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Abstract: The entropy production (inside the volume bounded by a photosphere) of  

main-sequence stars is calculated based on B–V photometry data. The entropy-production 

distribution function and the dependences of entropy production on temperature and 

luminosity are obtained for these stars for the first time. A very small range of variation  

of specific (per volume) entropy production discovered for main-sequence stars (only 0.5 

to 1.8 solar magnitudes) is an interesting result that can be crucial for understanding 

thermodynamic processes of stars. 
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1. Introduction 

For more than a century, entropy and its production have been key quantities not only for  

non-equilibrium statistical physics and thermodynamics, but for natural science in general. They are of 

paramount importance when discussing variational principles of non-equilibrium physics, issues of 

order and disorder in nature, origin and transfer of information, problems of irreversibility and 

direction of time, etc. (see, e.g., [1–5]). Starting from the studies by Clausius and his concept of heat 

death of the Universe and until now, the papers related to entropy have always been in the centre of 

attention among astrophysicists and cosmologists. Currently, this quantity and its derivatives are used 
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to discuss of black holes, questions connected with the accelerated expansion of the Universe, to build 

and generalize gravitation theories, etc. (see, e.g., [6–10]). The majority of the papers, being strictly 

theoretical, place principal emphasis on functional relations between variables established through the 

analysis of entropy and its production. There are almost no quantitative calculations of entropy and 

entropy production for astrophysical objects; rough estimates are applied in rare cases even for 

relatively well-studied objects, such as, for instance, stars [11–15]. However, it is obvious that such 

calculations are extremely important for our understanding of the physics of the world around us.  

So, stars are the most common objects in the Universe, they contain more than 97% of the mass of  

all visible matter. But what is their entropy production, how does it depend on the type of a star, on the 

time of its life? Despite the fact that the quantities needed for calculating the entropy production are 

known (effective temperature and luminosity), modern literature has no answers to these questions. 

Presently, there is no other information, except for entropy production estimates of the Sun (the entropy 

productions of the Sun are 9 × 1022 J·K−1·s−1 [14] and 8 × 1022 J·K−1·s−1 [15]). Thus, entropy 

production, a crucial quantity from the standpoint of non-equilibrium physics, was neither calculated 

nor quantitatively analyzed for the most important and widespread objects in the Universe: stars [16].  

This paper is the first step to solve this issue. The study considers only main-sequence stars as the most 

common type of stars. The satisfactory accuracy of this investigation based on observational data has 

been achieved thanks to the recently appeared techniques that enabled to determine, with sufficiently 

high accuracy, effective temperature Teff and bolometric correction BC of stars. 

2. Object of Study 

Stars belonging to open clusters were chosen as the object of study hereof. This is very convenient 

because, according to the modern concepts, stars of the same cluster are formed from the same 

molecular cloud and therefore have the same age (which is relatively easy to determine) and the same 

composition (e.g., metallicity [Fe/H]). Furthermore, cluster stars are located at the same distance from 

the Earth, which makes it possible to use the same color excess E(B–V) and distance modulus  

(V–MV) for conversion of their photometry. Due to a relatively low density of stars in open clusters, 

photometry of individual stars can be performed with higher accuracy as compared with stars of 

globular clusters. All the above reasons represent a significant advantage of open-cluster stars and 

allow reducing calculation errors and obtaining uniform samples of stars with different masses and 

known ages.  

In accordance with the modern concepts, the distribution of stars in clusters by their masses is 

similar to the distribution of stars in a galaxy. Therefore, by studying stars in the nearest clusters,  

we gain understanding of the stars of considerably larger (galactic) spatial scales. 

Classification of stars is based on the so-called HR diagram. Usually, the HR diagram is plotted 

either in the coordinates of color index (B–V) versus absolute stellar magnitude MV or in the 

coordinates of effective temperature Teff versus luminosity L. Stars tend to fall only into certain regions 

of the HR diagram. About 90% of the observed stars belong to the main sequence that represents a 

narrow strip running from hot stars with high luminosity to brown dwarfs with low luminosity. There 

are also star groups of giants, supergiants, and several others. Location of a star in the HR diagram is 

determined by the star’s mass, age, and chemical composition. The bigger the mass of a star belonging 
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to the main sequence (MS), the higher its luminosity and temperature. Further, the more massive a star 

is, the faster it evolves and leaves the main sequence because nuclear fusion reactions in its core are 

more intensive. 

