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Abstract: In this study, we have applied the modified expp´Ω pξqq-expansion function method to
the (2 + 1)-dimensional Boussinesq water equation. We have obtained some new analytical solutions
such as exponential function, complex function and hyperbolic function solutions. It has been
observed that all analytical solutions have been verified to the (2 + 1)-dimensional Boussinesq water
equation by using Wolfram Mathematica 9. We have constructed the two- and three-dimensional
surfaces for all analytical solutions obtained in this paper using the same computer program.
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1. Introduction

The (2 + 1) Boussinesq equation was founded to describe some physical facts such as the
propagation of small-amplitude long waves in shallow water in 1987 [1]. Some authors have
investigated the physical and analytical structures of the (2 + 1)-dimensional Boussinesq water
equation by using various methods [1–3]. Moleleki and Khalique have considered the simplest
equation method for solving the (2 + 1)-dimensional Boussinesq equation [4]. Zhang, Meng,
Li, and Tian have studied the soliton resonance condition of the (2 + 1)-dimensional Boussinesq
equation which is used to describe the propagation of gravity waves on the surface of water [5].
The homogeneous balance method has been successfully applied to the (2 + 1)-dimensional
Boussinesq equation [6,7]. Allen and Rowlands have discussed the stability of solitary waves
of the (2 + 1)-dimensional Boussinesq water equation and found that pulse-like solutions to the
(2 + 1)-dimensional Boussinesq water equation are stable against linear perturbations [3]. The
most general methods along this direction such as the exp(´Φ(η))-expansion method [8–10], the
transformed rational function method [11], Bäcklund transformations [12], Frobenius integrable
decompositions [13], and the multiple exp-functions method [14,15] have been applied to the various
differential equations by Ma, Zhu, Huang and Zhang et al. Moreover, Wronskian solutions to the
(1 + 1)-dimensional Boussinesq equation have been systematically presented in [16].

The main aim of this paper is to determine whether or not the new analytical method will be
a powerful tool for obtaining new exponential, hyperbolic and complex analytical solutions to the
(2 + 1)-dimensional Boussinesq water equation defined by [1–3]:

utt ´ uxx ´ uyy ´
´

u2
¯

xx
´ uxxxx “ 0. (1)
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Equation (1) is used to describe the propagation of gravity waves on the surface of water, the
propagation of small-amplitude long waves in shallow water. More generally, Boussinesq equations
arise relatively in fluid and solid mechanics [17–19].

2. Fundamental Properties of Method

The general properties of the modified expp´Ω pξqq-expansion function method (MEFM) are
proposed in this section. MEFM is based on the expp´Ω pξqq-expansion function method [2,8–10]. In
order to apply this method to the nonlinear partial differential equations, we consider it as follows:

P
`

u, ux, uy, ut, uxx, uyy, utt, ¨ ¨ ¨
˘

“ 0, (2)

where u “ u px, y, tq is an unknown function, P is a polynomial in u px, y, tq and its derivatives, in
which the highest order derivatives and nonlinear terms are involved and the subscripts stand for
the partial derivatives. The basic phases of the method are expressed as follows:

Step 1: Let us consider the following traveling transformation defined by

u px, y, tq “ U pξq , ξ “ k px` y´ ctq . (3)

Using Equation (3), we can convert Equation (2) into a nonlinear ordinary differential equation
(NODE) defined by:

NODE
`

U, U1, U2 , U3 , ¨ ¨ ¨
˘

“ 0, (4)

where NODE is a polynomial of U and its derivatives and the superscripts indicate the ordinary
derivatives with respect to ξ.

