

  A Novel Approach to Canonical Divergences within Information Geometry




A Novel Approach to Canonical Divergences within Information Geometry







Entropy 2015, 17(12), 8111-8129; doi:10.3390/e17127866




Article



A Novel Approach to Canonical Divergences within Information Geometry



Nihat Ay 1,2,3,* and Shun-ichi Amari 4





1



Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig 04103 , Germany






2



Faculty of Mathematics and Computer Science, University of Leipzig, PF 100920, Leipzig 04009, Germany






3



Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA






4



Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako-shi Hirosawa 2-1, Saitama 351-0198, Japan









*



Correspondence: Tel.: +49-341-9959-547; Fax: +49-341-9959-555







Academic Editor: Kevin H. Knuth



Received: 12 October 2015 / Accepted: 25 November 2015 / Published: 9 December 2015



Abstract:

 A divergence function on a manifold M defines a Riemannian metric g and dually coupled affine connections ∇ and [image: there is no content] on M. When M is dually flat, that is flat with respect to ∇ and [image: there is no content], a canonical divergence is known, which is uniquely determined from (M,g,∇,[image: there is no content]). We propose a natural definition of a canonical divergence for a general, not necessarily flat, M by using the geodesic integration of the inverse exponential map. The new definition of a canonical divergence reduces to the known canonical divergence in the case of dual flatness. Finally, we show that the integrability of the inverse exponential map implies the geodesic projection property.
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1. Introduction: Divergence and Dual Geometry

A divergence function D(p∥q) is a differentiable real-valued function of two points p and q in a manifold M. It satisfies the non-negativity condition



D(p∥q)≥0



(1)




with equality if and only if [image: there is no content]. Thus, it is a distance-like function, but does not necessarily share all properties of a distance. For instance, it can be asymmetric in p and q. When a coordinate system [image: there is no content] is given in M, we pose one condition that, for two nearby points [image: there is no content] and [image: there is no content]=[image: there is no content]+Δξ, D is expanded as


D(p∥q)=12[image: there is no content](p)ΔξiΔξj+O∥Δξ∥3



(2)




and [image: there is no content] is a positive definite matrix. Here, the Einstein summation convention is used, which means that summation is taken with respect to any index that appears twice in a term, as a lower as well as an upper index. Throughout the paper, we apply this convention or explicitly use the summation sign. The coefficients [image: there is no content] in Equation (2) define a Riemannian metric [image: there is no content]. Furthermore, the divergence function D allows us to define also a pair of dual affine connections [1]. In order to be more explicit, we consider coordinates [image: there is no content]=(ξp1,⋯,ξpn) of p and coordinates [image: there is no content] of q and introduce the following simplified notations of differentiation


∂i=∂∂ξpi,∂i′=∂∂ξqi



(3)




With D([image: there is no content]∥[image: there is no content])=D(p∥q), the coefficients of the Riemannian metric can be written as


[image: there is no content](p)=−∂i∂j′D([image: there is no content]∥[image: there is no content])q=p=∂i′∂j′D([image: there is no content]∥[image: there is no content])q=p



(4)




Furthermore, the coefficients


ΓDijk(p)=−∂i∂j∂k′D([image: there is no content]∥[image: there is no content])q=p



(5)






Γ*Dijk(p)=−∂i′∂j′∂kD([image: there is no content]∥[image: there is no content])q=p



(6)




define a pair of dual affine connections [image: there is no content] and [image: there is no content]D [1]. The duality of the connections holds with respect to the Riemannian metric [image: there is no content] in terms of the following condition:


X⟨Y,Z⟩=⟨[image: there is no content]XY,Z⟩+⟨Y,[image: there is no content]DXZ⟩



(7)




for all vector fields [image: there is no content] and Z, where the brackets [image: there is no content] denote the inner product with respect to [image: there is no content] [2].
The inverse problem is to find a divergence D which generates a given geometrical structure (M,g,∇,[image: there is no content]). Matumoto [3] showed that a divergence exists for any such manifold. However, it is not unique and there are infinitely many divergences that give the same geometrical structure. When a manifold is dually flat, a canonical divergence was introduced by Amari and Nagaoka [2], which is a Bregman divergence. Extensions of the canonical divergence within conformal geometry have been studied by Kurose [4] and Matsuzoe [5]. The canonical divergence has nice properties such as the generalized Pythagorean theorem and the geodesic projection theorem. It is an important problem to define a canonical divergence in the general case. The present paper gives an answer to this problem by using the inverse exponential map. We already used the inverse exponential map in our previous work [6], where we studied a different divergence function. We could show that it recovers the metric g in the sense of Equation (4) and has some consistency with the dual connections ∇ and [image: there is no content]. However, it turns out that it does not reduce to the well-established canonical divergence in the dually flat case. The divergence introduced in the present article not only recovers the original geometry directly in terms of Equations (4)–(6), it also coincides with the original canonical divergence in the dually flat case.



