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Abstract: As a native scheme to evaluate hydrodynamic force in the lattice Boltzmann method,
the momentum exchange method has some excellent features, such as simplicity, accuracy,
high efficiency and easy parallelization. Especially, it is independent of boundary geometry,
preventing from solving the Navier–Stokes equations on complex boundary geometries in the
boundary-integral methods. We review the origination and main developments of the momentum
exchange method in lattice Boltzmann simulations. Then several practical techniques to fill
newborn fluid nodes are discussed for the simulations of fluid-structure interactions. Finally, some
representative applications show the wide applicability of the momentum exchange method, such as
movements of rigid particles, interactions of deformation particles, particle suspensions in turbulent
flow and multiphase flow, etc.
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1. Introduction

Fluid-structure interaction plays an important role in a variety of physical phenomena and many
fields of engineering applications. For the computational fluid dynamics (CFD), hydrodynamic force
evaluation is a key junction reflecting the interaction between fluid and structure. Especially, for the
simulations of an object moving in fluid, accurate hydrodynamic force evaluation is a prerequisite
to exactly depict the behaviors of the object. Over the past two decades, the lattice Boltzmann
method (LBM) [1–5] has developed into a promising and alternative numerical approach for the
simulations of complex fluid flows [6–9]. Hydrodynamic force evaluation in LBM mainly includes
the momentum exchange method [10–13], the stress integration method [14–16], the immersed
boundary method [17–19], etc. The methods based on the boundary integration have difficulty to
solve the Navier–Stokes equations on complex boundary geometries, as well as a challenge to find
a suitable computational mesh to compute fluid flow [10]. Owing to the regular lattice, the discrete
velocities and the handy density distribution functions in LBM, the momentum exchange method
is convenient to implement and is highly efficient for parallel performance. In recent years, some
improvements are proposed to make the method more accurate [20–22]. Remarkably, the Galilean
invariant improvement [13] promotes the momentum exchange method to become an exact scheme
for hydrodynamic force evaluation without any loss of its simplicity and efficiency. Nowadays, it
is very easy to implement the momentum exchange method for the simulations of fluid-structure
interactions based on LBM.
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The review is organized as follows. Section 2 briefly summarizes the lattice Boltzmann method.
Section 3 describes the origin, theory and development of the momentum exchange method in detail.
Section 4 is focused on the refill of new fluid nodes for the simulations of moving boundaries.
Section 5 introduces a few kinds of application of the momentum exchange method, including rigid
particle movements, deformable particle interactions, particle suspensions in turbulent flow and in
multiphase flow. Finally, Section 6 presents the conclusions.

2. The Lattice Boltzmann Method

With its roots in the cellular automaton concept and kinetic theory, the lattice Boltzmann
equation can recover the incompressible Navier–Stokes equations in the nearly incompressible
limit [6–8]. Discretized fully in space, time and velocity, the lattice Boltzmann equation (LBE) can
be concisely written as

fipx` ei, t` 1q ´ fipx, tq “ Ωp fiq (1)

where fipx, tq is the particle distribution function at lattice site x and time t, moving along the direction
defined by the discrete speeds ei with i “ 0, ..., N, Ωp fiq is the collision operator and the time step
takes 1 in the review. The mass density and the momentum density are defined by

ρ “
ÿ

fi, ρu “
ÿ

ei fi ` τg (2)

where g is the acceleration due to force of gravity. One can consider fi to be a mass component of a
lattice node, and ei fi to be the corresponding momentum component.

With the different collision operators, several variations of the LBE can be read
as the single-relaxation-time model [2–5], the multiple-relaxation-time model [23,24], the
two-relaxation-time model [25], the entropic lattice Boltzmann equation [26,27], etc. It should be noted
that the momentum exchange method is based on the momentum components and is independent of
the given form of collision operator.

Using the two-dimensional model with nine velocities on a square lattice, of which the discrete
velocity set is e = {(0, 0), (1, 0), (0, 1), (´1, 0), (0, ´1), (1, 1), (´1, 1), (´1, ´1), (1, ´1)}, the
single-relaxation-time collision operator can be written as [2]

Ωp fiq “ ´
1
τ

”

fipx, tq ´ f peqq
i px, tq

ı

(3)

while the equilibrium distribution function is

f peqq
i “ ρωir1` 3pei ¨ uq `

9
2
pei ¨ uq

2
´

3
2

u2s (4)

where ωi is the weighting coefficient ω0 “ 4{9, ω1,2,3,4 “ 1{9, ω5,6,7,8 “ 1{36, and u is the fluid

velocity calculated by Equation (2). The viscosity in the macroscopic equations is ν “
2τ´ 1

6
.

With the most general form which is derived from the linearized collision model, the
multiple-relaxation-time collision operator can be defined as [28–30]

Ωp fiq “ ´M-1 ¨ S ¨
”

m´mpeqq
ı

(5)

where m and mpeqq represent the velocity moments of the distribution functions and their equilibria,
respectively. For the model with two dimensions and nine discrete velocities, i is an integer 0 ď i ď 8
and the velocity moments are m “ (ρ,e,ε,jx,qx,jy,qy,pxx,pxy)T. The conserved moments are the density
ρ and the flow momentum j “ (jx,jy) “ ρu, u is the local velocity. The equilibria of nonconserved

moments depend only on the conserved moments: epeqq “ ´2ρ`
3
ρ

(j2x ` j2y), εpeqq “ ρ´
3
ρ

(j2x ` j2y),
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qpeqq
x “ ´jx, qpeqq

y “ jy, ppeqq
xx “

1
ρ

(j2x ´ j2y), ppeqq
xy “

1
ρ

(jx jy). M is a linear transformation matrix mapping

between discrete velocity space and moment space, m “ M ¨ f and f “ M-1 ¨m. S is a diagonal matrix
of nonnegative relaxation factors and is given by S “ diag(0,se,sε, 0,sq, 0,sq,sν,sν). Then the shear

viscosity is ν “
1
3

ˆ

1
sv
´

1
2

˙

.

The evolution of the LBE can be decomposed into two elementary steps, namely collision and
advection, to reveal the flow phenomena at the mesoscopic scale [6]:

collision: rfipx, tq “ fipx, tq `Ωp fiq (6)

advection: fipx` ei, t` 1q “ rfipx, tq (7)

where fi and rfi denote pre-collision and post-collision states of the particle distribution functions,
respectively. The collision step, as the dominant part of the computations, is completely local, hence
the full discrete equation is natural to parallelize.

3. The Momentum Exchange Method

3.1. The Original Particulate Suspensions by Ladd

Ladd created the original momentum exchange method in the lattice Boltzmann method
in order to evaluate hydrodynamic interactions for the numerical simulations of particulate
suspensions [10,11]. His pioneer studies promoted the lattice Boltzmann method to develop into a
popular tool for the simulations of fluid-solid interaction, which, nowadays, is still one of the most
active fields in LBM. Ladd defined the suspension particle by a boundary shell and treated all lattices,
both inner and outer of the solid particle, in an identical fluid fashion. The particulate boundary, as
shown in Figure 1, is laid approximately and discretely at the middle of every fluid-solid links, each
of which crosses the boundary and connects a fluid node with a solid node.
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Figure 1. Location of boundary nodes for a curved surface. The velocities along links cutting the 
boundary surface are indicated by arrows. The locations of the boundary nodes are shown by solid 
squares, and the fluid nodes by solid circles. The open circles indicate those nodes in the solid 
adjacent to fluid nodes. (Ladd, 1994 [10]). 

Taking into account the movement of the particulate surface, each of the distribution functions 
on the fluid-solid links is then updated by the following simple rule. Assuming that a moving 
boundary is intersected at bx  by a fluid-solid link which connects a solid node sx  and a fluid node 

fx , and the discrete velocity ie  is from fx  to sx , a momentum item computed by the boundary 
velocity is added to the distribution functions which are bounced back from the particulate boundary 

Figure 1. Location of boundary nodes for a curved surface. The velocities along links cutting the
boundary surface are indicated by arrows. The locations of the boundary nodes are shown by solid
squares, and the fluid nodes by solid circles. The open circles indicate those nodes in the solid adjacent
to fluid nodes. (Ladd, 1994 [10]).

