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Abstract:

 We consider the independent sum of a given random variable with a Gaussian variable and an infinitely divisible one. We find a novel tight upper bound on the entropy of the sum which still holds when the variable possibly has an infinite second moment. The proven bound has several implications on both information theoretic problems and infinitely divisible noise channels’ transmission rates.
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1. Introduction

Information inequalities have been investigated since the foundation of information theory. Two such important ones are due to Shannon [1]:


	The first one is an upper bound on the entropy of Random Variables (RV)s having a finite second moment by virtue of the fact that Gaussian distributions maximize entropy under a second moment constraint (the (differential) entropy [image: there is no content] of a random variable Y having a probability density function [image: there is no content] is defined as:



h(Y)=-∫-∞+∞p(y)lnp(y)dy,








whenever the integral exists). For any RVs X and Z having respectively finite variances [image: there is no content] and [image: there is no content], we have



h(X+Z)≤12ln2πe[image: there is no content]+[image: there is no content].



(1)





	The second one is a lower bound on the entropy of independent sums of RVs and commonly known as the Entropy Power Inequality (EPI). The EPI states that given two real independent RVs X, Z such that [image: there is no content], [image: there is no content] and [image: there is no content] exist, then (Corollary 3, [2])



[image: there is no content]



(2)




where [image: there is no content] is the entropy power of X and is equal to



[image: there is no content]











While Shannon proposed Equation (2) and proved it locally around the normal distribution, Stam [3] was the first to prove this result in general followed by Blachman [4] in what is considered to be a simplified proof. The proof was done via the usage of two information identities:


	1-

	The Fisher Information Inequality (FII): Let X and Z be two independent RVs such that the respective Fisher informations [image: there is no content] and [image: there is no content] exist (the Fisher information [image: there is no content] of a random variable Y having a probability density function [image: there is no content] is defined as:



J(Y)=∫-∞+∞1[image: there is no content]p′2(y)dy,








whenever the derivative and the integral exit). Then



1J(X+Z)≥1[image: there is no content]+1[image: there is no content].



(3)






	2-

	The de Bruijn’s identity: For any [image: there is no content],



ddϵh(X+ϵZ)=[image: there is no content]2J(X+ϵZ),



(4)




where Z is a Gaussian RV with mean zero and variance [image: there is no content] independent of X.

Rioul proved that the de Bruijn’s identity holds at [image: there is no content] for any finite-variance RV Z (Proposition 7, p. 39, [5]).





The remarkable similarity between Equations (2) and (3) was pointed out in Stam’s paper [3] who in addition, related the entropy power and the Fisher information by an “uncertainty principle-type” relation:



[image: there is no content]



(5)




which is commonly known as the Isoperimetric Inequality for Entropies (IIE) (Theorem 16, [6]). Interestingly, equality holds in Equation (5) whenever X is Gaussian distributed and in Equations (1)–(3) whenever X and Z are independent Gaussian.
When it comes to upper bounds, a bound on the discrete entropy of the sum exists [7]:



[image: there is no content]



(6)




In addition, several identities involving discrete entropy of sums were shown in [8,9] using the Plünnecke-Ruzsa sumset theory and its analogy to Shannon entropy. Except for Equation (1), that holds for finite variance RVs, the differential entropy inequalities provided in some sense a lower bound on the entropy of sums of independent RVs. Equation (6) does not always hold for differential entropies, and unless the variance is finite, if we start with two RVs X and Z having respectively finite differential entropies [image: there is no content] and [image: there is no content], one does not have a clear idea on how much the growth of [image: there is no content] will be. The authors in [10] deferred this to the fact that discrete entropy has a functional submodularity property which is not the case for differential entropy. Nevertheless, the authors were able to derive various useful inequalities. Madiman [11] used basic information theoretic relations to prove the submodularity of the entropy of independent sums and found accordingly upper bounds on the discrete and differential entropy of sums. Though, in its general form, the problem of upper bounding the differential entropy of independent sums is not always possible (proposition 4, [2]), several results are known in particular settings. Cover et al. [12] solved the problem of maximizing the differential entropy of the sum of dependent RVs having the same marginal log-concave densities. In [13], Ordentlich found the maximizing probability distribution for the differential entropy of the independent sum of n finitely supported symmetric RVs. For “sufficiently convex” probability distributions, an interesting reverse EPI was proven to hold in (Theorem 1.1, p. 63, [14]).

