usual way.

Definition 1 (Instantiation Restriction). An instantiation restriction is a conjunction of inequality atoms
of the form t1 6= t2 with t1, t2 ∈ TermΣ. The set of all instantiation restriction is denoted by CΣ.

Since an instantiation restriction may be a conjunction of inequality atoms, we can express that a
conditional has multiple restrictions, e.g., by stating E 6= clyde ∧K 6= fred .
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Definition 2 (q-, p-, r-Conditional). Let A,B ∈ LΣ be quantifier-free first-order formulas over Σ and V .

1. (B|A) is called a qualitative conditional (or just q-conditional). Note that A is the antecedence
and B the consequence of the qualitative conditional. The set of all qualitative conditionals over
LΣ is denoted by (LΣ|LΣ).

2. Let (B|A) ∈ (LΣ|LΣ) be a qualitative conditional and let d ∈ [0, 1] be a real value. Here
(B|A)[d] is called a probabilistic conditional (or just p-conditional) with probability d. The set of
all probabilistic conditionals over LΣ is denoted by (LΣ|LΣ)prob .

3. Let (B|A)[d] ∈ (LΣ|LΣ)prob be a probabilistic conditional and let C ∈ CΣ be an instantiation
restriction. In addition, 〈(B|A)[d], C〉 is called an instantiation restricted conditional (or
just r-conditional). The set of all instantiation restricted conditionals over LΣ is denoted by
(LΣ|LΣ)probCΣ .

Instantiation restricted qualitative conditionals are defined analogously. If it is clear from the context,
we may omit qualitative, probabilistic, and instantiation restricted and just use the term conditional.

Definition 3 (PCI knowledge base). A pair (Σ,R) consisting of a PCI signature Σ = (S,D,Pred) and
a set of instantiation restricted conditionals R = {r1, . . . , rm} with ri ∈ (LΣ|LΣ)probCΣ is called a PCI
knowledge base.

For an instantiation restricted conditional r = 〈(B|A)[d], C〉, ΘΣ(r) denotes the set of all ground
substitutions with respect to the variables in r. A ground substitution θ ∈ ΘΣ(r) is applied to the
formulas A, B and C in the usual way, i.e., each variable is replaced by a certain constant according to
the mapping θ = {v1/c1, . . . , vl/cl} with vi ∈ V , ci ∈ D, 1 ≤ i ≤ l. Therefore, θ(A), θ(B), and θ(C)

are ground formulas and we have θ((B|A)) := (θ(B)|θ(A)).
Given a ground substitution θ over the variables occurring in an instantiation restriction C ∈ CΣ, the

evaluation of C under θ, denoted by [[C]]θ, yields true iff θ(t1) and θ(t2) are different constants for all
t1 6= t2 ∈ C.

Definition 4 (Admissible Ground Substitutions and Instances). Let Σ = (S,D,Pred) be a many-sorted
signature and let r = 〈(B|A)[d], C〉 ∈ (LΣ|LΣ)probCΣ be an instantiation restricted conditional. The set of
admissible ground substitutions of r is defined as

Θadm
Σ (r) := {θ ∈ ΘΣ(r) | [[C]]θ = true}

The set of admissible ground instances of r is defined as

gndΣ(r) := {θ(B|A)[d] | θ ∈ Θadm
Σ (r)}

In the following, when we talk about the ground instances of a conditional, we will always refer to its
admissible ground instances.

As for an FO-PCL knowledge base [11], for a PCI knowledge base (Σ,R) we define the Herbrand
base H(R) as the set of all ground atoms in all gndΣ(ri) with ri ∈ R. Every subset ω ⊆ H(R) is a
Herbrand interpretation, defining a logical semantics for R. The set ΩΣ := {ω | ω ⊆ H(R)} denotes
the set of all Herbrand interpretations. Herbrand interpretations are also called possible worlds.
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Definition 5 (PCI Interpretation). The probabilistic semantics of (Σ,R) is a possible worlds
semantics [12] where the ground atoms in H(R) are binary random variables. A PCI interpretation P
of a knowledge base (Σ, R) is thus a probability distribution P : ΩΣ → [0, 1]. The set of all probability
distributions over ΩΣ is denoted by PΩΣ

or just by PΩ.

The PCI framework offers two different satisfaction relations: |=pci
4 is based on grounding as in

FO-PCL, and |=pci
~ extends aggregation semantics to r-conditionals.