Taking into account the movement of the particulate surface, each of the distribution functions on
the fluid-solid links is then updated by the following simple rule. Assuming that a moving boundary
is intersected at xb by a fluid-solid link which connects a solid node xs and a fluid node x f , and the
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discrete velocity ei is from x f to xs, a momentum item computed by the boundary velocity is added
to the distribution functions which are bounced back from the particulate boundary

fi(x f ,t` 1) “ rfi(x f ,t)´
2ωiρ

c2
s

(ei ¨ ub) (8)

fi(xs,t` 1) “ rfi(xs,t)´
2ωiρ

c2
s

(ei ¨ ub) (9)

where cs is the sound speed and ub is the boundary velocity at the intersection. The
momentum-exchange occurs during the advection step, and the momentum-exchange value on a
fluid-solid link in a time step, namely the force, is written as [10,11]:

Fipxb, t`
1
2
q “ 2

„

rfi(x f ,t)´ rfi(xs,t)´
2ωiρ

c2
s

(ei ¨ ub)


ei (10)

For a circular or spherical rigid particle suspended in fluid, the total hydrodynamic force F as
well as the torque T exerting on the particle are calculated by

Fptq “
ÿ

Fpxb, tq (11)

and
Tptq “

ÿ

pxb ´Rq ˆ Fpxb, tq (12)

where R is the mass center of the solid particle. The summations in Equations (11) and (12) run over
all the fluid-solid links. The boundary velocity of point xs is computed by the particulate translational
velocity U and the angular velocity Ω [31]

ubptq “ Uptq `Ωptq ˆ pxb ´Rq (13)

The time evolutions of the particle velocity and angle velocity are found by solving Newton’s
equations of motion,

Upt` 1q ” Uptq `
Fptq
M

`
pρp ´ ρq

ρp
g (14)

and
Ωpt` 1q ” Ωptq `

Tptq
I

(15)

where I is the moment of inertia, M is the mass of the particle and ρp is the particle density. For
an uniform circle or sphere with the radius r, the particle mass is computed by M “ πr2ρp and

M “
4
3
πr3ρp, while the moment of inertia is computed by I “

1
2

r2M and I “
2
5

r2M, respectively.
Ladd’s method treats both fluid node and particle node as fluid, therefore it is very simple

to update the motion of particles. Especially, the method remains the conservations of mass
and momentum locally. However, the solid particle is indeed different from the interior fluid.
Although the fluid movement in the particle is closely similar to that of a rigid solid [11], the
inertial lag of the fluid is obvious at short times, and the contribution of the interior fluid on the
force and torque of the particle reduces the stability of the particle velocity update [8]. Nguyen
and Ladd [32,33] upgraded the original model by removing the effect of the interior fluid from
fluid-particle momentum exchanges and proposed an effective lubrication force for particles in near
contact. Başağaoğlu et al. [34,35] applied the upgraded model to investigate the lateral migration of a
particle in a horizontal channel and a microchannel at different Reynolds numbers.
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3.2. The Direct Particle Simulations by Aidun et al.

Aidun et al. [12,36] removed the interior fluid from the suspending particle and considered the
particle as a real and impermeable one. They arranged the particle boundary approximately at the
midpoint of fluid-solid links same as Ladd’s method and applied the halfway bounce-back condition
to calculate the distribution functions from solid to fluid. A momentum item including the boundary
velocity is added into the distribution function which is bounced back from the particle boundary.
For a post-collision distribution function rfi, whose discrete velocity ei has the direction from a fluid
node to a solid one, the momentum component ei

rfi moves into the particle and gives the particle a
momentum increment. On the opposite direction, ei

rfi moves out of the particle and gives the particle
a momentum decrement. Thus, the momentum change value of the boundary on the fluid-solid link
in a time step, namely the force, is written as [12,36,37]:

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq “ eir
rfipx f , tq ` rfipxs, tqs (16)

where rfipxs, tq is calculated by the half-way bounce-back boundary condition

rfipxs, tq “ rfi(x f ,t)´
2ωiρ

c2
s

(ei ¨ ub) (17)

Equation (17) was also derived by the work of Nguyen and Ladd [32], in which fluid occupies
the entire region, but fluid inside the particle does not contribute to particle-fluid hydrodynamics.
This approach ensures the continuity in the flow field and avoids large artificial pressure gradients,
which are caused by the expansion and compression of the fluid near the particle surface. We call the
Equation (16) as the conventional momentum exchange (CME) equation.

A common drawback in Ladd’s and Aidun’s methods is that the boundary geometry, which is
located at the middles of fluid-solid links, is zigzag. Mei et al. [37] employed the curved boundary
conditions [38–40] in the momentum-exchange method, thus, on the grid level, the particulate
geometry could be accurately depicted. The distribution functions bounced back from the solid
boundary are calculated by curved boundary condition, and the force evaluation is based on the
real particulate geometry instead of the previous stepping edges. They also verified that the
momentum exchange method, namely Equation (16), is accurate on a stationary boundary for both
two-dimensional and three-dimensional flows.

Another improvement by Aidun et al. [12] was that the hydrodynamic force evaluation of
moving solid particles involved the momenta raised from the lattice type changes of the covered and
uncovered nodes. Ding and Aidun [41] further studied lubrication forces between particles in near
contact and hydrodynamic interactions between two solid objects in relative motion. Wen et al. [20]
investigated carefully the effect of these type-changing lattices and applied the curved boundary
conditions [38–40,42–45] to simulate moving boundaries.

In the numerical simulations of fluid-structure interactions in LBM, every of the momentum
components moving through the boundary will alter the boundary momentum. Figure 2A shows
that, in a time step, a boundary shifts from the dotted curve to the real one, the initial fluid node (a1) is
devoured by the solid boundary and changes into a newborn solid lattice node. Every of momentum
components on the lattice node moves into the particulate boundary and provides a momentum
increment. Thus, the impulse force caused by the type changing of the node (a1) is written as [12,20]:

Fpxcq “
ÿ

i

ei
rfipxc, tq (18)

where xc represents the lattice node altering from fluid to solid and relates to the node (a1) in
Figure 2A.
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In the same style, when a boundary shifts, the previous solid lattice node (a2) is uncovered and
changes into a newborn fluid one, as shown in Figure 2B. Every of momentum components on the
lattice shifts out of the boundary and provides a momentum decrement. Thus, the impulse force
produced by the newborn lattice node (a2) is written as [12,20]:

Fpxcq “ ´
ÿ

i

ei
rfipxc, tq (19)

where xc represents the lattice node altering from solid to fluid and concerns to the node (a2) in
Figure 2B.
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investigated Galilean invariance and accuracy of the improved method by simulating particle 
suspensions with Lees-Edwards boundary conditions [51] and a shear flow test. 

Figure 2. The lattice type is changed if the boundary shifts from the dotted curve to the real one.
Squares denote the particle and circles denote the fluid. (A) The shaded square a1 represents a
newborn solid lattice node changing from a fluid one. (B) The shaded circle a2 represents a newborn
fluid lattice node changing from a solid one. (Wen et al., 2012 [20]).

The impulse forces exerted by the covered/uncovered lattice nodes are added into the
conventional momentum exchange equation, therefore the hydrodynamic force on a moving
boundary includes two parts: one is calculated on fluid-solid links, and the other is complemented
by the impulse forces on type-changing lattices. Therefore, the total hydrodynamic force and torque
acting on the particle are now defined as:

F “
ÿ

Fpxbq `
ÿ

Fpxcq (20)

and
T “

ÿ

pxb ´Rq ˆ Fpxbq`
ÿ

pxc ´Rq ˆ Fpxcq (21)

where the summation of xb is on all fluid-solid links and the summation of xc is on all
covered/uncovered lattice nodes.

Wen et al. [20] verified the accuracy of the method by simulating a series of cylinder
sedimentations and the Segré–Silberberg effects [46,47]. However, it is really a discrete event that
a lattice node passes through a moving boundary. Therefore, the impulse force leads to a significant
force fluctuation and may reduce the simulation stability, so that a time average of velocity is
necessary to smooth the velocity profile.

3.3. The Improved Schemes by Caiazzo, Chen, Hu, et al.

In recent years, a few schemes were proposed to improve the accuracy and Galilean invariance
of the momentum exchange method. Caiazzo and Junk [48] presented an modified momentum
exchange method according to the asymptotic expansion technique,

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq ´ 2ωiei ´ωic´2
s (c´2

s |ei ¨ ub|
2
´ u2

bqei (22)
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Clausen and Aidun [49] obtained a similar correction to reduce the error of normal stress and
investigated the effect on the rheological properties in particle suspensions. Lorrenz et al. [50]
investigated Galilean invariance and accuracy of the improved method by simulating particle
suspensions with Lees-Edwards boundary conditions [51] and a shear flow test.