In this study, we find a tight upper bound on the (differential) entropy of the independent sum of a RV X not necessarily having a finite variance with an infinitely divisible variable having a Gaussian component. The proof is based on the infinite divisibility property with the application of the FII, de Bruijn’s identity, a proven concavity result of the differential entropy and a novel “de Bruijn type” identity. We use convolutions along small perturbations to upper bound some relevant information theoretic quantities as done in [15] where some moment constraints were imposed on X which is not the case here. The novel bound presented in this paper is, for example, useful when studying Gaussian channels or when the additive noise is modeled as a combination of Gaussian and Poisson variables [16]. It has several implications which are listed in Section 2 and can be possibly used for variables with infinite second moments. Even when the second moment of X is finite, in some cases our bound can be tighter than Equation (1).



2. Main Result

We consider the following scalar RV,



[image: there is no content]



(7)




where [image: there is no content] is a composite infinitely divisible RV that is independent of X and where:

	[image: there is no content] is a Gaussian RV with mean [image: there is no content] and positive variance [image: there is no content].


	[image: there is no content] is an infinitely divisible RV with mean [image: there is no content] and finite (possibly zero) variance [image: there is no content] that is independent of [image: there is no content].




We note that since [image: there is no content] is absolutely continuous with bounded Probability Density Function (PDF), then so are [image: there is no content] and [image: there is no content] for any RV X [17]. In addition, we define the set [image: there is no content] of distribution functions [image: there is no content] that have a finite logarithmic moment:



[image: there is no content]=F:∫ln1+|X|dF(x)<+∞.








Let [image: there is no content] denote the expectation operator. Using the identity [image: there is no content],



[image: there is no content]



(8)




Since Z has a bounded PDF with finite variance then necessarily it has a finite logarithmic moment, and by virtue of Equation (8), if X∈[image: there is no content] then Y∈[image: there is no content].

Under this finite logarithmic constraint, the differential entropy of X is well defined and is such that [image: there is no content] (Proposition 1, [5]) and that of Y exists and is finite (Lemma 1, [5]). Also, when X∈[image: there is no content], the identity [image: there is no content] always holds (Lemma 1, [5]).

The main result of this work stated in Theorem 1 is a novel upper bound on [image: there is no content] whenever X∈[image: there is no content] with finite differential entropy [image: there is no content] and finite Fisher information [image: there is no content].


Theorem 1. 
Let X∈[image: there is no content]having finite [image: there is no content] and [image: there is no content]. The differential entropy of [image: there is no content]is upper bounded by:



h(X+Z)≤h(X)+12ln1+[image: there is no content]J(X)+[image: there is no content]minsupxD[image: there is no content](u-x)∥[image: there is no content](u)x2;12[image: there is no content],



(9)




where the Kullback-Leibler divergence between probability distributions p and q is denoted [image: there is no content]. In the case where Z∼N([image: there is no content],[image: there is no content]), i.e. [image: there is no content]=0, we have


h(X+Z)≤h(X)+12ln1+[image: there is no content]J(X),



(10)




and equality holds if and only if both X and Z are Gaussian distributed.


We defer the proof of Theorem 1 to Section 3. The rest of this section is dedicated to the implications of identity Equation (10) which are fivefold:


	1-

	While the usefulness of this upper bound is clear for RVs X having an infinite second moment for which Equation (1) fails, it can in some cases, present a tighter upper bound than the one provided by Shannon for finite second moment variables X. This is the case, for example, when Z∼N([image: there is no content],[image: there is no content]) and X is a RV having the following PDF:



[image: there is no content]








for some [image: there is no content] and where



f(x)=34(1+x)2-1≤x≤034(1-x)20<x≤10otherwise.