2. A New Approach to the General Inverse Problem

We begin with a motivation in terms of a simple example where the manifold is [image: there is no content] equipped with the standard Euclidean metric and connection (here, the Levi-Civita connection): Let p be a fixed point in [image: there is no content], and consider the vector field pointing to p, that is



[image: there is no content]→[image: there is no content],q↦p−q



(8)




Obviously, the vector field Equation (8) can be seen as the negative gradient of the squared distance


[image: there is no content]:[image: there is no content]→R,q↦[image: there is no content](q):=D(p∥q):=12∥p−q∥2=12∑i=1n(pi−qi)2








as potential function, that is


p−q=−[image: there is no content][image: there is no content]



(9)




Here, the gradient [image: there is no content] is taken with respect to the canonical inner product on [image: there is no content].
We shall now generalize the relation Equation (9) between the squared distance [image: there is no content] and the difference of two points p and q to the more general setting of a differentiable manifold M. Given a fixed point [image: there is no content], we want to define a vector field [image: there is no content], at least in a neighbourhood of p, that corresponds to the difference vector field Equation (8). Obviously, the problem is that the difference [image: there is no content] is not naturally defined for a general manifold M. We need an affine connection ∇ in order to have a notion of a difference. Given such a connection ∇, for each point [image: there is no content] and each direction [image: there is no content] we consider the geodesic [image: there is no content], with the initial point q and the initial velocity X, that is [image: there is no content] and [image: there is no content]. If [image: there is no content] is defined for all [image: there is no content], the endpoint [image: there is no content] is interpreted as the result of a translation of the point q along a straight line in the direction of the vector X. This straightness is expressed in terms of the local coordinates ξ(t):=(ξ1(t),⋯,ξn(t)):=ξ([image: there is no content]) of the geodesic [image: there is no content] by the following set of differential equations:



ξ¨i(t)+Γjki(ξ(t))ξ˙j(t)ξ˙k(t)=0,i=1,⋯,n



(10)




The translation of points along geodesics defines a map, the so-called exponential map:


expq:Uq→M,X↦[image: there is no content](1)



(11)




where [image: there is no content] denotes the set of tangent vectors X, for which the domain of [image: there is no content] contains the unit interval [image: there is no content].
Given two points p and q, one can interpret any X with [image: there is no content] as a difference vector X that translates q to p. Throughout this paper we assume the existence and uniqueness of such a difference vector, denoted by [image: there is no content] (see Figure 1).

Figure 1. Illustration of (A) the difference vector [image: there is no content] in [image: there is no content] pointing from q to p; and (B) the difference vector [image: there is no content] as the inverse of the exponential map in q.
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This is a strong assumption, which is, however, always locally satisfied. On one hand, we are mainly interested in local properties. On the other hand, although being quite restrictive in general, this property will be satisfied in our information-geometric context, where g is given by the Fisher metric and ∇ is given by the m- and e-connections and their convex combinations, the α-connections.
If we attach to each point [image: there is no content] the difference vector [image: there is no content], we obtain a vector field that corresponds to the vector field Equation (8) in [image: there is no content]. In order to interpret this vector field as a negative gradient field of a (squared) distance function, and thereby generalize Equation (9), we need a Riemannian metric g on M. Given such a metric, we assume integrability of X and ∇, respectively, in the sense that for all p there exists a function [image: there is no content] satisfying



X(q,p)=−[image: there is no content][image: there is no content]



(12)




Here, the Riemannian gradient is taken with respect to g, which is defined by the property that the total differential dq[image: there is no content] can be expressed as an inner product:


⟨[image: there is no content][image: there is no content],Y⟩=dq[image: there is no content](Y),Y∈TqM








Obviously, if there are functions [image: there is no content] satisfying the condition of Equation (12) then they are unique up to a constant that can vary with p, and we can therefore assume [image: there is no content](p)=0. Throughout the paper we will also use the standard notation D(p∥q)=[image: there is no content](q) of a divergence as a function D of two arguments. In order to recover D from Equation (12) we consider any curve [image: there is no content] that connects q with p, that is [image: there is no content] and [image: there is no content]. We compose the inner product of the curve velocity [image: there is no content] with the inverse of the exponential map [image: there is no content] in [image: there is no content] and integrate this along the curve:


∫01⟨X(γ(t),p),γ˙(t)⟩dt=−∫01grad[image: there is no content][image: there is no content],γ˙(t)dt=−∫01(d[image: there is no content][image: there is no content])(γ˙(t))dt=−∫01d[image: there is no content]∘γdt(t)dt=[image: there is no content](γ(0))−[image: there is no content](γ(1))=[image: there is no content](q)−[image: there is no content](p)=[image: there is no content](q)=D(p∥q)



(13)




In particular, we can apply this derivation to the geodesic connecting q and p even when the integrability of X is not guaranteed and obtain the definition of a general canonical divergence, discussed in more detail in Section 5. Before we treat the general definition of a canonical divergence, however, we discuss important special cases of divergences within the cone of positive measures and the simplex of probability measures included in it. In particular, we verify that the well-known relative entropy (KL-divergence) and the α-entropy (α-divergence) can be derived in terms of Equation (13).