For a particle suspension model without fluid inside, simulations by Wen et al. [20] and
Chen et al. [22] showed when the impulse force was not included, the numerical results of the
conventional exchange equation deviated from both results of finite element method and LBM with
the stress integration method, no matter the curved boundary condition or the halfway bounce-back
boundary condition was used. Because the conventional momentum exchange equation, namely
Equation (16), for stationary boundaries was verified to be accurate [37] and the impulse force was
not necessary for LBM with the stress integration method, Chen et al. [22] thought that the problem
could lie in the calculation of momentum exchange in the moving boundary treatment.

Considering a distribution function as a mass component, the distribution function will gain
an additional momentum when it collides with a moving boundary. Due to the constant discrete
velocities in LBM, the additional part has to be modified by adjusting the particle distribution function
in the bounce back procedure like the last part of Equation (17). The modification leads to a net mass
transfer on a fluid-solid link through the physical boundary for the direct simulation of suspending
particles without interior fluid. From another angle, the net mass transfer can be seen as a bit of fluid
mass which is covered (or uncovered) and is injected, at the time step, back to (or down from) the fluid
field [22], as shown in Figure 3. The initial momenta of the net fluid mass must be complemented to
CME and a straightforward correct is given by Chen et al. [22]:

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq ´
2ωiρ

c2
s

(ei ¨ ub)ub (23)

Associating with the Aidun’s method [12,20], the total impulse produced from Equations (18)
and (19) is equal to the total initial momenta of the fluid which is covered or uncovered by the unit
length boundary when the boundary shifts from a lattice node to its neighbor.
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Based on the finite-volume lattice Boltzmann method, Hu et al. [52] proposed a modified 
momentum exchange method to compute the interactions between fluid and particle. Their aim is to 
remove the common restriction in the momentum exchange method, in which the boundary points 
are set at the middle of the grid lines or the intersection of the solid boundaries and the grid lines. 
The particulate surface is described by some arc (area) elements, and the inside fluid is also used. 
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Figure 3. A schematic illustration of a moving boundary on lattice grid. (Chen et al., 2013 [22]).

Based on the finite-volume lattice Boltzmann method, Hu et al. [52] proposed a modified
momentum exchange method to compute the interactions between fluid and particle. Their aim is to
remove the common restriction in the momentum exchange method, in which the boundary points
are set at the middle of the grid lines or the intersection of the solid boundaries and the grid lines.
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The particulate surface is described by some arc (area) elements, and the inside fluid is also used.
Considering the control volume, the momentum exchange method is modified by

Fipxbq “ 2ei

„

rfipxs, tq ´
ωiρ

c2
s

(ei ¨ ub)


Vi (24)

where Vi is the area (volume) of the local curved edge. By means of numerical integration, the fluid
mass which collide with an arc (area) element in the control volume is obtained.

3.4. The Galilean Invariant Hydrodynamics Force by Wen et al.

The interfacial momentum transfer can be generalized by a common schematic diagram as
shown in Figure 4, in which a moving boundary is located between a fluid node x f and a
boundary node xs and the boundary has a velocity v at the point of intersection b. In the collision
step, the distribution function rfipxb,tq has to be calculated by the half-way bounce-back boundary
condition [10,12] or the curved boundary conditions [20,22,37,53], in which the forcing terms [54–56]
must be included based on the boundary velocity.
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the point of intersection b. xf and xs denote the adjacent fluid and solid nodes. The boundary has a 
velocity v at the point b. (Wen et al., 2014 [13]). 

Galilean invariance is a fundamental physical property; however, although the dynamics of 
lattice Boltzmann equation in hydrodynamic restrict meets Galilean invariance [57], this property 
needs a specific consideration in the treatment of the fluid-structure interactions. According to the 
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It is clear that GME turns into CME when the boundary is motionless. GME evaluates the 
hydrodynamic force in the fluid-structure interaction and works on the motion state of a moving 
boundary, but has not any direct influence on distribution functions. The similar relative velocity 
was mentioned in the study of Krithivasan et al. [58]. 

A simple theoretical analysis is employed to compare GME and CME. Suppose the system in 
Figure 4 is relative static and is physically related to a reference frame with arbitrary uniform 
velocity v . It is equivalent to an equilibrium system in which the fluid and boundary have the 
same uniform velocity v . Substituting Equation (4) into Equation (16), the hydrodynamic force on a 
fluid-solid link can be evaluated: 
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Because of the term 2 23 [3( ) ]i i i  e v v e , the hydrodynamic force is abnormally connected to 
the speed of the reference frame, and thus the conventional equation presents an inherent flaw of 
Galilean invariance.  

Figure 4. A common schematic diagram to illustrate a moving boundary crossing a fluid-solid link at
the point of intersection b. x f and xs denote the adjacent fluid and solid nodes. The boundary has a
velocity v at the point b. (Wen et al., 2014 [13]).

Galilean invariance is a fundamental physical property; however, although the dynamics of
lattice Boltzmann equation in hydrodynamic restrict meets Galilean invariance [57], this property
needs a specific consideration in the treatment of the fluid-structure interactions. According to
the theorem of momentum, the momentum transfer through a moving boundary is correlated to
the relative velocity and then is independent of the speed of reference frame. Crossing the point
of intersection b, the mass component rfipx f ,tq has the velocity pei ´ vq relative to the boundary

and contributes a momentum increment pei ´ vqrfipx f ,tq to the boundary. Simultaneously, the mass

component rfipxs,tq has the relative velocity pei ´ vq and decreases a momentum pei ´ vqrfipxs,tq from
the boundary. Thus, the Galilean invariant momentum exchange method (GME) can be defined by

Fipxbq “ pei ´ vqrfipx f ,tq ´ pei ´ vqrfipxs,tq (25)

It is clear that GME turns into CME when the boundary is motionless. GME evaluates the
hydrodynamic force in the fluid-structure interaction and works on the motion state of a moving
boundary, but has not any direct influence on distribution functions. The similar relative velocity was
mentioned in the study of Krithivasan et al. [58].

A simple theoretical analysis is employed to compare GME and CME. Suppose the system in
Figure 4 is relative static and is physically related to a reference frame with arbitrary uniform velocity
´v. It is equivalent to an equilibrium system in which the fluid and boundary have the same uniform
velocity v. Substituting Equation (4) into Equation (16), the hydrodynamic force on a fluid-solid link
can be evaluated:

Fi “ ei f peqq
i px f ,tq ´ ei f peqq

i
pxs,tq

“ eiρωir1` 3pei ¨ vq `
9
2
pei ¨ vq

2
´

3
2

v2s ´ eiρωir1` 3pei ¨ vq `
9
2
pei ¨ vq

2
´

3
2

v2s

“ 2ρωiei ` 3ρωir3pei ¨ vq
2
´ v2sei.

(26)
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Because of the term 3ρωir3pei ¨ vq
2
´ v2sei, the hydrodynamic force is abnormally connected to

the speed of the reference frame, and thus the conventional equation presents an inherent flaw of
Galilean invariance.

As the discrete velocity ei is constant, Galilean invariance cannot be satisfied on a single
fluid-solid link, just like a single ei cannot express the fluid velocity of a lattice node. However,
since the discrete velocity set is symmetrical, the Galilean invariant force evaluation can be achieved
locally on the lattice. Without loss of generality, the boundary is assumed to intersect with the
discrete velocities, e1, e5 and e8. Substituting Equation (4) into Equation (25) and summating the
three directions, the local hydrodynamic force can be analyzed

F “ F1 ` F5 ` F8

“
ř

i“1,5,8
rpei ´ vq f peqq

i px f ,tq ´ pei ´ vq f peqq
i
pxs,tqs

“
ř

i“1,5,8
t2ρωiei ` 3ρωir3pei ¨ vq

2
´ v2sei ´ 6ρωipei ¨ vqvu

“
ř

i“1,5,8
2ρωiei.

(27)

The local hydrodynamic force remains constant regardless of the reference speed, therefore GME
is proven to be completely Galilean invariant in the equilibrium system.