The involved quantities related to X are easily computed and they evaluate to the following: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], for which Equation (10) becomes



h(X+Z)≤h(X)+12ln1+[image: there is no content]J(X)=ln43+23+12ln(1+12[image: there is no content]),



(11)




and Equation (1) becomes



h(X+Z)≤12ln2πe[image: there is no content]+[image: there is no content]=12ln2πe+12lna2+110+[image: there is no content].



(12)




Comparing Equations (11) and (12), it can be seen that our upper bound is independent of a whereas the Shannon bound increases to ∞ and gets looser as a increases. This is explained by the fact that our bound is location independent and depends only on the PDF of X whereas the Shannon bound is location dependent via the variance of X.



	2-

	Theorem 1 gives an analytical bound on the change in the transmission rates of the linear Gaussian channel function of an input scaling operation. In fact, let X be a RV satisfying the conditions of Theorem 1 and Z∼N([image: there is no content],[image: there is no content]). Then [image: there is no content] satisfies similar conditions for some positive scalar a. Hence



h(aX+Z)≤h(aX)+12ln1+[image: there is no content]J(aX)=h(X)+lna+12ln1+[image: there is no content]a2J(X),








where we used the fact that [image: there is no content] and [image: there is no content]. Subtracting [image: there is no content] from both sides of the equation gives



I(aX+Z;X)-I(X+Z;X)≤12lna2+[image: there is no content]J(X).








It can be seen that the variation in the transmissions rates is bounded by a logarithmically growing function in a. This is a known behavior of the optimal transmission rates that are achieved by Gaussian inputs. A similar behavior is observed whenever [image: there is no content].



	3-

	If the EPI is regarded as being a lower bound on the entropy of sums, Equation (10) can be considered as its upper bound counterpart whenever one of the variables is Gaussian. In fact using both of these inequalities gives:



[image: there is no content]



(13)




It can be seen that the sandwich bound is efficient whenever the IIE in Equation (5) evaluated for the variable X is close to its lower bound of 1.



	4-

	The result of Theorem 1 is more powerful that the IIE in Equation (5). Indeed, using the fact that [image: there is no content], inequality Equation (10) gives the looser inequality:



h(Z)≤h(X)+12ln1+[image: there is no content]J(X),








which implies that



N(X)J(X)≥[image: there is no content]J(X)1+[image: there is no content]J(X),



(14)




where we used the fact that h(Z)=12ln2πe[image: there is no content]. Since the left hand side of Equation (14) is scale invariant, then



N(aX)J(aX)=N(X)J(X)≥[image: there is no content]J(X)a2+[image: there is no content]J(X),








for any positive scalar a. Now, letting [image: there is no content] will yield Equation (5).



	5-

	Finally, in the context of communicating over a channel, it is well-known that, under a second moment constraint, the best way to “fight” Gaussian noise is to use Gaussian inputs. This follows from the fact that Gaussian variables maximize entropy under a second moment constraint. Conversely, when using a Gaussian input, the worst noise in terms of minimizing the transmission rates is also Gaussian. This is a direct result of the EPI and is also due to the fact that Gaussian distributions have the highest entropy and therefore are the worst noise to deal with. If one were to make a similar statement where instead of the second moment, the Fisher information is constrained, i.e., if the input X is subject to a Fisher information constraint: [image: there is no content] for some [image: there is no content], then the input minimizing the mutual information of the additive white Gaussian channel is Gaussian distributed. This is a result of the EPI in Equation (2) and the IIE in Equation (5). They both reduce in this setting to



[image: there is no content]








Reciprocally, for a Gaussian input, what is the noise that maximizes the mutual information subject to a Fisher information constraint? this problem can be formally stated as follows: If [image: there is no content], find



[image: there is no content]








An intuitive answer would be Gaussian since it has the minimum entropy for a given Fisher information. Indeed, Equation (10) provides the answer:



[image: there is no content]








is maximized whenever [image: there is no content].