Step 2: Suppose the traveling wave solution of Equation (4) can be rewritten in the
following manner:

U pξq “

N
ř

i“0
Ai rexp p´Ω pξqqs

i

M
ř

j“0
Bj rexp p´Ω pξqqs

j “
A0 ` A1exp p´Ωq ` ¨ ¨ ¨ ` ANexp pN p´Ωqq
B0 ` B1exp p´Ωq ` ¨ ¨ ¨ ` BMexp pM p´Ωqq

, (5)

where Ai , Bj , p0 ď i ď N, 0 ď j ď Mq are constants to be determined later, such that AN ‰ 0, BM ‰ 0,
and Ω “ Ω pξq solves the following ordinary differential equation:

Ω1 pξq “ exp p´Ω pξqq ` µexp pΩ pξqq ` λ. (6)

Equation (6) has the following solution families [8–10]:
Family 1: When µ ‰ 0, λ2 ´ 4µ ą 0,

Ω pξq “ ln

˜

´
a

λ2 ´ 4µ

2µ
tanh

˜

a

λ2 ´ 4µ

2
pξ ` Eq

¸

´
λ

2µ

¸

. (7)

Family 2: When µ ‰ 0, λ2 ´ 4µ ă 0,

Ω pξq “ ln

˜

a

´λ2 ` 4µ

2µ
tan

˜

a

´λ2 ` 4µ

2
pξ ` Eq

¸

´
λ

2µ

¸

. (8)

Family 3: When µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0,

Ω pξq “ ´ln
ˆ

λ

exp pλ pξ ` Eqq ´ 1

˙

. (9)
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Family 4: When µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0,

Ω pξq “ ln
ˆ

´
2λ pξ ` Eq ` 4

λ2 pξ ` Eq

˙

. (10)

Family 5: When µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0,

Ω pξq “ ln pξ ` Eq . (11)

such that A0, A1, A2, ¨ ¨ ¨ AN , B0, B1, B2, ¨ ¨ ¨ BM, E, λ, µ are constants to be determined later. The positive
integers N and M can be determined by considering the homogeneous balance between the highest
order derivatives and the nonlinear terms occurring in Equation (5).

Step 3: Substituting Equations (6) and (7–11) into Equation (5), we get a polynomial of exp p´Ω pξqq .
We equate all the coefficients of same power of exp p´Ω pξqq to zero. This procedure yields a system
of equations which can be solved to find A0, A1, A2, ¨ ¨ ¨ AN , B0, B1, B2, ¨ ¨ ¨ BM, E, λ, µ with the aid of
Wolfram Mathematica 9. Substituting the values of A0, A1, A2, ¨ ¨ ¨ AN , B0, B1, B2, ¨ ¨ ¨ BM, E, λ, µ in
Equation (5), the general solutions of Equation (5) complete the determination of the solution of
Equation (1).

3. Applications

In this sub-section of the study, we apply the above-mentioned method to the (2 + 1)-dimensional
Boussinesq water equation [1–3] for obtaining new analytical solutions such as a new hyperbolic
function solution and a complex function solution.

Example 1. When we consider the (2 + 1)-dimensional Boussinesq water equation along with
Equations (3) and (5), we obtain the following nonlinear ordinary differential equation:

´

c2 ´ 2
¯

U ´U2 ´ k2U2 “ 0, (12)

where c, k are constants and U “ U pξq. Using the balance principle for determining the relationship
between U2 and U2, we derive the following equation:

N “ M` 2. (13)

By using this relationship, we can attain some new analytical solutions for Equation (1)
as follows:

Case 1: Let M “ 1 and N “ 3, and we can write;

U “
A0 ` A1exp p´Ωq ` A2exp p2 p´Ωqq ` A3exp p3 p´Ωqq

B0 ` B1exp p´Ωq
, (14)

U1 “

“

A1exp p´Ωq
`

´Ω1
˘

` A2exp p2 p´Ωqq
`

´2Ω1
˘

` A3exp p3 p´Ωqq
`

´3Ω1
˘‰

rB0 ` B1exp p´Ωqs

rB0 ` B1exp p´Ωqs2

´
rA0 ` A1exp p´Ωq ` A2exp p2 p´Ωqq ` A3exp p3 p´Ωqqs

“

B1exp p´Ωq
`

´Ω1
˘‰

rB0 ` B1exp p´Ωqs2
“

Υ
Ψ

,

U2 “
Υ1Ψ´ ΥΨ1

Ψ2 ,
...