Another simple simulation can quantitatively show the difference between GME and CME. A
vertical thin plate is placed in the relatively static fluid without boundary. GME and CME are used to
compute the one-sided pressure of the plate and the equilibrium system is connected to a reference
frame. The percentage of the computational errors by GME and CME are shown in Figure 5. It is
clear that CME violates Galilean invariance whereas GME fully satisfies in the equilibrium system.
The case is independent of the relaxation time and the plate’s length.
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Figure 5. Relative errors in the one-sided pressure on a vertical thin plate in the relatively stationary 
fluid without boundaries. This equilibrium system is connected to various velocities of the reference 
frame. Since it properly considers the boundary velocity, Galilean invariant momentum exchange 
method (GME) is the Galilean invariant and thus has a very high computational accuracy. (Wen et al., 
2014 [13]). 

GME is further examined in a dynamic fluid field in which a cylinder sedimentates in a vertical 
channel. The width of the channel is 0.4 cm and the cylinder diameter is 0.1 cm. The fluid and 
particle densities are 1 g/cm3 and 1.03 g/cm3, and the kinematic viscosity is 0.01 cm2/s. The cylinder is 
located at 0.076 cm to the left channel wall, and then it moves under the gravity acceleration  
|G| = 980 cm2/s. The width of the channel is 120 lattice units and the length is 10 times the width. The 
simulations apply the second-order interpolation boundary condition [56] on the single-relaxation-time 
model with the relaxation time 0.6  . The particle mass is 8.0896 × 10−3 g and the inertia moment is 
1.0112 × 10−5 g∙cm2. The Reynolds numbers is defined by /pRe du v , where d is the channel width, 
up is the final velocity of the particle and v  is the kinematic viscosity. The highly consistent results 
are obtained by using the multireflection boundary condition [59] on the multiple-relaxation-time 
model with the diagonal relaxation matrix diag(0, 1.64, 1.54, 0, 1.9, 0, 1.9, 1 , 1 )  S  [23,30]. 

Figure 6a,b draws the compare with the simulating results from the momentum exchange 
methods by Aidun et al. (ALD) [12] and the lattice-type-dependent momentum exchange method 
(LME) [20], together with the benchmarks calculated by the arbitrary Lagrangian–Eulerian 

Figure 5. Relative errors in the one-sided pressure on a vertical thin plate in the relatively stationary
fluid without boundaries. This equilibrium system is connected to various velocities of the reference
frame. Since it properly considers the boundary velocity, Galilean invariant momentum exchange
method (GME) is the Galilean invariant and thus has a very high computational accuracy. (Wen et al.,
2014 [13]).

GME is further examined in a dynamic fluid field in which a cylinder sedimentates in a
vertical channel. The width of the channel is 0.4 cm and the cylinder diameter is 0.1 cm. The
fluid and particle densities are 1 g/cm3 and 1.03 g/cm3, and the kinematic viscosity is 0.01 cm2/s.
The cylinder is located at 0.076 cm to the left channel wall, and then it moves under the gravity
acceleration |G| = 980 cm2/s. The width of the channel is 120 lattice units and the length is 10
times the width. The simulations apply the second-order interpolation boundary condition [56]
on the single-relaxation-time model with the relaxation time τ “ 0.6. The particle mass is
8.0896 ˆ 10´3 g and the inertia moment is 1.0112 ˆ 10´5 g¨cm2. The Reynolds numbers is defined
by Re “ dup{v, where d is the channel width, up is the final velocity of the particle and v is
the kinematic viscosity. The highly consistent results are obtained by using the multireflection
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boundary condition [59] on the multiple-relaxation-time model with the diagonal relaxation matrix
S “ diagp0, 1.64, 1.54, 0, 1.9, 0, 1.9,1{τ,1{τq [23,30].

Figure 6a,b draws the compare with the simulating results from the momentum exchange
methods by Aidun et al. (ALD) [12] and the lattice-type-dependent momentum exchange method
(LME) [20], together with the benchmarks calculated by the arbitrary Lagrangian–Eulerian technique
(ALE) [60,61]. The hydrodynamic forces computed by GME extremely agree with the benchmarks,
while the results by ALD and LME have large fluctuations. Please note that all of the data from GME
are raw, whereas the data from ALD and LME have been smoothed by using the adjacent-averaging
method per 30 points for the horizontal forces and per 100 points for the vertical forces. As so much
improvement in the force evaluation is achieved, the force fluctuation of GME is very small and the
time average becomes unnecessary.
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2014 [13]). 

Figure 7a,b draws the accuracy of the velocity and angle velocity computed by GME, ALD and 
LME. All velocities from GME are very smooth and in excellent agreement with the ALE 
benchmarks, whereas the results from ALD and LME clearly fluctuate with some deviations. The 
GME results are so accurate and steady that the time average of the velocities is totally unnecessary. 
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Figure 7. Time-dependent (a) horizontal velocities and (b) angular velocities evaluated by GME, 
LME, and ALD, compared with the ALE benchmark. (Wen et al., 2014 [13]). 

The deviations of forces and velocities are quantitatively analyzed by a relative L2-norm error, 
which is defined by  
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To investigate the effects of lattice scale, the lattice width of the channel increases gradually 
from 50 to 200 lattice units, while the length remains 10 times the width. For Equation (28), f(t) is a 
LBM result and F(t) is an ALE result. Figure 8a illustrates that the relative errors of the GME results 
rapidly decrease with the increase of the lattice scale. However, the relative errors of the ALD and 
LME results always remain very high and are more than one order larger than those from GME. To 

Figure 6. (a) Time-dependent horizontal forces and (b) time-dependent vertical forces evaluated
by GME, lattice-type-dependent momentum exchange method (LME), and Aidun’s method (ALD),
compared with the ALE benchmark. The density of the cylinder is 1.03 g/cm3. The GME data is raw,
whereas the ALD and LME data have been smoothed by the adjacent-averaging method. (Wen et al.,
2014 [13]).

Figure 7a,b draws the accuracy of the velocity and angle velocity computed by GME, ALD and
LME. All velocities from GME are very smooth and in excellent agreement with the ALE benchmarks,
whereas the results from ALD and LME clearly fluctuate with some deviations. The GME results are
so accurate and steady that the time average of the velocities is totally unnecessary.
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Figure 7. Time-dependent (a) horizontal velocities and (b) angular velocities evaluated by GME, LME,
and ALD, compared with the ALE benchmark. (Wen et al., 2014 [13]).
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The deviations of forces and velocities are quantitatively analyzed by a relative L2-norm error,
which is defined by

E “
t
ş

r f ptq ´ Fptqs2dtu
1
2

t
ş

rFptqs2dtu
1
2

(28)

To investigate the effects of lattice scale, the lattice width of the channel increases gradually
from 50 to 200 lattice units, while the length remains 10 times the width. For Equation (28), f(t) is a
LBM result and F(t) is an ALE result. Figure 8a illustrates that the relative errors of the GME results
rapidly decrease with the increase of the lattice scale. However, the relative errors of the ALD and
LME results always remain very high and are more than one order larger than those from GME. To
investigate the influences of Reynolds number, we perform a set of simulations in which the particle
densities increase from 1.02 to 1.22 g/cm3, and the corresponding Reynolds number grows gradually
from 6.13 to 34.75. As shown in Figure 8b, the relative L2-norm errors reflect the fluctuation range in
particle velocities. Here, f(t) is the simulation result and F(t) is the smoothed simulation result by the
adjacent-averaging method per 20 points. It is clear that the GME results are more accurate and far
steadier than the ALD and LME results. Peng et al. [62] confirmed the computational accuracy and
Galilean invariance of GME by theoretical analyses and numerical simulations.
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Figure 8. (a) The relative L2-norm error of the horizontal forces (Fx, black) and vertical forces  
(Fy, blue) with increasing lattice scales; (b) The relative L2-norm errors of the horizontal velocity  
(Vx, black) and the angular velocity (ω, red) with various Reynolds numbers. (Wen et al., 2014 [13]). 

4. Refill of New Fluid Nodes 

While a suspended particle is moving in fluid some lattices will be covered and uncovered by 
the particle, and then the type of these lattices will be changed consequently. Ladd’s method does 
not need a further process because all lattice nodes, both inside and outside of a particle, are treated 
as fluid nodes. When an interior node changes into an exterior node, it is justified if the density of the 
interior node approximates the right characteristic of the exterior one. This may be only true in the 
situations that the particulate acceleration is low. If a particle is accelerated, the fluid directly behind 
the particle typically suffers a lower pressure while the adjacent inner node bears a rather high 
pressure [50]. This may reduce the stability of the particle velocity update. For the methods without 
inner fluid node, when a lattice node is changing from a particle node to a fluid one, its properties 
has to be refilled, such as density, velocity and distribution functions [13,20,22]. Here, we introduce 
some algorithms used in practice as follows. 