3. Proof of the Upper Bound


3.1. Concavity of Differential Entropy

Let U be an infinitely divisible RV with characteristic function [image: there is no content] (the characteristic function [image: there is no content] of a probability distribution function [image: there is no content] is defined by:



ϕU(ω)=∫[image: there is no content]eiωudFU(u),ω∈[image: there is no content],








which is the Fourier transform of [image: there is no content] at [image: there is no content]). For each real [image: there is no content], denote by [image: there is no content] the unique probability distribution (Theorem 2.3.9, p. 65, [18]) with characteristic function:


[image: there is no content]



(15)




where [image: there is no content] is the principal branch of the logarithm. For the rest of this paper, we denote by [image: there is no content] a RV with characteristic function [image: there is no content] as defined in Equation (15). Note that [image: there is no content] is deterministically equal to 0 (i.e., distributed according to the Dirac delta distribution) and [image: there is no content] is distributed according to U. The family of probability distributions Ft(·)[image: there is no content] forms a continuous convolution semi-group in the space of probability measures on [image: there is no content] (see Definition 2.3.8 and Theorem 2.3.9, [18]) and hence one can write:


[image: there is no content]+[image: there is no content]=Us+t∀s,t≥0,








where [image: there is no content] and [image: there is no content] are independent.

Lemma 1. 
Let U be an infinitely divisible RV and {[image: there is no content]}[image: there is no content]an associated family of RVs distributed according to Equation (15) and independent of X. The differential entropy h(X+[image: there is no content])is a concave function in [image: there is no content].



In the case of a Gaussian-distributed U, the family [image: there is no content][image: there is no content] has the same distribution as [image: there is no content], and it is already known that the entropy (and actually even the entropy power) of Y is concave in t ((Section VII, p. 51, [5]) and [19]).


Proof. 
We start by noting that h(X+[image: there is no content]) is non-decreasing in t. For [image: there is no content],



h(X+[image: there is no content])=h(X+[image: there is no content]+[image: there is no content])≥h(X+[image: there is no content]),








where [image: there is no content], [image: there is no content] and [image: there is no content] are three independent instances of RVs in the family {[image: there is no content]}[image: there is no content]. Next we show that h(X+[image: there is no content]) is midpoint concave: Let [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] be independent RVs in the family {[image: there is no content]}[image: there is no content]. For [image: there is no content],


 h(X+[image: there is no content])-h(X+[image: there is no content])=h(X+[image: there is no content]+[image: there is no content])-h(X+[image: there is no content])(16)=I(X+[image: there is no content]+[image: there is no content];[image: there is no content])(17)≤I(X+[image: there is no content]+[image: there is no content];[image: there is no content]) =h(X+[image: there is no content])-h(X+[image: there is no content])








where Equation (16) is the definition of the mutual information and Equation (17) is the application of the data processing inequality to the Markov chain [image: there is no content]-(X+[image: there is no content]+[image: there is no content])-(X+[image: there is no content]+[image: there is no content]). Therefore,


h(X+[image: there is no content])≥12h(X+[image: there is no content])+h(X+[image: there is no content]),








and the function is midpoint concave for [image: there is no content]. Since the function is non-decreasing, it is Lebesgue measurable and midpoint concavity guarantees its concavity. ☐


An interesting implication of Lemma 1 is that h(X+[image: there is no content]) as a function of t is below any of its tangents. Particularly,



h(X+[image: there is no content])≤h(X)+tdh(X+[image: there is no content])dt|t=0.



(18)






3.2. Perturbations along [image: there is no content]: An Identity of the de-Bruijn Type

Define the non-negative quantity



[image: there is no content]



(19)




which is possibly infinite if the supremum is not finite. We first note that [image: there is no content] has the following interesting properties:

	It was found by Verdu [20] to be equal to the channel capacity per unit cost of the linear average power constrained additive noise channel where the noise is independent of the input and is distributed according to X.