(15)

where A3 ‰ 0 and B1 ‰ 0. Substituting Equations (14) and (15) in Equation (12), we get an
equation including exp p´Ω pξqq and its various powers. Therefore, we have a system of equations
from the coefficients of polynomial of exp p´Ω pξqq . Solving this system of equations yields the
following coefficients:
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Case 1.1:

A0 “ ´6k2µB0, A1 “
A2B0 ` 6k2 `B2

0 ´ µB2
1
˘

B1
, A2 “ A2, A3 “ ´6k2B1, B0 “ B0,

λ “ ´
A2 ` 6k2B0

6k2B1
, c “

b

`

A2 ` 6k2B0
˘2
` 72k2

`

1´ 2k2µ
˘

B2
1

6kB1
, B1 “ B1, k “ k, µ “ µ.

(16)

Case 1.2:

A0 “

`

λ2 ` 2µ
˘

A3

6B1
, A1 “

A3

6

ˆ

λ2 ` 2µ`
6λB0

B1

˙

, A2 “ A3

ˆ

λ`
B0

B1

˙

, A3 “ A3,

k “
´i
?

A3
?

6B1
, c “ ´

b

`

λ2 ´ 4µ
˘

A3 ` 12B1
?

6B1
, B1 “ B1, λ “ λ, B0 “ B0, µ “ µ.

(17)

Case 1.3:

A0 “
6k2B2

0 pB0 ´ λB1q

B2
1

, A1 “
6k2B0 pB0 ´ 2λB1q

B1
, A2 “ ´6k2 pB0 ` λB1q , A3 “ ´6k2B1,

µ “
B0 p´B0 ` λB1q

B2
1

, B0 “ B0, B1 “ B1, c “ ´

b

4k2B2
0 ´ 4k2λB0B1 `

`

2` k2λ2
˘

B2
1

B1
,

k “ k, λ “ λ.

(18)

Case 1.4:

A0 “
k2B0

`

2B2
0 ´ 2λB0B1 ´ λ2B2

1
˘

B2
1

, A1 “ k2

˜

´8λB0 ` 2
B2

0
B1
´ λ2B1

¸

, A2 “ ´6k2 pB0 ` λB1q ,

A3 “ ´6k2B1, µ “
B0 p´B0 ` λB1q

B2
1

, c “ ´

b

´4k2B2
0 ` 4k2λB0B1 `

`

2´ k2λ2
˘

B2
1

B1
,

B0 “ B0, B1 “ B1, k “ k, λ “ λ.

(19)

Four families of explicit and exact solutions contain solitary, periodic and new traveling wave
solutions. Using coefficients of Equation (16) along with Equations (3) and (7) in Equation (14), we
obtain a new hyperbolic function solution for Equation (1) as follows:

u1 px, y, tq “
6k2µ

”

`

A2 ` 6k2B0
˘2
´ 144k4µB2

1

ı

sec h2 r f px, y, tqs
»

–A2 ` 6k2B0 ´ 6k2B1

g

f

f

e´4µ`

`

A2 ` 6k2B0
˘2

36k4B2
1

tanh r f px, y, tqs

fi

fl

2 , (20)

where f px, y, tq “
1
2

g

f

f

e´4µ`

`

A2 ` 6k2B0
˘2

36k4B2
1

rE` kx` ky´mts , ´4µ `

`

A2 ` 6k2B0
˘2

36k4B2
1

ą 0, and

m “

b

`

A2 ` 6k2B0
˘2
` 72k2

`

1´ 2k2µ
˘

B2
1

6B1
. Substituting Equation (17) along with Equations (3)

and (7) into Equation (14), we obtain the new complex hyperbolic function solution for the
(2 + 1)-dimensional Boussinesq water equation as follows:

u2 px, y, tq “
pA3

”

λ2 ´ 6µ` 2λ
?ptanh r f px, y, tqs `

`

λ2 ` 2µ
˘

tanh2
r f px, y, tqs

ı

6B1
“

λ`
?ptanh p f px, y, tqq

‰2 , (21)
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where p “ λ2 ´ 4µ, f px, y, tq “
?p

12B1

`

6E´ i
?