Aidun et al. [12] presented a simple algorithm to refill the newborn fluid node when  
they directly simulated particle suspensions. When a boundary node is uncovered due to the 
movement of the solid particle and becomes a new fluid node, its density is obtained with the 
following relation:  

1
( , ) ( , )i

N
t t

N
   x x e  (29)

where x  is the newborn fluid lattice node and N  indicates the number of fluid nodes adjacent to 
this lattice node. The equation shows that the fluid density of the newborn node is equal to the 
average density of its neighboring lattice nodes. The velocity of the solid boundary node at the same 
time step is used as the macroscopic velocity of the new fluid node,  

( , ) ( ) ( ) ( ( ))t t t t   u x U Ω x R  (30)

where U  is the particle translational velocity, Ω  is the angular velocity and R  is the particulate 
mass center. The distribution functions on the newly uncovered node are set as the equilibrium 
distribution functions calculated by the density and velocity above. 

Figure 8. (a) The relative L2-norm error of the horizontal forces (Fx, black) and vertical forces (Fy, blue)
with increasing lattice scales; (b) The relative L2-norm errors of the horizontal velocity (Vx, black) and
the angular velocity (ω, red) with various Reynolds numbers. (Wen et al., 2014 [13]).

4. Refill of New Fluid Nodes

While a suspended particle is moving in fluid some lattices will be covered and uncovered by
the particle, and then the type of these lattices will be changed consequently. Ladd’s method does
not need a further process because all lattice nodes, both inside and outside of a particle, are treated
as fluid nodes. When an interior node changes into an exterior node, it is justified if the density of
the interior node approximates the right characteristic of the exterior one. This may be only true
in the situations that the particulate acceleration is low. If a particle is accelerated, the fluid directly
behind the particle typically suffers a lower pressure while the adjacent inner node bears a rather high
pressure [50]. This may reduce the stability of the particle velocity update. For the methods without
inner fluid node, when a lattice node is changing from a particle node to a fluid one, its properties
has to be refilled, such as density, velocity and distribution functions [13,20,22]. Here, we introduce
some algorithms used in practice as follows.
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Aidun et al. [12] presented a simple algorithm to refill the newborn fluid node when they directly
simulated particle suspensions. When a boundary node is uncovered due to the movement of the
solid particle and becomes a new fluid node, its density is obtained with the following relation:

ρpx,tq “
1
N

ÿ

N

ρpx` ei,tq (29)

where x is the newborn fluid lattice node and N indicates the number of fluid nodes adjacent to this
lattice node. The equation shows that the fluid density of the newborn node is equal to the average
density of its neighboring lattice nodes. The velocity of the solid boundary node at the same time step
is used as the macroscopic velocity of the new fluid node,

upx,tq “ Uptq `Ωptq ˆ px´Rptqq (30)

where U is the particle translational velocity, Ω is the angular velocity and R is the particulate mass
center. The distribution functions on the newly uncovered node are set as the equilibrium distribution
functions calculated by the density and velocity above.

Lallemand and Luo [56] used a second-order normal extrapolation to calculate the missed
distribution functions. Along the direction of a chosen discrete velocity ei, the extrapolation considers
the boundary normal direction to maximize the quantity n̂ ¨ ei, where n̂ is the normal vector out of
the wall. For instance, the unknown distribution functions t fipxqu at node x as drawn in Figure 9 can
be calculated by the extrapolation formula as follow:

fipxq “ 3 fipx1q ´ 3 fipx2 q ` fipx3 q (31)

where x3 is the next lattice node along the direction x1 to x2 .
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Figure 9. A boundary is moving with velocity uw. The circles (○) and disks (●) denote fluid and 
boundary nodes, respectively. The squares (□) denote the nodes turning from boundary nodes to 
fluid ones at a time step. The solid and dotted curves are the positions of wall boundary at time t and 
t + 1, respectively. (Lallemand and Luo, 2003 [56]). 

Caiazzo [63] suggested a refill scheme by reconstructing the equilibrium and non-equilibrium 
parts separately according to an asymptotic analysis prediction. The initialization of the populations 
includes an approximation of the non-equilibrium part which, in practice, can be copied simply from 
a neighbor of the new fluid node. The equilibrium part is computed basing on the density and 
velocity which can be gotten by a simple first order extrapolation. 
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where je  indicates the extrapolation direction according to the boundary velocity at a point of 
interface close to the new fluid node. Lorenz et al. [50,51] employed a similar approach, in which the 
equilibrium part was calculated basing on the local pressure. 

Krithivasan et al. [58] recently developed a diffuse bounce-back boundary condition to simulate 
moving boundaries instead of imposing the no-slip conditions. This scheme ensures 
positive-definite populations and retains the simplicity of bounce-back technique. Meanwhile it 
suggests a refill algorithm to model distributions at the fluid nodes uncovered due to solid 
movement by quasi-equilibrium distributions. The scheme is demonstrated to reduce force 
fluctuations and diminish the requirements of interpolation or extrapolation. However, a diffuse 
boundary condition will introduce some degree of boundary slip [64–66], which would damage 
simulating accuracy and Galilean invariance. 

Fang et al. [13,67] used the fluid nodes around the newborn fluid nodes to extrapolate the 
distribution functions of the newborn fluid nodes. If the extrapolating participants are more than 
one, the newborn distribution functions are assigned as their average. Three extrapolation 
algorithms, namely neighbor-node average (A1), linear extrapolation (A2) and second order 
extrapolation (A3), are as follows [13] 

Figure 9. A boundary is moving with velocity uw. The circles (#) and disks ( ) denote fluid and
boundary nodes, respectively. The squares (˝) denote the nodes turning from boundary nodes to fluid
ones at a time step. The solid and dotted curves are the positions of wall boundary at time t and t + 1,
respectively. (Lallemand and Luo, 2003 [56]).

Caiazzo [63] suggested a refill scheme by reconstructing the equilibrium and non-equilibrium
parts separately according to an asymptotic analysis prediction. The initialization of the populations
includes an approximation of the non-equilibrium part which, in practice, can be copied simply from
a neighbor of the new fluid node. The equilibrium part is computed basing on the density and velocity
which can be gotten by a simple first order extrapolation.

fipx, tq “ f eq
i px, t, ρ, uq ` f neq

i px` ej, tq (32)
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where ej indicates the extrapolation direction according to the boundary velocity at a point of
interface close to the new fluid node. Lorenz et al. [50,51] employed a similar approach, in which
the equilibrium part was calculated basing on the local pressure.

Krithivasan et al. [58] recently developed a diffuse bounce-back boundary condition to simulate
moving boundaries instead of imposing the no-slip conditions. This scheme ensures positive-definite
populations and retains the simplicity of bounce-back technique. Meanwhile it suggests a
refill algorithm to model distributions at the fluid nodes uncovered due to solid movement by
quasi-equilibrium distributions. The scheme is demonstrated to reduce force fluctuations and
diminish the requirements of interpolation or extrapolation. However, a diffuse boundary condition
will introduce some degree of boundary slip [64–66], which would damage simulating accuracy and
Galilean invariance.

Fang et al. [13,67] used the fluid nodes around the newborn fluid nodes to extrapolate the
distribution functions of the newborn fluid nodes. If the extrapolating participants are more than one,
the newborn distribution functions are assigned as their average. Three extrapolation algorithms,
namely neighbor-node average (A1), linear extrapolation (A2) and second order extrapolation (A3),
are as follows [13]

A1 : fipxq “
1
N

ÿ

N

fipx1q (33)

A2 : fipxq “
1
N

ÿ

N

2 fipx1q ´ fipx2 q (34)

A3 : fipxq “
1
N

ÿ

N

3 fipx1q ´ 3 fipx2 q ` fipx3 q (35)

where N is the number of extrapolation participants. The density and velocity of the newborn fluid
node at the present time step are computed by the resulting distribution functions,

ρpx, tq “
ÿ

i

fipxq (36)

upx, tq “
1

ρpx, tq

ÿ

i

ei fipxq (37)

They investigated the three algorithms in the simulations of cylinder sedimentation as shown
in Figure 10. It is evident that the algorithm with second order extrapolation can remarkably reduce
the fluctuations.