3. Photometry-Based Method of Entropy-Production Calculation 

This study uses photometric data of open star clusters from the WEBDA database 

(http://webda.physics.muni.cz) [17]. WEBDA contains photometric data for every cluster star obtained 

from direct observations: apparent stellar magnitude V and color index (B–V), as well as metallicity 

[Fe/H], color excess E(B–V), and distance modulus (m–M)V. For calculations, initial photometric data 

are converted into absolute stellar magnitude MV and normal color index (B–V)0 using the following 

formulae [18,19]: 

( )V VM V m M A    , (1)

     0
B V B V E B V     , (2)

where AV = RV × E(B–V) is the total extinction at the V filter band, RV is the constant magnitude for  

the given photometric band (B–V) [20]. 

The effective temperature Teff was determined using the values of (B–V)0 through semi-empirical 

methods proposed in the papers [21–24]. Depending on the metallicity and class of a star, which was 

established based on [25,26], we selected the most up-to-date semi-empirical methods of temperature 

calculation. Specifically, it was found that: (1) for approximately 60% of all the stars that we have 

studied, the calibration [21] (that takes into consideration [Fe/H] and is applicable to main-sequence 

stars and subgiants with considerable limitations to the range (B–V)0 and [Fe/H]) is suitable; (2) for 

approximately 10% of the stars, the calibration [22] (that also takes in consideration [Fe/H] and is 

applicable to main-sequence stars and giants) is suitable; and (3) for approximately 30%, the 

calibration [23,24] (that fails to take into consideration [Fe/H] but, on the other hand, has no 

considerable limitations to the range (B–V)0 and applies to almost all the classes of stars (main 

sequence, subgiants, giants, and supergiants)) is suitable. 

To calculate the luminosity L, Pogson’s ratio was used [18]:  

log10 L/Lʘ = 0.4 × ( Mʘ − Mbol), (3)

where Lʘ, Mʘ are the luminosity and the absolute bolometric stellar magnitude for the Sun [27];  

Mbol = MV + BC; BC is the bolometric correction that was calculated on the basis of Teff using  

a semi-empirical method proposed in [23,24].  

The entropy production Σ in a star (in the volume inside its photosphere) is determined by nuclear 

fusions, convection, interaction between radiation and matter, and the like [15]. Let us adopt the most 

common assumption that a star’s photosphere is, on the first approximation, a black body [18,19].  

In this case, the radiation thermodynamics is well studied and the simplest. As is known, a star can be 

considered, for the most part of its life, as a system in a non-equilibrium steady state [15]. 

Consequently, the total entropy production Σ inside the photosphere of a star is equal to an entropy 

flux from the photosphere's surface [15], i.e., 

4 / (3 )effL T  . (4)
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In addition to the total entropy production of a star, which is its integral characteristic, let us 

introduce a local characteristic [28]—specific (per unit volume) entropy production ΣV for a star with 

the radius R—as: 
3/ (π )V effL R T  , (5)

or, using the Stefan–Boltzmann law, Equation (5) can be rearranged in the form: 
5 /V effT L   , (6)

where χ = 8 × σ3/2 × π1/2 and σ is the Stefan–Boltzmann constant. 

As is seen from the above, the quantities Σ and ΣV can be found from direct photometric 

measurements. For this reason, only their values are calculated and analyzed below. Mass-specific 

entropy production ΣM, another known quantity of non-equilibrium thermodynamics, is not considered 

herein. This is connected with the fact that in order to determine a star’s mass, some theoretical stellar 

model is required, and therefore, additional assumptions are necessary. As a result, the calculation of 

ΣM turns out to be combined rather than based on experimental data only. This complicates the analysis 

of ΣM calculation error. 

4. Data for Calculations and Their Accuracy 

To select clusters from the WEBDA database for investigation, the following criteria were  

applied: (1) availability of all the photometric information necessary to perform calculations using 

Equations (1)–(6); (2) availability of information on the probability that stars belong to a cluster and 

on binary stars; (3) clusters must contain a sufficiently large number of stars and be at approximately 

the same distance from the Sun; (4) the HR diagram of clusters must be well approximated by 

theoretical isochrones plotted according to the model (the Padova database of evolutionary tracks and 

isochrones web-site: http://pleiadi.oapd.inaf.it/) [29,30] using the values of age and metallicity from 

the WEBDA database.  