A3
`?

6x`
?

6y` t
a

pA3 ` 12B1
˘˘

, and p ą 0.

Consider using Equation (18) along with Equations (3) and (7) in Equation (14), we find another
new hyperbolic function solution for Equation (1) as follows;

u3 px, y, tq “
6k2sech2

„

p´2B0 ` λB1q

2B1
f px, y, tq



B0 pB0 ´ λB1q p´2B0 ` λB1q
2

B2
1

„

λB1 ` p´2B0 ` λB1q tanh
„

p´2B0 ` λB1q

2B1
f px, y, tq

2 , (22)

in which f px, y, tq “ E` k
ˆ

x` y`
t

B1

b

4k2B2
0 ´ 4k2λB0B1 `

`

2` k2λ2
˘

B2
1

˙

,
p´2B0 ` λB1q

2

B2
1

ą 0.

Substituting Equation (19) along with Equations (3) and (7) into Equation (14), we find a new
exponential function solution for Equation (1) as follows:

u4 px, y, tq “
k2 p´2B0 ` λB1q

2

B2
1

˜

´1`
6B0 pB0 ´ λB1q

´2B0 sinh rm f px, y, tqs ` λB1em f px,y,tq

¸

, (23)

in which f px, y, tq “ pE` k px` yqq B1 ` kt
b

´4k2B2
0 ` 4k2λB0B1 `

`

2´ k2λ2
˘

B2
1, m “

p´2B0 ` λB1q

2B2
1

,

p´2B0 ` λB1q
2

B2
1

ą 0.

Case 2: Letting M “ 2 and N “ 4, we can write the following:

U “
A0 ` A1exp p´Ωq ` A2exp p2 p´Ωqq ` A3exp p3 p´Ωqq ` A4exp p4 p´Ωqq

B0 ` B1exp p´Ωq ` B2exp p2 p´Ωqq
“

Υ
Ψ

, (24)

U1 “
Υ1Ψ´ ΥΨ1

Ψ2 “
K
T

,

U2 “
K1T´KT1

T2 ,
...

(25)

where A4 ‰ 0 and B2 ‰ 0. Substituting Equations (24) and (25) in Equation (12), we get an equation
including exp p´Ω pξqq and its various powers. Therefore, we have a system of algebraic equations
from the coefficients of the polynomial of exp p´Ω pξqq. Solving this system of equations yields the
following coefficients;

Case 2.1:

A0 “
µA4B0

B2
, A1 “

A4

B2
pλB0 ` µB1q , A2 “

A4

B2
pB0 ` λB1 ` µB2q , A3 “ A4

ˆ

λ`
B1

B2

˙

,

k “
i
?

A4
?

6B2
, c “ ´

b

´
`

λ2 ´ 4µ
˘

A4 ` 12B2
?

6B2
, A4 “ A4, B0 “ B0, B1 “ B1, λ “ λ, µ “ µ.

(26)

Case 2.2:

A0 “

`

λ2 ` 2µ
˘

A3

6B1
, A1 “

A3

6

ˆ

λ2 ` 2µ`
6λB0

B1

˙

, A2 “ A3

ˆ

λ`
B0

B1

˙

, A3 “ A3,

k “
i
?

A4
?

6B2
, c “ ´

b

`

λ2 ´ 4µ
˘

A4 ` 12B2
?

6B2
, B0 “ B0, B1 “ B1, B2 “ B2, µ “ µ, λ “ λ.

(27)
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By using coefficients of Equation (26) along with Equations (3) and (7) in Equation (24), we find
another complex hyperbolic function solution for Equation (1) as follows:

u5 px, y, tq “
A4µ

`

´λ2 ` 4µ
˘

sech2
„

1
12B2

b

`

λ2 ´ 4µ
˘ `

6EB2 ` i
?

A4 f px, y, tq
˘



B2

„

λ`
b

`

λ2 ´ 4µ
˘

tanh
„

1
12B2

b

`

λ2 ´ 4µ
˘ `

6EB2 ` i
?