Definition 6 (PCI Satisfaction Relations). Let P ∈ PΩ and let 〈(B|A)[d], C〉 ∈ (LΣ|LΣ)probCΣ be an
r-conditional with

∑
θ∈Θadm

Σ (〈(B|A)[d],C〉) P (θ(A)) > 0. The two PCI satisfaction relations |=pci
4 and |=pci

~

are defined by:

P |=pci
4 〈(B|A)[d], C〉 iff

P (θ(A ∧B))

P (θ(A))
= d

for all
θ ∈ Θadm

Σ (〈(B|A)[d], C〉)
(1)

P |=pci
~ 〈(B|A)[d], C〉 iff

∑
θ∈Θadm

Σ (〈(B|A)[d],C〉)

P (θ(A ∧B))

∑
θ∈Θadm

Σ (〈(B|A)[d],C〉)

P (θ(A))
= d (2)

We say that P satisfies 〈(B|A)[d], C〉 under PCI-grounding semantics iff P |=pci
4 〈(B|A)[d], C〉.

Correspondingly, P satisfies 〈(B|A)[d], C〉 under PCI-aggregation semantics iff P |=pci
~ 〈(B|A)[d], C〉.

As usual, the satisfaction relations |=pci
? with ? ∈ {4, ~} are extended to a set of conditionals R

by defining
P |=pci

? R iff P |=pci
? r for all r ∈ R.

The following proposition states that PCI properly captures both the instantiation-based semantics |=fopcl

of FO-PCL [11] and the aggregation semantics |=no-ir
� of [15] (cf. Section 2).

Proposition 1 (PCI captures FO-PCL and aggregation semantics [19]). Let 〈(B|A)[d], C〉 be an
r-conditional and let (B|A)[d] be a p-conditional, respectively. Then the following holds:

P |=pci
4 〈(B|A)[d], C〉 iff P |=fopcl 〈(B|A)[d], C〉 (3)

P |=pci
~ 〈(B|A)[d],>〉 iff P |=no-ir

� (B|A)[d] (4)

4. PCI Logic and Maximum Entropy Semantics

If a knowledge base R is consistent, there are usually many different models satisfying R. The
principle of maximum entropy chooses the unique distribution that has maximum entropy among all
distributions satisfying a knowledge base R [5,8]. Applying this principle to the PCI satisfaction
relations |=pci

4 and |=pci
~ yields

PME?
R = arg max

P∈PΩ:P |=pci
? R

H(P ) (5)

with ? being4 or ~, and where

H(P ) = −
∑
ω∈Ω

P (ω) logP (ω)
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is the entropy of a probability distribution P .

Example 3 (Misanthrope). The knowledge baseRMI = {R1, R2}, adapted from [11], models friendship
relations within a group of people with one exceptional member, a misanthrope. In general, if a person
V likes another person U, then it is very likely that U likes V, too. However, there is one person, the
misanthrope, who generally does not like other people:

R1 : 〈(likes(U, V )|likes(V, U)))[0.9], U 6= V 〉
R2 : 〈(likes(a, V )|>)[0.05], V 6= a〉

Within the PCI framework, consider RMI together with constants D = {a, b, c} and
the corresponding ME distributions ME4(RMI ) and ME~(RMI ) under PCI-grounding and
PCI-aggregation semantics, respectively.

Under ME4(RMI ), all six ground conditionals emerging from R1 have probability 0.9, for instance,
ME4(RMI )(likes(a, b) | likes(b, a)) = 0.9.

On the other hand, for the distribution ME~(RMI ), we have ME~(RMI )(likes(a, b) | likes(b, a)) =

0.46016768 and ME~(RMI )(likes(a, c) | likes(c, a)) = 0.46016768, while the other four ground
conditionals resulting from R1 have probability 0.96674480.

Example 3 shows that in general the ME model under PCI-grounding semantics of a knowledge
base R differs from its ME model under PCI-aggregation semantics. However, if R is parametrically
uniform [11,16], the situation changes. Parametric uniformity of a knowledge base R is introduced
in [11] and refers to the fact that the ME distribution under FO-PCL (or PCI-grounding) semantics
satisfying a set of m ground conditionals can be represented by a set of just m optimization parameters.
A relational knowledge base R is parametrically uniform iff for every conditional r ∈ R, all ground
instances of r have the same optimization parameter (see [11,16] for details). For instance, the
knowledge base R′EK from Example 2 is parametrically uniform, while the knowledge base RMI from
Example 3 is not parametrically uniform. Thus, if R is parametrically uniform, just one optimization
parameter for each conditional r ∈ R instead of one optimization parameter for each ground instance
of r has to be computed; this can be exploited when computing the ME distribution [17]. In [20],
a set of transformation rules is developed that transforms any consistent knowledge base R into a
knowledge base R′ such that R and R′ have the same ME model under grounding semantics and R′

is parametrically uniform.
Using the PCI framework providing both grounding and aggregating semantics for conditionals with

instantiation restrictions, the ME models for PCI-grounding and PCI-aggregation semantics coincide if
R is parametrically uniform.