As a result, a sample of 11 clusters was obtained (NGC 884, NGC 869, IC 4725, NGC 2516,  

NGC 1039, NGC 3532, NGC 2099, NGC 2281, NGC 2506, NGC 2682, and NGC 188) containing 

only single stars (from 56 to 900 in each cluster) with the membership probability above 0.5. The age 

of the clusters varied from 12.6 Myr to 6.3 Gyr.  

Based on the accuracy of the given photometric data and the calibration errors [21–24], we have 

estimated the error of entropy production calculation. The relative error due to Teff calibration does not 

exceed 3% for Σ and 12% for ΣV. The relative error of entropy production due to the accuracy of 

photometric data considerably depends on the temperature and luminosity of stars. So, for the MS  

stars with the temperature of up to 5000 K, the error for Σ and ΣV does not exceed 19% and 15%, 

respectively; for the MS stars with the temperature of 5000 K to 10,000 K, the error does not exceed 

17% and 32%, respectively; and for the MS stars with the temperature above 10,000 K, the error value 

is found to be higher than 23% and 40%, respectively. 

To facilitate the calculation of the temperature, luminosity, and entropy production (and the statistic 

characteristics thereof) of cluster stars based on the above algorithm, we have developed and used  

a special software complex, Star Clusters (SC; http://www.fisica.hol.es). 
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5. Results and Discussion 

For ease of analysis, the data below was normalized to solar magnitudes that we had calculated  

on the basis of Equations (1)–(6) and the reference information contained in [31,32]. Their values  

are as follows: Teff ʘ = (57 ± 2) × 102 K, Lʘ = (3.8 ± 0.6) × 1026 W, Σʘ = (9 ± 1) × 1022 W·K−1, and  

ΣV ʘ = (6 ± 2) × 10−5 W·K−1·m−3. These results conform well with the data given in [14,15,27]. 

Calculation results of Σ and ΣV for the MS stars are shown in Figures 1–3. Using these results, the 

following conclusions can be made: 

(1) For the studied stars, the range of entropy-production variation is considerably wider than the 

corresponding range for specific entropy production (Figure 1). Thus, for the first case, 90% of 

all the stars at hand fall within the range of 0.3 to 400 solar units (median is 6.3); and for the 

second case, the same percentage of stars is within the range of 0.5 to 1.8 (median is 0.9).  

(2) As is seen (Figure 2), the total entropy production of the stars grows strongly with the increase 

of luminosity, while the specific entropy production of the stars depends on luminosity to  

a very small extent. Indeed, with the increase of L in more than 104 times (0.1 to 103 Lʘ), the 

growth of ΣV is only 0.4 to 1. 

(3) Both Σ and ΣV grow with the increase of temperature roughly in accordance with the 

exponential law but they demonstrate distinctively different growth rates. Σ(Teff) grows 

approximately 103 times faster than ΣV (Teff) (Figure 3). 

The above distinctions in the behavior of specific and total entropy productions can be explained by 

a considerable difference in the volumes of MS stars having various luminosities and temperatures. 

 

Figure 1. Bar charts for distribution of total Σ (a) and specific ΣV (b) entropy production of 

the main-sequence stars (all the studied stars of 11 clusters are shown). N is the number of 

stars falling into the range. For clarity, Σ and ΣV are normalized to solar magnitudes and 

presented in logarithmic form. 
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Figure 2. Dependence of total Σ (a) and specific ΣV (b) entropy production of the  

main-sequence stars on their luminosity (L). All the quantities are given in solar units.  

The graphs show the data for all the studied stars of 11 clusters.  

 

Figure 3. Dependence of total Σ (a) and specific ΣV (b) entropy production of the  

main-sequence stars on their effective temperature (Teff). All the quantities are given in 

solar units. The graphs show the data for all the studied stars of 11 clusters. 

Data related to the entropy production of stars with different masses is given above. As is seen,  

ΣV changes insignificantly for the stars belonging to MS. To study this quantity in more detail, let us 

consider distribution of ΣV for stars belonging to the same cluster. Examples of frequency bar charts of 

ΣV as well as the dependence of ΣV on age are shown in Figures 4 and 5. It is seen that, independent of 

the age of an open star cluster, the distribution of specific entropy production remains almost the same 

in terms of both position and type. The majority of stars belonging to the cluster have specific entropy 

productions very similar to the solar one; and this value is almost independent of the ages which differ 

by three orders of magnitude. These results are no surprise. Indeed, as is well known, the 

overwhelming majority of stars in a cluster are MS stars. The fraction of high-temperature stars in a 

cluster decreases with age (by evolving, these stars move to the right of the main sequence. So, the 

older the cluster is, the less high-luminosity stars belong to the main sequence). However, the number 

of these stars relative to the total number of MS stars is rather small; and additionally, the values  

of ΣV of the stars leaving the main-sequence show little difference from ΣV of those remaining  

(see Figures 1–3). All this makes the result illustrated in Figures 4 and 5 predictable. Furthermore, 
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there is one interesting result here: according to the calculations made, the range of ΣV, where the 

majority (90%) of cluster stars is distributed, shrinks with age (approximately in 35 times) (Figure 4). 