A4 f px, y, tq
˘

2 , (28)

where f px, y, tq “
?

6B2 px` yq ` t
b

´
`

λ2 ´ 4µ
˘

A4 ` 12B2, and λ2 ´ 4µ ą 0.
By considering using the coefficients of Equation (27) along with Equations (3) and (7) in

Equation (24), we obtain another complex hyperbolic function solution for the (2 + 1)-dimensional
Boussinesq water equation as follows:

u6 px, y, tq “
pA4

´

p´ 2µ` 2λ
?ptanh rK f px, y, tqs ` ptanh2

rK f px, y, tqs
¯

6B2
“

λ`
?ptanh rK f px, y, tqs

‰2 , (29)

where f px, y, tq “ 6B2E` i
?

A4

´?
6B2 px` yq ` t

b

`

λ2 ´ 4µ
˘

A4 ` 12B2

¯

, K “
1

12B2

b

`

λ2 ´ 4µ
˘

and

p “ λ2 ´ 4µ ą 0.

4. Physical Expressions and Discussions and Remarks

In this subsection of the manuscript, we introduce some basic properties of the MEFM and
the physical meaning of the complex, dark solitonand hyperbolic function solutions found for
Equation (1) obtained in this paper.

MEFM is more comprehensive according to the exp p´Ω pξqq-expansion method because MEFM
includes one more parameter such as M. This gives many coefficients, which leads to many more
traveling wave solutions as evidenced by the fact that we have obtained so many analytical solutions
to the (2 + 1)-dimensional Boussinesq water equation for only M “ 1 and N “ 3. If we take M “ 3
and N “ 5, we can write the following equations:

U “
A0 ` A1exp p´Ωq ` A2exp p´2Ωq ` A3exp p´3Ωq ` A4exp p´4Ωq ` A5exp p´5Ωq

B0 ` B1exp p´Ωq ` B2exp p´2Ωq ` B3exp p´3Ωq
“

Υ
Ψ

, (30)

and

U1 “
Υ1Ψ´Ψ1Υ

Ψ2 , (31)

U2 “
Υ11Ψ3 ´Ψ2Υ1Ψ1 ´

´

Ψ11Υ`Ψ1Υ1
¯

Ψ2 ` 2
`

Ψ1
˘2 ΥΨ

Ψ4 ,
...

(32)

where A5 ‰ 0, B3 ‰ 0. When we use Equations (30) and (32) in Equation (12), we obtain a system
of algebraic equations. By solving this system via Wolfram Mathematica 9, we can obtain other
analytical solutions which cannot be obtained by using only the exp p´Ω pξqq-expansion method.
Therefore, this procedure of Equation (6) will contribute to more analytical solutions and to a better
understanding of engineering and physical problems along with new physical predictions.

To the best of our knowledge, when we conduct a comparison with analytical solutions obtained
by Ma [11–15], we have obtained similar hyperbolic solutions under the terms of M “ 1 and N “ 3;
moreover, we have found new complex hyperbolic function solutions by using MEFM.When we
compare these analytical solutions with solutions obtained by Lai, Wu, Zhou [1], Alam, Hafez, Akbar,
Roshid [2], and Allen, Rowlands [3], and Chen, Yan, Zhang [7], they are new and have not been
submitted to literature previously.
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Secondly, hyperbolic functions are circular functions as well [20]. They arise in many problems
of mathematics and mathematical physics. For instance, the hyperbolic sinearises in the gravitational
potential of a cylinder. The hyperbolic cosine function is the shape of a hanging cable. The
hyperbolic tangent arises in the calculation of and rapidity of special relativity. All three appear in
the Schwarzschild metric using external isotropic Kruskal coordinates in general relativity [20]. The
hyperbolic secant arises in the profile of a laminar jet. The hyperbolic cotangent arises in the Langevin
function for magnetic polarization [20]. It is estimated that all these analytical solutions are related to
such physical problems.