	Using the above interpretation, one can infer that for independent RVs X and W,



CX+W≤[image: there is no content].



(20)




This inequality may be formally established using convexity of relative entropy (Theorem 2.7.2, [7]): Since [image: there is no content] is convex in the pair [image: there is no content],



[image: there is no content]








for independent RVs X and W.


	Using Kullback’s well-known result on the divergence (Section 2.6, [21]),



[image: there is no content]≥limx→0+D[image: there is no content](u-x)∥[image: there is no content](u)x2=12J(X).









	Whenever the supremum is at “0”,



[image: there is no content]=12J(X),








which is the case for RVs X whose density functions have heavier tails than the Gaussian (p.1020, [20]).




Next we prove the following lemma,


Lemma 2. 
Let U be an infinitely divisible real RV with finite variance [image: there is no content]and {[image: there is no content]}[image: there is no content]the associated family of RVs distributed according to Equation (15). Let X be an independent real variable satisfying the following:


	X has a positive PDF [image: there is no content].


	The integrals ∫[image: there is no content]|ω|kϕX(ω)dωkare finite for all [image: there is no content].


	[image: there is no content]=supx≠0D[image: there is no content](u-x)∥[image: there is no content](u)x2is finite.




For [image: there is no content], the right derivative of h(X+[image: there is no content])


d+dth(X+[image: there is no content])|t=τ=lim[image: there is no content]h(X+Uτ+t)-h(X+Uτ)t≤[image: there is no content][image: there is no content].



(21)






Before we proceed to the proof, we note that by Lemma 1, [image: there is no content] is concave in the real-valued τ and hence it is everywhere right and left differentiable.


Proof. 
Using Equation (15), the characteristic function of the independent sum [image: there is no content] for [image: there is no content] and small [image: there is no content] is:



ϕ[image: there is no content](ω)=ϕX+Uτ(ω)ϕ[image: there is no content](ω)=ϕX+Uτ(ω)exptlnϕU(ω)=ϕX+Uτ(ω)+ϕX+Uτ(ω)lnϕU(ω)t+o(t).








Taking the inverse Fourier transform yields,


p[image: there is no content](y)=pX+Uτ(y)+t[image: there is no content]ϕX+Uτ(ω)lnϕU(ω)(-y)+o(t),



(22)




where [image: there is no content] denotes the inverse distributional Fourier transform operator. Equation (22) holds true when [image: there is no content]ϕX+Uτ(ω)lnkϕU(ω)(y) exists for all [image: there is no content], which is the case. Indeed, using the Kolmogorov representation of the characteristic function of an infinitely divisible RV (Theorem 7.7, [22]), we know that there exists a unique distribution function [image: there is no content] associated with U such that


lnϕU(ω)=[image: there is no content]∫[image: there is no content]eiωx-1-iωx1x2dHU(x).



(23)




Furthermore, since eiωx-1-iωx≤ω2x22 (p.179, [22]),



lnϕU(ω)≤[image: there is no content]∫[image: there is no content]eiωx-1-iωx1x2dHU(x)≤[image: there is no content]2ω2,








which implies that


∫[image: there is no content]ϕX+Uτ(ω)lnkϕU(ω)dω≤∫[image: there is no content]ϕX(ω)ϕUτ(ω)lnϕU(ω)kdω≤[image: there is no content]2k∫[image: there is no content]ϕX(ω)ω2kdω,








which is finite under the conditions of the lemma and hence [image: there is no content]ϕX+Uτ(ω)lnkϕU(ω)(y) exists. Using the definition of the derivative, Equation (22) implies that:


dpX+[image: there is no content](y)dt|t=τ=[image: there is no content]ϕX+Uτ(ω)lnϕU(ω)(-y).