Proposition 2 ([19]). LetR be a PCI knowledge base. IfR is parametrically uniform, then ME4(R) =

ME~(R).

Thus, while in general ME4(R) 6= ME~(R), parametric uniformity of R ensures that ME4(R) =

ME~(R).



Entropy 2015, 17 859

5. Computation and Comparison of Maximum Entropy Distributions

In Example 3 we already presented some concrete probability values for ME distributions. We
will now look into more details of the ME distributions obtained from both PCI-grounding and
PCI-aggregation semantics. In particular, we will illustrate how the ME distribution for PCI-grounding
and PCI-aggregation semantics evolve when transforming a knowledge base that is not parametrically
uniform into a knowledge base that is parametrically uniform.

5.1. Achieving Parametric Uniformity

While transforming a knowledge base into one that is parametrically uniform [11] does not change
its ME model under (FO-PCL or PCI) grounding semantics, it allows for a simpler ME model
computation [17]. In [20], a set of transformation rules PU is presented allowing to transform any
consistent knowledge base R into a parametrically uniform knowledge base PU(R) with the same
maximum entropy model under grounding semantics. An implementation of PU [21] is available within
the KREATOR environment (KREATOR can be found at http://kreator-ide.sourceforge.net/), an integrated
development environment for relational probabilistic logic [22]. The CSPU (Conditional Structures and
Parametric Uniformity) component [23] of KREATOR generates PU transformation protocols, and a
part the protocol for the misanthrope knowledge base RMI from Example 3 is shown in Figure 1. For
details of the PU transformation rules we refer to [20]; we just remark here that PU stepwise removes
all interactions among the conditionals where an interaction in a knowledge R base indicates that R is
not parametrically uniform [20]. In each PU transformation step, one conditional R is replaced by two
conditionals R1, R2 originating from R. Table 1 illustrates howRMI evolves fromRMI = R1 toR2 and
fromR2 toR3 = PU(RMI ).

5.2. Maximum Entropy Distributions for Grounding and Aggregation Semantics

Using KREATOR we computed the ME distributions for the three knowledge bases R1, R2, and R3

involved in the PU transformation of RMI for both PCI-grounding and PCI-aggregation semantics. For
all admissible ground instances of the conditionals occurring in R1, R2 and R3, we computed their
probability under the ME distributions for PCI-grounding and PCI-aggregation semantics. The results
are shown in Table 2, using the abbreviation l(x, y) for likes(x, y).

There are three pairwise different ME distributions (i.e., ME~(R1), ME~(R2), ME~(R3)) under
PCI-aggregation semantics for the three pairwise different knowledge bases R1, R2, R3. On the
other hand ME4(R1) = ME4(R2) = ME4(R3) = ME~(R3) holds since the PU transformation
process does not change the maximum entropy model under PCI-grounding semantics and because R3

is parametrically uniform.

http://kreator-ide.sourceforge.net/
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Figure 1. The KREATOR protocol of the PU transformation steps from RMI = R1 to R2

and fromR2 toR3 = PU(RMI ) forRMI from Example 3.
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Table 1. Conditionals occurring in R1, R2, and R3 given by the PU transformation steps
from RMI = R1 to R2 and from R2 to R3 = PU(RMI ) for RMI from Example 3 (cf.
Figure 1) using the abbreviation l(x, y) for likes(x, y). Conditional R1 in R1 is replaced by
R1·1 and R1·2 inR2, and conditional R1·2 inR2 is replaced by R1·2·1 and R1·2·2 inR3.