Peng et al. [62] proposed a refill scheme by velocity-constrained normal extrapolation based
on the multiple-relaxation-time LBM. After the missing distribution functions of a newborn fluid
node are completed by the normal extrapolation refill scheme, all moments at the newborn node are
computed by multiplying the transfer matrix M,

m(x,t) “ M ¨ f̂(x,t) (38)

where f̂ indicates the temporary distribution functions. Then the momentum moments are
constrained to use the velocity of the nearest boundary,

J “ ρ0ub (39)

This makes a new moment vector m˚(x,t). Finally, transfer m˚(x,t) back to the distribution
functions as

f(x,t) “ M-1 ¨m˚(x,t) (40)
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They found that this constraint could significantly reduce the fluctuations in the
hydrodynamic forces.
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Figure 10. The horizontal forces in cylinder sedimentation. GME is coupled with the different
algorithms to fill newborn fluid nodes, neighbor-node average (A1), linear extrapolation (A2) and
second-order extrapolation (A3). (Wen et al., 2014 [13]).

Obviously, the scheme is not unique to compute the unknown values, such as density, velocities
and distribution functions, on the lattice nodes which move from non-fluid to fluid region. In the
particle sedimentation in low Reynolds number, these schemes will produce similar macroscopic
results. However, at the micro-scale, they lead to different fluctuating ranges in hydrodynamic forces,
which inevitably influence the accuracy and stability of simulations.

5. Applications

As a method to evaluate hydrodynamic force, the momentum exchange method possesses the
advantages of simplicity, efficiency, accuracy and robustness. Remarkably, it is independent of the
boundary geometry, preventing from solving the Navier–Stokes equations in complex boundary
geometries in the boundary-integral methods [10]. Since the pioneer works of Ladd [10,11] and
Aidun [12,36], the lattice Boltzmann method has developed into a popular tool for simulations of
particle suspensions. In this section, we review some representative applications, such as movements
of rigid particles, interactions of deformation particles, particle suspensions in turbulent flow and
multiphase flow, etc. Particle Brownian motion due to thermal fluctuations and particle surface
charges are not covered.

5.1. Rigid Particle Movements

The sedimentation of a single rigid particle is a common case in the simulations of particle
suspensions [68–71] and is often used as a benchmark [13,20,22]. Qi [72] simulated sedimentations
of spherical and non-spherical particles in finite-Reynolds-number flows and observed phenomena
of drafting, kissing and tumbling motion of two particles in a smooth-walled channel. Recently,
Wen et al. [13] used circle sedimentations to verify Galilean invariance of the momentum exchange
method. The configuration is the same to that in Section 3.4. The simulation system is related to
several uniform frames of reference in order to investigate Galilean invariance of the hydrodynamic
force [13]. Explicitly, the additional uniform velocities V = 0, 0.01, 0.02 are initially assigned to the
fluid, the particle and the channel.

Figure 11 presents the time-dependent trajectories, angular velocities, horizontal velocities and
vertical velocities relative to the channel, comparing with the results by CME and ALE [60,61].
Obviously, regardless of the reference speeds, the GME results are always in excellent agreement
with the ALE benchmarks. This supports that GME is highly accurate and Galilean invariant
in dynamic fluid. Oppositely, even if the reference frame is motionless, the CME results show
noticeable deviations from the benchmark. And the differences become larger and larger when the
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reference speed increases. These suggest that CME is non-Galilean invariant and is not suitable for
moving boundaries.

The lateral migration of a particle suspended in a Poiseuille flow is a classic case. A suspending
biconcave particle in a tube flow is studied by using the multiple-relaxation-time lattice Boltzmann
method together with GME. The biconcave shape of a red blood cell (RBC) follows the descriptive
equation proposed by Fung et al. in 1980s [73] and the characteristic radius is 15 lattice units.

The biconcave particles are located at 0.04 and 0.02 cm away from the low channel wall and
at the center of the channel in the horizontal direction. Figure 12 draws the particle trajectories at
Reynolds numbers 12 and 3, respectively. The biconcave particle shows lateral migrating movement
and equilibrium state, which are close to the classic Segré–Silberberg effect [46,47]. Because of the
interaction of the parabolic velocity distribution of Poiseuille flow and the biconcave shape, the
particulate movement exhibits regular waves and nonuniform rotation. Remarkably, they observe
two lateral equilibrium positions corresponding to the particulate releasing positions [74]. The
biconcave particle is in successive postures in a rotating period and Figure 13 illustrates a set of
velocity contours to draw the dynamic flow field.Entropy 2015, 17, 1–26 
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Figure 11. Time-dependent (a) trajectories; (b) angular velocities; (c) horizontal velocities; and (d) 
vertical velocities relative to the channel. The density of the cylinder is 1.03 g/cm3 and the terminal 
Reynolds number is 8.33. The dynamic simulation system is connected to three velocities of the 
reference frame, i.e., V = 0, 0.01, and 0.02. (Wen et al., 2014 [13]). 

 
Figure 12. The trajectories of a suspending biconcave particle migrating in a Poiseuille flow. The 
Reynolds numbers are (a) Re = 3 and (b) Re = 12. The biconcave particles are located at 0.04 and 0.02 
cm away from the low channel wall. The classic Segré–Silberberg effect with a circular particle is 
represented by the black trajectories. (Wen et al., 2013 [74]). 

Figure 11. Time-dependent (a) trajectories; (b) angular velocities; (c) horizontal velocities; and
(d) vertical velocities relative to the channel. The density of the cylinder is 1.03 g/cm3 and the
terminal Reynolds number is 8.33. The dynamic simulation system is connected to three velocities
of the reference frame, i.e., V = 0, 0.01, and 0.02. (Wen et al., 2014 [13]).
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Figure 13. The velocity contours of the fluid around the biconcave particles. (a)–(f) represent six 
different postures in a half rotation period. (Wen et al., 2013 [74]). 

GME can be easily implemented in 3D simulations. The Segré–Silberberg effect [46,47] is 
repeated by simulating a neutrally buoyant rigid sphere migrating laterally in a tube Poiseuille flow. 
Figure 14 draws two trajectories of the spheres, which are released at the dimensionless radial 
positions of r*/R = 0.66 and 0.21, where r* is the radial distance from the tube centerline. The 
numerical results are highly consistent with the experiments by Karnis et al. [47]. This verifies that 
GME is competent to 3D simulations of particle suspensions. 

Chen et al. [22] simulated an elliptical particle sedimentating in a vertical channel in order to 
verified their improved momentum exchange method. The major axis is 0.05 cm and the minor axis 
is 0.025 cm. The kinematic viscosity of the fluid is 1 × 10−6 m2/s. The channel width is 0.4 cm and is 104 
lattice units in the numerical simulation. The density ratio of the solid particle and fluid is 1.1. Figure 
15 shows an elliptical sedimentation with a moderate Reynolds number 6.6. It is clear that the results 
of the three improved schemes agree very well with the benchmarks of the finite element method. 

 
Figure 14. Three-dimensional simulations of the Segré–Silberberg effect by the lattice Boltzmann 
equation with GME. (Wen et al., 2014 [13]). 

Figure 13. The velocity contours of the fluid around the biconcave particles. (a)–(f) represent six
different postures in a half rotation period. (Wen et al., 2013 [74]).

GME can be easily implemented in 3D simulations. The Segré–Silberberg effect [46,47] is
repeated by simulating a neutrally buoyant rigid sphere migrating laterally in a tube Poiseuille
flow. Figure 14 draws two trajectories of the spheres, which are released at the dimensionless radial
positions of r*/R = 0.66 and 0.21, where r* is the radial distance from the tube centerline. The
numerical results are highly consistent with the experiments by Karnis et al. [47]. This verifies that
GME is competent to 3D simulations of particle suspensions.
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Chen et al. [22] simulated an elliptical particle sedimentating in a vertical channel in order to
verified their improved momentum exchange method. The major axis is 0.05 cm and the minor axis
is 0.025 cm. The kinematic viscosity of the fluid is 1 ˆ 10´6 m2/s. The channel width is 0.4 cm and
is 104 lattice units in the numerical simulation. The density ratio of the solid particle and fluid is
1.1. Figure 15 shows an elliptical sedimentation with a moderate Reynolds number 6.6. It is clear
that the results of the three improved schemes agree very well with the benchmarks of the finite
element method.
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Figure 15. The trajectories and orientations of the particle with Reynolds number 6.6 obtained by the 
finite element method [75] and LBM with the curved boundary condition. The results of the three 
improved schemes [12,20,22,48] are in good agreement with the benchmark. (Chen et al., 2013 [22]). 