Using the Mean Value Theorem: for some [image: there is no content],



h(X+Uτ+t)-h(X+Uτ)t=-∫[image: there is no content]p[image: there is no content](y)lnp[image: there is no content](y)-pX+Uτ(y)lnpX+Uτ(y)tdy=-∫[image: there is no content]1+lnpX+Uτ+h(t)(y)dpX+[image: there is no content](y)dt|τ+h(t)dy=-∫[image: there is no content]1+lnpX+Uτ+h(t)(y)[image: there is no content]ϕX+Uτ+h(t)(ω)lnϕU(ω)(-y)dy=-∫[image: there is no content]lnpX+Uτ+h(t)(y)[image: there is no content]ϕX+Uτ+h(t)(ω)lnϕU(ω)(-y)dy,



(24)




where Equation (24) is justified by the fact that [image: there is no content]. We proceed next to evaluate the inverse Fourier transform in the integrand of Equation (24):


 [image: there is no content]ϕX+Uτ+h(t)(ω)lnϕU(ω)(-y)=12π∫[image: there is no content]ϕX+Uτ+h(t)(ω)lnϕU(ω)e-iωydω(25)=[image: there is no content]2π∫[image: there is no content]ϕX+Uτ+h(t)(ω)∫[image: there is no content]eiωx-1-iωx1x2dHU(x)e-iωydω(26)=[image: there is no content]2π∫[image: there is no content]∫[image: there is no content]ϕX+Uτ+h(t)(ω)eiωx-1-iωxe-iωydω1x2dHU(x) =[image: there is no content]∫[image: there is no content]pX+Uτ+h(t)(y-x)-pX+Uτ+h(t)(y)-xpX+Uτ+h(t)′(y)1x2dHU(x),








where the last equation is due to standard properties of the Fourier transform and Equation (25) is due to Equation (23). The interchange in Equation (26) is justified by Fubini. In fact |eiωx-1-iωx|≤ω2x22 and


∫[image: there is no content]∫[image: there is no content]ϕX+Uτ+h(t)(ω)eiωx-1-iωxe-iωy1x2dωdHU(x)≤∫[image: there is no content]∫[image: there is no content]ϕX(ω)ω22dωdHU(x)≤∫[image: there is no content]ϕX(ω)ω22dω,








which is finite by assumption. Back to Equation (24),


h(X+Uτ+t)-h(X+Uτ)t=-∫[image: there is no content]lnpX+Uτ+h(t)(y)[image: there is no content]ϕX+Uτ+h(t)(ω)lnϕU(ω)(-y)dy=-[image: there is no content]∫[image: there is no content]∫[image: there is no content]lnpX+Uτ+h(t)(y)pX+Uτ+h(t)(y-x)-pX+Uτ+h(t)(y)-xpX+Uτ+h(t)′(y)1x2dHU(x)dy=-[image: there is no content]∫[image: there is no content]∫[image: there is no content]lnpX+Uτ+h(t)(y)pX+Uτ+h(t)(y-x)-pX+Uτ+h(t)(y)-xpX+Uτ+h(t)′(y)dy1x2dHU(x),



(27)




where the interchange in the order of integration in Equation (27) will be validated next by Fubini. Considering the inner integral,


-∫[image: there is no content]lnpX+Uτ+h(t)(y)pX+Uτ+h(t)(y-x)-pX+Uτ+h(t)(y)-xpX+Uτ+h(t)′(y)dy=D(pX+Uτ+h(t)(y-x)∥pX+Uτ+h(t)(y))+x∫[image: there is no content]pX+Uτ+h(t)′(y)dy=D(pX+Uτ+h(t)(u-x)∥pX+Uτ+h(t)(u)).








Finally, Equation (27) gives



(28)h(X+Uτ+t)-h(X+Uτ)t=σU2∫[image: there is no content]D(pX+Uτ+h(t)(u-x)∥pX+Uτ+h(t)(u))1x2dHU(x)(29)≤σU2CX+Uτ+h(t)(30)≤σU2[image: there is no content],








which is finite. Equation (29) is due to the definition Equation (19) and Equation (30) is due to Equation (20). The finiteness of the end result justifies the interchange of the order of integration in Equation (27) by Fubini. ☐


We point out that the result of this lemma is sufficient for the purpose of the main result of this paper. Nevertheless, it is worth noting that Equation (21) could be strengthened to:



ddth(X+[image: there is no content])|t=τ=σU2∫[image: there is no content]D(pX+Uτ(u-x)∥pX+Uτ(u))1x2dHU(x).