3. Natural Connections for Positive and Probability Measures


3.1. The Fisher Metric and Its Gradients

We represent measures on the set [image: there is no content] as elements of [image: there is no content]. In this representation, the Dirac measures [image: there is no content], [image: there is no content], form the canonical basis of [image: there is no content]. We consider the n-dimensional cone of positive measures on the set [image: there is no content], defined by



[image: there is no content]:=R+n=p=∑i=1npi[image: there is no content]∈[image: there is no content]:pi>0 for all i








and the corresponding [image: there is no content]-dimensional simplex of normalized measures (probability measures) [image: there is no content]:


[image: there is no content]:=p=∑i=1npi[image: there is no content]∈[image: there is no content]:pi>0 for all i, and ∑i=1n pi=1








There is a natural Riemannian metric on [image: there is no content], called the Fisher metric:


[image: there is no content](X,Y):=∑i=1n1piXiYi,X,Y∈Tp[image: there is no content]








In theoretical biology, the Fisher metric is also known as Shahshahani metric (see [7], Equation (7.48)). Given a point [image: there is no content] and a vector X∈Tp[image: there is no content], its projection onto [image: there is no content] with respect to [image: there is no content] is given by


Πp⊤X=∑i=1nXi−pi∑j=1nXj[image: there is no content]



(14)




and the corresponding projection onto the orthogonal complement of [image: there is no content] is given by


Πp⊥X=∑i=1npi∑j=1nXj[image: there is no content]



(15)




For a function V:[image: there is no content]→R, this metric implies the Riemannian gradient


gradpV=∑i=1npi∂V∂pi(p)[image: there is no content]



(16)




A vector field


Xp=∑i=1npifi(p)[image: there is no content],p∈[image: there is no content]



(17)




is the gradient of a function V if and only if it satisfies for all [image: there is no content]


∂fi∂pj=∂fj∂pi



(18)




If we consider a function that is defined on [image: there is no content], for instance the restriction of V: [image: there is no content]→R to [image: there is no content], then the vector Equation (16), evaluated in [image: there is no content], will not necessarily be an element of [image: there is no content]. Therefore, in order to evaluate the gradient on [image: there is no content], we have to project the vector Equation (16) onto [image: there is no content] with respect to the metric g by using Equation (14). This leads to the following gradient formula for functions on [image: there is no content]:


gradpV=∑i=1npi∂V∂pi(p)−∑j=1npj∂V∂pj(p)[image: there is no content],p∈[image: there is no content]



(19)




This gives rise to consider general vector fields of the form


Xp=∑i=1npifi(p)−∑j=1npjfj(p)[image: there is no content],p∈[image: there is no content]



(20)




Such a vector field is integrable, in the sense that it is the gradient Equation (19) of a potential function V, if and only if the following condition holds for all [image: there is no content] (see [7], Equation (19.23)):


∂fi∂pj+∂fj∂pk+∂fk∂pi=∂fi∂pk+∂fk∂pj+∂fj∂pi



(21)






3.2. The Mixture and the Exponential Connections

After having introduced the Fisher metric and corresponding gradient fields, we now define natural notions of straight lines on [image: there is no content] and [image: there is no content], respectively, induced by corresponding affine connections. Let us first introduce the straight lines of the so-called mixture connection [image: there is no content] on [image: there is no content]. Given a point p∈[image: there is no content] and a direction X∈Tp[image: there is no content], the most natural way to define a straight line that starts in p and has velocity X is given by the so-called m-geodesic



γ(t)=p+tX



(22)




We obtain the exponential map for [image: there is no content], which is, in this simple example, the translation:


expp(m)(X)=p+X








The inverse, therefore, maps a point q to the difference vector that translates p into q:


X(m)(p,q):=expp(m)−1(q)=q−p








With this difference as X in Equation (22), we obtain the geodesics that connects p with q:


γ(t)=p+t(q−p)



(23)




If we choose a point [image: there is no content] and X∈Tp[image: there is no content], or two points p,q∈[image: there is no content], respectively, then the corresponding geodesic Equation (22) and Equation (23) will stay in [image: there is no content]. Therefore, the restriction of the exponential map to [image: there is no content] and its inverse are trivial:


exp¯p(m)(X)=p+X,X¯(p,q):=exp¯p(m)−1(q)=q−p








where we use a bar over symbols in order to denote the restriction of corresponding objects to [image: there is no content].
Now let us come to the notion of an e-geodesic and the exponential map of the so-called e-connection [image: there is no content]. Given a point p∈[image: there is no content] and a direction X∈Tp[image: there is no content], we consider the geodesic