Such a shrinkage occurs for both high and low specific entropy productions. Whereas the former can 

be explained by the decrease of the fraction of high-temperature stars, the reasons of the latter are not 

completely known and require further investigation.  

 

Figure 4. Specific entropy production ΣV of the eleven star clusters under consideration: 

NGC 884 (7.10), NGC 869 (7.28), IC 4725 (7.83), NGC 2516 (8.08), NGC 1039 (8.42), 

NGC 3532(8.45), NGC 2099 (8.54), NGC 2281 (8.70), NGC 2506 (9.05), NGC 2682 

(9.41), NGC 188 (9.80). The cluster age is given in parentheses and presented in 

logarithmic form: log10 (t, year). The lines form the areas including ΣV for 90% of all  

the studied cluster stars (they contain ΣV for 45% of the cluster stars bigger and smaller 

than the median). 

 

Figure 5. Bar charts of ΣV distribution for the cluster stars: NGC 869 (age = 7.28,  

N = 331) (a); NGC 188 (age = 9.8, N = 817) (b). The age is presented in logarithmic form:  

log10 (t, year). N is the total number of stars calculated in the cluster. 

The empirically-found weak dependence of ΣV on temperature (luminosity, mass) of MS stars does 

not qualitatively contradict the known stellar models. Thus, according to Refs. [18,33]: 
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2
V c cT     , (7)

where ρc and Tc are the density and the temperature in the centre of a star, respectively; and ν is  

a number from 4 to 8, in the case of a nuclear fusion according to the PP chain, and from 15 to 16,  

in the case of a nuclear fusion according to the CNO cycle. It is known that the PP chain prevails for 

the MS stars whose masses do not greatly exceed that of the Sun, whereas CNO-cycle fusions are 

typical for massive MS stars, giants, and supergiants [18,33]. The central density of stars decreases and 

their central temperature grows with the increase of mass. Moreover, as is well known [34], the growth 

of temperature is considerably slower than the reduction of density. Due to such an opposite behavior, 

specific entropy production insignicantly changes with the change of mass. Our more detailed 

numerical calculations following the theoretical models of evolutionary tracks and isochrones [29,30] 

confirm the above estimation based on Equation (7). 

6. Conclusions 

The found relatively narrow range of specific (per volume) entropy productions of 0.5 to 1.8 solar 

magnitudes (median equals 0.9) for stars belonging to the main sequence is the most important result 

of this study. It is surprising that this quantity insignificantly differs for MS stars when their 

luminosities change in ≈105 times, their temperatures change in ≈4 times, and their volumes change  

in ≈2 × 103 times. From the perspective of stellar astrophysics, the found invariance can be useful for 

formulating stellar models (particularly, as an additional constraint on the behavior of temperatures 

and densities in the reaction zone) as well as for testing numerical calculations of stars. From  

the perspective of non-equilibrium thermodynamics, the obtained result is important as it confirms, 

using a specific example, a hypothesis advanced in a number of recent papers (see, for example, [3,5]).  

So, these papers propose, on the basis of the maximum entropy production principle, a hypothesis  

that co-existing dissipative non-equilibrium systems have the same local (specific) entropy productions. 

This hypothesis was previously verified by the results of experiments related to non-equilibrium 

growth of crystals and hydrodynamic instabilities. The present manuscript confirms this hypothesis on 

a space scale using the data of stars. Indeed, it proves to be that the MS stars co-existing in a cluster 

have almost constant specific entropy productions. 

We see three main areas to continue this study: (1) Determination of a functional relation between 

specific entropy production and temperature (luminosity) based on a rigorous statistical sample of 

stellar parameters; (2) Calculation of specific entropy production for the stars different from main-

sequence stars (primarily, supergiants, giants, and white dwarfs); (3) Analysis of the result obtained 

herein from the standpoint of non-equilibrium thermodynamics.  
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