(31)




In fact, the set of points where the left and right derivative of the concave function h(X+[image: there is no content]) differ is of zero measure. One can therefore state that the derivative exists almost-everywhere and it is upperbounded almost-everywhere by Equation (30). Furthermore, considering Equation (28), one can see that taking the limit as [image: there is no content] will yield



d+dth(X+[image: there is no content])|t=τ=σU2∫[image: there is no content]limt→0D(pX+Uτ+h(t)(u-x)∥pX+Uτ+h(t)(u))1x2dHU(x),



(32)




by the Monotone Convergence Theorem. The continuity of relative entropy may be established using techniques similar to those in [23] when appropriate conditions on [image: there is no content] hold.
Finally, When U is purely Gaussian, [image: there is no content]∼tU, [image: there is no content] is the unit step function and Equation (31) boils down to de Bruijn’s identity for Gaussian perturbations (Equation (4)).



3.3. Proof of Theorem 1


Proof. 
We assume without loss of generality that X and Z have a zero mean. Otherwise, define Y′=Y-(μX+[image: there is no content]+[image: there is no content]) and X′=X-μX for which h(Y′)=h(Y), h(X′)=h(X) and J(X′)=J(X) since differential entropy and Fisher information are translation invariant. We divide the proof into two steps and we start by proving the theorem when Z is purely Gaussian. ☐



Z is purely Gaussian:

We decompose Z as follows: Let [image: there is no content] and [image: there is no content], then



[image: there is no content]








where the [image: there is no content] are IID with the same law as Z. We write Equation (7) in an incremental formulation as follows:


Y0=X[image: there is no content]=Yl-1+ϵZl=X+ϵ∑i=1lZi








for [image: there is no content]. Note that [image: there is no content] has the same statistics as Y. Using the de Bruijn’s identity (Equation (4)), we write


h([image: there is no content])=h(Yl-1)+ϵ[image: there is no content]2J(Yl-1)+o(ϵ),








and


h([image: there is no content])≤h(Yl-1)+ϵ[image: there is no content]2J(Yl-1).l∈{1,⋯,n},








by virtue of the fact that [image: there is no content] is concave in [image: there is no content] (Section VII, p. 51, [5]). Using the FII Equation (3) on [image: there is no content] we obtain


1J([image: there is no content])≥1J(Yl-1)+1J(ϵZl)=1J(Yl-1)+ϵJZl≥1[image: there is no content]+lϵJZ1l∈{1,⋯,n}.



(33)




Examining now h(Y)=h([image: there is no content]),



 h([image: there is no content])≤h(Yn-1)+ϵ[image: there is no content]2J(Yn-1) ≤h(X)+ϵ[image: there is no content]2∑l=0n-1J([image: there is no content])(34)≤h(X)+ϵ[image: there is no content]2J(X)+∑l=1n-1J(X)J(Z1)J(Z1)+lϵJ(X)(35)≤h(X)+ϵ[image: there is no content]2J(X)1+∫0n-1J(Z1)J(Z1)+uϵJ(X)du =h(X)+ϵ[image: there is no content]2J(X)+[image: there is no content]2J(Z1)ln1+(n-1)ϵ[image: there is no content]J(Z1) =h(X)+ϵ[image: there is no content]2J(X)+12ln1+(1-ϵ)[image: there is no content]J(X),








where, in order to write the last equality, we used the fact that [image: there is no content] since [image: there is no content]∼N(0,[image: there is no content]). Equation (34) is due to the bounds in Equation (33) and Equation (35) is justified since the function J(Z1)J(Z1)+uϵJ(X) is decreasing in u. Since the upper bound is true for any small-enough ϵ, necessarily


h(Y)≤h(X)+12ln1+[image: there is no content]J(X),








which completes the proof of the second part of the theorem. When X and Z are both Gaussian, evaluating the quantities shows that equality holds. In addition, equality only holds whenever the FII is satisfied with equality that is whenever X and Z are Gaussian.
Z is a sum of a Gaussian variable with a non-Gaussian infinitely divisible one:

Let {[image: there is no content]}[image: there is no content] be a family of RVs associated with the non-Gaussian infinitely divisible RV [image: there is no content] and distributed according to Equation (15). Using concavity Equation (18) in t,



 [image: there is no content]=h(X+[image: there is no content]+[image: there is no content])=h(X+[image: there is no content]+[image: there is no content]) ≤h(X+[image: there is no content])+dh(X+[image: there is no content]+[image: there is no content])dt|t=0+(36)≤h(X+[image: there is no content])+[image: there is no content]CX+[image: there is no content](37)≤h(X)+12ln1+[image: there is no content]J(X)+[image: there is no content]CX+[image: there is no content](38)≤h(X)+12ln1+[image: there is no content]J(X)+[image: there is no content]min[image: there is no content];CZ =h(X)+12ln1+[image: there is no content]J(X)+[image: there is no content]minsupxD[image: there is no content](u-x)∥[image: there is no content](u)x2;12[image: there is no content].








Equation (36) is an application of Lemma 2 since (X+[image: there is no content]) has a positive PDF and satisfies all the required technical conditions. The upperbound proven in the previous paragraph gives Equations (37) and (38) is due to Equation (20). ☐
On a final note, using Lemmas 1 and 2 one could have applied the Plünnecke-Ruzsa inequality (Theorem 3.11, [10]) which yields



h(Y)≤h(X)+[image: there is no content]2J(X)+[image: there is no content]CX+[image: there is no content],








which is looser than Equation (37).



4. Extension

The bound in Equation (10) may be extended to the n-dimensional vector Gaussian case, [image: there is no content], where [image: there is no content] is an n-dimensional Gaussian vector. In this case, if [image: there is no content] denotes the Fisher information matrix, the Fisher information and the entropy power are defined as



J([image: there is no content])=Tr(J([image: there is no content]))N([image: there is no content])=12πee2nh([image: there is no content]).









	When [image: there is no content] has n IID Gaussian components –i.e., with covariance matrix [image: there is no content]=[image: there is no content]I, following similar steps lead to:



N([image: there is no content]+[image: there is no content])≤N([image: there is no content])+N([image: there is no content])N([image: there is no content])J([image: there is no content])n,



(39)




with equality if and only if [image: there is no content] is Gaussian with IID components.


	In general, for any positive-definite matrix [image: there is no content] with a singular value decomposition [image: there is no content], if we denote by [image: there is no content] then



BY=B([image: there is no content]+[image: there is no content])=B[image: there is no content]+B[image: there is no content]=B[image: there is no content]+[image: there is no content]′








where [image: there is no content]′ is Gaussian distributed with an identity covariance matrix. Equation (39) gives



N(B([image: there is no content]+[image: there is no content]))≤N(B[image: there is no content])+N([image: there is no content]′)N(B[image: there is no content])J(B[image: there is no content])n⟺N([image: there is no content]+[image: there is no content])≤N([image: there is no content])+N([image: there is no content])J(B[image: there is no content])n⟺N([image: there is no content]+[image: there is no content])≤N([image: there is no content])+N([image: there is no content])Tr(J([image: there is no content])[image: there is no content])n,








where we used N(B[image: there is no content])=det(B)2nN([image: there is no content]).






5. Conclusions

We have derived a novel tight upper bound on the entropy of the sum of two independent random variables where one of them is infinitely divisible with a Gaussian component. The bound is shown to be tighter than previously known ones and holds for variables with possibly infinite second moment. With the isoperimetric inequality in mind, the “symmetry” that this bound provides with the known lower bounds is remarkable and hints to possible generalizations to scenarios where no Gaussian component is present.
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