R1 R2 R3

R1 : 〈(l(U, V )|l(V, U)))[0.9],

U 6= V 〉

R1·1 : 〈(l(U, a)|l(a, U)))[0.9],

U 6= a〉

R1·2 : 〈(l(U, V )|l(V, U)))[0.9],

U 6= V, V 6= a〉

R1·2·1 : 〈(l(a, V )|l(V, a)))[0.9],

V 6= a〉

R1·2·2 : 〈(l(U, V )|l(V, U)))[0.9],

U 6= V, V 6= a, U 6= a〉

R2 : 〈(l(a, V )|>)[0.05],

V 6= a〉

Table 2. Maximum entropy probabilities of the ground instances of the conditionals in R1,
R2, and R3 (cf. Table 1) under PCI-aggregation semantics; for PCI-grounding semantics,
ME4(R1)(g) = ME4(R2)(g) = ME4(R3)(g) = ME~(R3)(g) holds since the PU
transformation process does not change the maximum entropy model under grounding
semantics and becauseR3 is parametrically uniform.

R1 R2 R3 ground instance g ME~(R1)(g) ME~(R2)(g) ME~(R3)(g)

R1

R1·1
(l(b, a)|l(a, b)) 0.96674480 0.90000000 0.90000000
(l(c, a)|l(a, c)) 0.96674480 0.90000000 0.90000000

R1·2

R1·2·1
(l(a, b)|l(b, a)) 0.46016768 0.45380549 0.89999999
(l(a, c)|l(c, a)) 0.46016768 0.45380549 0.89999999

R1·2·2
(l(b, c)|l(c, b)) 0.96674480 0.96860780 0.90000000
(l(c, b)|l(b, c)) 0.96674480 0.96860780 0.90000000

R2

l(a, b) 0.0500000 0.05000000 0.05000000
l(a, c) 0.0500000 0.05000000 0.05000000

It is interesting to note that for the ground instances originating from R1 there are two distinct
probabilities under ME~(R1), three probabilities under ME~(R2), and as implied by Proposition 2
one probability under ME~(R3). In all cases, PCI-aggregation semantics ensures that the distinct
probabilities aggregate to the probability stated in the corresponding conditionals.
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For the comparison of PCI-grounding and PCI-aggregation, it is also interesting to compare their ME
behavior with respect to queries that are not instances of a conditional given in the knowledge base. For
example, for likes(b, c) we observe

ME~(R1)(likes(b, c)) = 0.64220609

ME~(R2)(likes(b, c)) = 0.64490162

ME~(R3)(likes(b, c)) = 0.58699481

and for likes(b, a) we get

ME~(R1)(likes(b, a)) = 0.10504266

ME~(R2)(likes(b, a)) = 0.09916142

ME~(R3)(likes(b, a)) = 0.05000000

for PCI-aggregation semantics, while

ME4(Ri)(likes(b, c)) = 0.58699481

ME4(Ri)(likes(b, a)) = 0.05000000

holds for i ∈ {1, 2, 3} under PCI-grounding semantics.

6. Conclusions and Further Work

In this paper, we considered maximum entropy based semantics for relational probabilistic
conditionals. FO-PCL [16] employs a grounding semantics and uses instantiation restrictions for the
free variables occurring in a conditional, requiring all admissible instances of a conditional to have
the given probability. Aggregating semantics [15] defines probabilistic satisfaction by interpreting the
intended probability of a conditional with free variables only as a guideline for the probabilities of its
instances that aggregate to the conditional’s given probability, while the actual probabilities for grounded
instances may differ.

While the original definition of aggregation semantics [15] considered only conditionals without
constraints representing instantiation restrictions, we developed the framework PCI extending
aggregation semantics so that instantiation restrictions can also be taken into account, but without
giving up the flexibility of aggregating over distinct probabilities. In comparison with [15], under
PCI-aggregation semantics one can restrict the set of groundings of a conditional over which aggregating
with respect to a conditional takes place by providing a corresponding constraint formula for the
conditional. From a knowledge representation point of view, this can be useful in various situations,
for instance when we talk about a particular relationship among individuals while already knowing that
a specific individual like Clyde is an exception with respect to the given relationship.
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Note that PCI captures both grounding semantics and aggregating semantics without instantiation
restrictions as special cases. For the case that a knowledge base is parametrically uniform,
PCI-grounding and PCI-aggregation semantics coincide when employing the maximum entropy
principle, while for a knowledge base that is not parametrically uniform the two ME semantics induce
different models in general. We illustrated the differences and common features of both semantics
on a concrete knowledge base, using the KREATOR environment for computing the ME models
and answering queries with respect to these distributions. We expect that observations of this kind
will support the discussion of both formal and common sense properties of probabilistic first-order
inference in general and inference according to the principle of maximum entropy in a first-order setting
in particular.
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