To determinate the critical parameters in platelet margination, Reasor et al. [76] investigated the 
margination dependences on hematocrit, platelet shape, and viscosity ratio of plasma to cytoplasm. 
The hydrodynamic force is evaluated by the momentum exchange method. Their results emphasize 
that an increase in hematocrit increases the rate of margination. The viscosity ratio between the 
interior cytoplasm and suspending fluid can considerably alter the rate of margination. Spherical 
particles tend to migrate more quickly than disks. The effect of platelet aspect ratio is demonstrated 
in Figure16. The spherical-shaped particles have a diameter of 1.73 μm. The platelet-shaped 
particles are oblate spheroids and rigid, with a major diameter of 2.3 μm and a thickness of 1.0 μm. 
The disk-shaped particles with a major diameter of 3.26 μm and a thickness of 0.523 μm. It can be 
seen that both the mean distance to the wall and the standard deviation are reduced with decreasing 
aspect ratio. The peak concentrations at the wall are larger for the spherical particles and the 
distributions evolve more rapidly than the disk-shaped particles. The simulations also show the 
lateral migration of particles with various shapes in tube flow. 

 
Figure 16. Temporal evolution of platelet distributions for the concentration 0.2 for (a) spheres; (b) 
platelets; and (c) disk shaped particles. The initial and ending end views of the tube are also given to 
display the distribution of platelets before and after margination. (Reasor et al., 2013 [76]). 

Figure 15. The trajectories and orientations of the particle with Reynolds number 6.6 obtained by the
finite element method [75] and LBM with the curved boundary condition. The results of the three
improved schemes [12,20,22,48] are in good agreement with the benchmark. (Chen et al., 2013 [22]).

To determinate the critical parameters in platelet margination, Reasor et al. [76] investigated the
margination dependences on hematocrit, platelet shape, and viscosity ratio of plasma to cytoplasm.
The hydrodynamic force is evaluated by the momentum exchange method. Their results emphasize
that an increase in hematocrit increases the rate of margination. The viscosity ratio between the
interior cytoplasm and suspending fluid can considerably alter the rate of margination. Spherical
particles tend to migrate more quickly than disks. The effect of platelet aspect ratio is demonstrated
in Figure 16. The spherical-shaped particles have a diameter of 1.73 µm. The platelet-shaped particles
are oblate spheroids and rigid, with a major diameter of 2.3 µm and a thickness of 1.0 µm. The
disk-shaped particles with a major diameter of 3.26 µm and a thickness of 0.523 µm. It can be seen
that both the mean distance to the wall and the standard deviation are reduced with decreasing aspect
ratio. The peak concentrations at the wall are larger for the spherical particles and the distributions
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evolve more rapidly than the disk-shaped particles. The simulations also show the lateral migration
of particles with various shapes in tube flow.
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Figure 16. Temporal evolution of platelet distributions for the concentration 0.2 for (a) spheres;
(b) platelets; and (c) disk shaped particles. The initial and ending end views of the tube are also
given to display the distribution of platelets before and after margination. (Reasor et al., 2013 [76]).

5.2. Deformation Particle Interactions

A growing interest in the simulations of deformation suspensions has promoted the
development of coupled methods, in which LBM is combined with an appropriate boundary model
to capture the particle deformations. Aidun et al. implemented a spectrin-link red blood cell
membrane method coupled with the lattice Boltzmann method [7,76–79]. In the method, the particle
is represented by a triangular shell mesh, on which the local hydrodynamic force is calculated by
momentum exchange method.

To capture the deformation process, Reasor et al. [77,78] took a spherical capsule to create a
baseline RBC mesh whose surface includes a network of 613 points. Then, 59% of its initial volume
was deflated while the surface area keeps constant. The RBC radius was 12 lattice units which
approximately equates to 4 µm. Figure 17 illustrates the continuous deformation from a sphere to
a biconcave RBC. The equilibrium biconcave shape was reached after 25,000 time steps and is an
artifact of minimizing the Helmholtz free energy which involves contributions due to bending.

The spectrin-link method is further compared with experiments [80] and other computational
approaches [81] by an optical tweezer experiment performed by Mills et al. [80]. The RBC is
initially static and is immersed in fluid which simulates blood plasma and hemoglobin. The
axial and transverse diameters of an RBC are stretched by optical tweezers with silica beads
attached at both ends. As shown in Figure 18, the simulating results are in good agreement with
previous researches. MacMeccan et al. [77] simulated multiply deformable particle suspensions by
coupling the lattice Boltzmann method with finite element analysis. They studied more than 200
fluid-filled and initially spherical capsules in unbounded shear flow. The capsules occupied 40%
volume fraction and had identical properties with RBC membranes. Aidun and Clausen [7] further
investigated the deformation and interaction of more than 2000 deformable particle suspensions.
Melchionna et al. [82,83] simulated cardiovascular blood flow, aiming to cardiovascular diagnosis for
commodity clinical applications.
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Figure 17. A spherical particle is deflated and become biconcave particle of red blood cell. (a) t = 0;
(b) t = 5000; (c) t = 10000; (d) t = 15000; (e) t = 20000; (f) t = 25000. (Reasor et al., 2012 [78]).Entropy 2015, 17, 1–26 

19 

 
Figure 18. The axial and transverse diameters, DA and DT, in μm of the RBC plotted against the 
applied force. The simulating results are compared to the high-resolution spectrin-level  
modeling [81], the high-resolution the finite element method [84], the experiments [80], and using 
the LB–FE implementation [77]. (Reasor et al., 2012 [78]). 

5.3. Particle Suspensions in Turbulent Flow 

Turbulent flows laden with gas bubbles, small droplets or solid particles are relevant to a wide 
variety of engineering applications and natural processes, such as plankton dynamics, dust storms, 
pollutant transport [85]. Using the lattice Boltmzann method coupled with the momentum exchange 
method, Wang et al. [85–87] made a comparative analysis to single-phase turbulence and 
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of Kolmogorov to Taylor microscale sizes. Zhang et al. [88,89] investigated the differential settling of 
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For the particle-laden turbulence simulations, Gao et al. [85] randomly released particles into 
the fluid domain after the single-phase flow field developed till a converged velocity-derivative 
skewness. They implemented a second-order interpolation boundary condition [56] and MPI 
parallel acceleration based on multiple-relaxation-time LBM. A short-range repulsive force is 
indroduced to prevent particles from voerlap. Figure 19 draws the vorticity contours of the two 
evolution times, 1.27 Te and 2.12 Te, where Te is the eddy turnover time. The compuational domain 
is 2563 and contains 2304 rigid particles with uniform diameter 11 lattice units. The density ratio of 
particle and fluid is 2.56. A top layer of fluid has been removed in order to show the scatter of a 
portion of the particles. It is clear that the magnitude of vorticity diminishes with the time evolution. 

 
Figure 19. Vorticity contour at (a) 1.27 Te and (b) 2.12 Te. A layer of fluid is removed to show the 
particles in the top portion. (Gao et al., 2013 [85]). 

Figure 18. The axial and transverse diameters, DA and DT , in µm of the RBC plotted against the
applied force. The simulating results are compared to the high-resolution spectrin-level modeling [81],
the high-resolution the finite element method [84], the experiments [80], and using the LB–FE
implementation [77]. (Reasor et al., 2012 [78]).

5.3. Particle Suspensions in Turbulent Flow

Turbulent flows laden with gas bubbles, small droplets or solid particles are relevant to a
wide variety of engineering applications and natural processes, such as plankton dynamics, dust
storms, pollutant transport [85]. Using the lattice Boltmzann method coupled with the momentum
exchange method, Wang et al. [85–87] made a comparative analysis to single-phase turbulence and
particle-laden turbulence and studied a decaying isotropic turbulence laden with finite-size particles
of Kolmogorov to Taylor microscale sizes. Zhang et al. [88,89] investigated the differential settling
of cohesive sediment and the non-equilibrium flocculation of cohesive sediments in homogeneous
turbulent flows.

For the particle-laden turbulence simulations, Gao et al. [85] randomly released particles into
the fluid domain after the single-phase flow field developed till a converged velocity-derivative
skewness. They implemented a second-order interpolation boundary condition [56] and MPI parallel
acceleration based on multiple-relaxation-time LBM. A short-range repulsive force is indroduced to
prevent particles from voerlap. Figure 19 draws the vorticity contours of the two evolution times,
1.27 Te and 2.12 Te, where Te is the eddy turnover time. The compuational domain is 2563 and contains
2304 rigid particles with uniform diameter 11 lattice units. The density ratio of particle and fluid is
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2.56. A top layer of fluid has been removed in order to show the scatter of a portion of the particles.
It is clear that the magnitude of vorticity diminishes with the time evolution.
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Figure 19. Vorticity contour at (a) 1.27 Te and (b) 2.12 Te. A layer of fluid is removed to show the
particles in the top portion. (Gao et al., 2013 [85]).