In consideration of the surfaces depicted here, shown in Figures 1–9 they have been constructed
using suitable parameters. These values of parameters are consistent with the physical meaning of
the problem.
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Figure 1. The 3D surfaces of the analytical solution, Equation (20), using the values k “ 0.3, µ “ ´3,
A2 “ 1, B0 “ ´2, B1 “ 0.1, E “ 0.4, y “ 0.1,´10 ă x ă 10, ´10 ă t ă 10, and t “ 0.001 for
2D transect.
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Figure 2. The 3D surfaces of the imaginary and real part of the analytical solution, Equation (21), using
the values λ “ 0.3, µ “ ´0.3, A3 “ 1, B0 “ ´2, B1 “ 0.1, E “ 0.4, y “ 0.1,´6 ă x ă 6, ´5 ă t ă 5.
(a) Imaginary part; (b) Real part.
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(a) Imaginary part; (b) Real part.
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λ “ 0.3, E “ ´0.4, k “ ´0.5, B0 “ ´0.6, B1 “ ´0.7, y “ ´0.3,´4 ă x ă 6, 0 ă t ă 1, and t “ 0.09 for
2D transect.
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Figure 5. The 3D surface of the analytical solution, Equation (23), using the values λ “ 3, E “ 0.4,
k “ 0.5, B0 “ 0.6, B1 “ 0.7, y “ 2,´40 ă x ă 40, ´1 ă t ă 1, and t “ 0.2 for 2D transect.
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Figure 6. The 3D surfaces of the imaginary and real part of the analytical solution, Equation (28),
using the values λ “ 0.3, µ “ ´0.3, A4 “ 1, B2 “ 0.1, E “ 0.4, y “ 0.1,´10 ă x ă 10, ´10 ă t ă 10.
(a) Imaginary part; (b) Real part.
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Figure 7. The 2D transect of the imaginary and real part of the analytical solution, Equation (28), using
values λ “ 0.3, µ “ ´0.3, A4 “ 1, B2 “ 0.1, E “ 0.4, y “ 0.1, t “ 0.01,´10 ă x ă 10. (a) Imaginary
part; (b) Real part.
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Figure 8. The 3D surfaces of the imaginary and real part of the analytical solution, Equation (29), using
the values λ “ ´0.3, µ “ ´2, A2 “ 0.01, A4 “ ´1, B0 “ 0.3, B1 “ 0.5, B2 “ 0.6, E “ ´0.2, y “ ´0.1,
´30 ă x ă 30, ´30 ă t ă 30. (a) Imaginary part; (b) Real part.
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Figure 9. The 2D transects of the imaginary and real part of the analytical solution, Equation (29), 
using the values 2 4 0 1 20.3, 2, 0.01, 1, 0.3, 0.5, 0.6, 0.2, 0.1,A A B B B E y              

5, 30 30.t x     (a) Imaginary part; (b) Real part. 

5. Conclusions 

In this paper we have applied the application of MEFM to the (2 + 1)-dimensional Boussinesq 
water equation. We have obtained some new analytical solutions such as exponential, complex and 
rational function solutions. We have observed that all analytical solutions obtained in this paper 
have verified to the Equation (1) by using Wolfram Mathematica 9. This method has provided many 
coefficients for Equations (14) and (24). Some of them have been considered in this paper to obtain 
new analytical solutions. If other coefficients are considered, of course, one can obtain different 
prototype solutions for Equation (1). Therefore, it can be said that this method is a powerful tool for 
obtaining solutions of the same type as Equation (1). 
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5. Conclusions

In this paper we have applied the application of MEFM to the (2 + 1)-dimensional Boussinesq
water equation. We have obtained some new analytical solutions such as exponential, complex and
rational function solutions. We have observed that all analytical solutions obtained in this paper
have verified to the Equation (1) by using Wolfram Mathematica 9. This method has provided many
coefficients for Equations (14) and (24). Some of them have been considered in this paper to obtain
new analytical solutions. If other coefficients are considered, of course, one can obtain different
prototype solutions for Equation (1). Therefore, it can be said that this method is a powerful tool
for obtaining solutions of the same type as Equation (1).
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