The two-dimensional visualizations of the vorticity magnitude and the particle scatter are
provided by horizontally cutting the fluid through the slice near the center of the domain [86,87].
The compuational domain is 2563 and contains 6400 rigid particles with uniform diameter 8 lattice
units. The density ratio of particle and fluid is 5. The Reynolds number of particles are about 10.
The turbulent flow is driven by the well-known stochastic forcing scheme of Eswaran and Pope [90].
The particles are observed often associating with high voritcity values (the red spots), as shown in
Figure 20. This suggests that, in turbulent flow, motions of finite size particles can produce small-scale
flow structures near their surfaces.
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between two suspended particles, which were on a liquid-vapor interface and suffered different 
external forces. The pseudopotential model is applied to calculate the nonideal force in multiphase 
flow and the momentum exchange method is employed to evaluate the fluid-particle interactions, 
coupling with the lubrication and Hookean force between pairs of particles. The computational 
domain uses a 3002 lattice with periodic boundaries. 36 suspended particles of radius 4.8 lattice 
units are arrayed in the multiphase flow. The liquid-vapor density ratio is about 30 and the 
relaxation time is 1. Figure 21 exhibits particle movements during a phase transition process. The 
adhesive force in the multiphase system is −0.04 and is corresponding to a 77° equilibrium contact 
angle. Therefore, the particles are hydrophilic. With the development of the two phases, particles 
are inclined to stay at the gas-liquid interface and then obstruct the phases from growing. 

The combined model is further extended to a three-dimensional droplet simulations, 
considering drop evaporation and particle deposition [96,97]. Adjusting the substrate surface 
wettability, namely the surface energy, the substrate patterning can control the particle deposition. 
The computational domain is 250 × 250 × 100 in lattice unit for investigating the surface wetting 
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5.4. Particle Suspensions in Multiphase Flow

Particles or colloids suspended in multiphase flow are commonly encountered in scientific
researches and engineering applications such as particle self-assembly, emulsion stabilized by
particles and microbe transport in air-water flow. Joshi and Sun [91] combined the Shan-Chen
multiphase flow model [9,92–95] with particle suspension to study the capillary interactions between
two suspended particles, which were on a liquid-vapor interface and suffered different external
forces. The pseudopotential model is applied to calculate the nonideal force in multiphase flow and
the momentum exchange method is employed to evaluate the fluid-particle interactions, coupling
with the lubrication and Hookean force between pairs of particles. The computational domain uses a
3002 lattice with periodic boundaries. 36 suspended particles of radius 4.8 lattice units are arrayed in
the multiphase flow. The liquid-vapor density ratio is about 30 and the relaxation time is 1. Figure 21
exhibits particle movements during a phase transition process. The adhesive force in the multiphase
system is ´0.04 and is corresponding to a 77˝ equilibrium contact angle. Therefore, the particles are
hydrophilic. With the development of the two phases, particles are inclined to stay at the gas-liquid
interface and then obstruct the phases from growing.

The combined model is further extended to a three-dimensional droplet simulations, considering
drop evaporation and particle deposition [96,97]. Adjusting the substrate surface wettability, namely
the surface energy, the substrate patterning can control the particle deposition. The computational
domain is 250ˆ 250ˆ 100 in lattice unit for investigating the surface wetting effect on drop dynamics.
In the pattern, the central band is 70 lattice units in width and is hydrophilic, while the side bands
are relatively hydrophobic. The equilibrium contact angle of the central hydrophilic band is 30˝, and
those of the side bands are 60˝, 90˝, and 120˝, respectively. The liquid drop includes 90 particles
(10% by volume). Due to an initial offset, the drop impacts the substrate outside the central band.
Figure 22 shows that repelling from the bands with relatively low energy, the initially offset drop
with suspending particles gradually and automatically moves into the hydrophilic central band. The
moving velocities of the drops are affected both by the effective viscosity of the drop and the relative
wetting strengths of the bands. Similarly, Liang et al. [98] simulated the self-assemblies of colloidal
particles on the substrate and investigated the lateral capillary forces and many-body effects.
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Figure 21. Spinodal decomposition with suspended particles simulated by LBM. The particles are
initially arranged in a uniform array. The particles tend to inhibit coarsening of the interface and
accumulate at the liquid-vapor interface, as the green liquid domains begin to coalesce and form.
(Joshi et al., 2009 [91]).
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Figure 22. Effect of surface wetting strength on drop dynamics for a liquid drop containing
suspending particles. The hydrophilic bands (red) keep 30˝ contact angle, while the hydrophobic
bands are (a) 60˝, (b) 90˝, and (c) 120˝ contact angle. The faster driving velocity can be clearly seen in
the case (c). (Joshi et al., 2010 [96]).

Particle stabilized emulsions are ubiquitous in the food and cosmetics industry. Jansen and
Hurting [99] simulated interactions of multiple spheroidal particles in a multiphase flow lattice
Boltzmann method. They demonstrated that the transition from a Bijel to a Pickering emulsion
is dependent of the particle concentration, the contact angle, and the ratio of the solvents.
Günther et al. [100] investigated anisotropic particles at liquid interfaces by simulating emulsions
stabilized by particles with complex shapes. The computational domain is a cubic volume with a side
length 256 lattice units and periodic boundary conditions are applied. The particles are ellipsoids
with major axis 12 and minor axis 6 lattice units and occupy a volume concentration of 0.2. The
particle surface has equilibrium contact angles of 90˝. As shown in Figure 23 in which the ratio of
two phase fluids is 5:2, the ellipsoid particles assemble to some clusters surrounding a fluid phase in
an other phase and become Pickering emulsions. They also simulated the Bijel in which the ratio of
two phase fluids is 1:1.
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The momentum exchange method is a native scheme in the lattice Boltzmann method. It 
directly uses discrete velocity and distribution function to evaluate hydrodynamic force. This is 
totally different from the stress integration method and the immersed boundary method, which 
have to compute the stress tensor before force evaluation. Therefore, the momentum exchange 
method has a gift to obtain the simplest and most accurate hydrodynamic force in LBM. Since 
hydrodynamic force is evaluated based on the momentum transfer on each fluid-solid link, the 
momentum exchange method only needs local data and is independent of boundary geometry. This 
endues it with excellent computational efficiency and parallel performance.  

Thus far, the momentum exchange method has promoted LBM to become a popular tool for 
numerical simulations of fluid-structure interactions. Its computational accuracy and Galilean 
invariance on stationary and moving boundaries in moderate Reynolds numbers have been  
verified [13,37]. In practice, all kinds of simulations of fluid-structure interactions can benefit from 
the efficient method. An open issue is to further investigate its computation accuracy in more 
complex circumstances, such as high Reynolds number flow even turbulence, slip boundary, 
multiphase flow and so on. 
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6. Conclusions

The momentum exchange method is a native scheme in the lattice Boltzmann method. It directly
uses discrete velocity and distribution function to evaluate hydrodynamic force. This is totally
different from the stress integration method and the immersed boundary method, which have to
compute the stress tensor before force evaluation. Therefore, the momentum exchange method has
a gift to obtain the simplest and most accurate hydrodynamic force in LBM. Since hydrodynamic
force is evaluated based on the momentum transfer on each fluid-solid link, the momentum exchange
method only needs local data and is independent of boundary geometry. This endues it with excellent
computational efficiency and parallel performance.

Thus far, the momentum exchange method has promoted LBM to become a popular tool
for numerical simulations of fluid-structure interactions. Its computational accuracy and Galilean
invariance on stationary and moving boundaries in moderate Reynolds numbers have been
verified [13,37]. In practice, all kinds of simulations of fluid-structure interactions can benefit from the
efficient method. An open issue is to further investigate its computation accuracy in more complex
circumstances, such as high Reynolds number flow even turbulence, slip boundary, multiphase flow
and so on.
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34. Başağaoğlu, H.; Meakin, P.; Succi, S.; Redden, G.R.; Ginn, T.R. Two-dimensional lattice Boltzmann

simulation of colloid migration in rough-walled narrow flow channels. Phys. Rev. E 2008, 77, 031405.
[CrossRef] [PubMed]
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