γ(t)=∑i=1npiexptXipi[image: there is no content]



(24)




(The “exp” on the right-hand side of Equation (24) denotes the standard real-valued natural exponential function.) The exponential map of the e-connection is given for [image: there is no content]:


expp(e)(X)=∑i=1npiexpXipi[image: there is no content]








with the inverse


X(e)(p,q):=expp(e)−1(q)=∑i=1npilnqipi[image: there is no content]








This implies that the e-geodesic connecting p with q is given by


γ(t)=∑i=1npiqipit[image: there is no content]



(25)




Clearly, if we start in a point [image: there is no content] and go along the e-geodesic Equation (24) in a direction X that is tangential to [image: there is no content], we will not stay in [image: there is no content]. Analogously, if we connect a point [image: there is no content] with a point q∈[image: there is no content] in terms of the e-geodesic Equation (25), then the intermediate points will in general not be in the set [image: there is no content]. It turns out that, in order to obtain the right exponential map of the e-connection defined on [image: there is no content], we have to normalize the geodesic, which leads to:


exp¯p(e)(X)=∑i=1npiexpXipi∑j=1npjexpXjpj[image: there is no content]










X¯(e)(p,q):=exp¯p(e)−1(q)=∑i=1npilnqipi−∑j=1npjlnqjpj[image: there is no content]










3.3. The α-Connections

Given [image: there is no content], we define the following convex combination of the mixture connection [image: there is no content] and the exponential connection [image: there is no content] on [image: there is no content]:



[image: there is no content]:=1−α2[image: there is no content]+1+α2[image: there is no content]=[image: there is no content]+1+α2[image: there is no content]−[image: there is no content]



(26)




The differential equation for the α-geodesic with initial point p∈[image: there is no content] and initial velocity X∈Tp[image: there is no content] is given by


γ¨i−1+α2γ˙i2γi=0,γ(0)=p,γ˙(0)=X



(27)




One can easily verify that Equation (27) is solved by the following curve:


[image: there is no content]=∑i=1npi1+t1−α2Xipi21−α[image: there is no content]



(28)




By setting [image: there is no content], we can define the corresponding α-exponential map:


expp(α)(X)=∑i=1npi1+1−α2Xipi21−α[image: there is no content]



(29)




with the inverse


X(α)(p,q):=expp(α)−1(q)=21−α∑i=1npiqipi1−α2−1[image: there is no content]



(30)




Finally, the α-geodesic with initial point p and endpoint q is given by


γ(t)=∑i=1npi1−α2+tqi1−α2−pi1−α221−α[image: there is no content]



(31)




The α-connection [image: there is no content] on [image: there is no content] is defined as the projection of [image: there is no content] with respect to the Fisher metric g. The corresponding geodesic equation is a modification of Equation (27):



γ¨i−1+α2γ˙i2γi−γi∑j=1nγ˙j2γj=0,γ(0)=p,γ˙(0)=X



(32)




It is reasonable to make a solution ansatz by normalization of the unconstrained geodesics Equation (28) and Equation (31). However, it turns out that, in order to solve the geodesic Equation (32), both normalized curves have to be reparametrized. More precisely, it has been shown in [8] (Theorems 14.1. and 15.1.) that, with appropriate reparametrizations [image: there is no content] and [image: there is no content], we have the following form of the α-geodesic in the simplex [image: there is no content]:


γp,X(t)=∑i=1npi1+[image: there is no content](t)1−α2Xipi21−α∑j=1npj1+[image: there is no content](t)1−α2Xjpj21−α[image: there is no content]



(33)




and


[image: there is no content](t)=∑i=1npi1−α2+[image: there is no content](t)qi1−α2−pi1−α221−α∑j=1npj1−α2+[image: there is no content](t)qi1−α2−pi1−α221−α[image: there is no content]



(34)




Here, the conditions


γp,X(0)=p,γ˙p,X(0)=τ˙p,X(0)X=X,and[image: there is no content](0)=p,[image: there is no content](1)=q








imply


[image: there is no content](0)=0,τ˙p,X(0)=1,and[image: there is no content](0)=0,[image: there is no content](1)=1








Now let us couple X and q by assuming [image: there is no content]. Together with the condition [image: there is no content], this implies


X=1[image: there is no content](1)21−α∑i=1npiqipi1−α2∑j=1npjqjpj1−α2−1[image: there is no content]



(35)




Furthermore, if the initial and endpoints of the two curves are identical, then [image: there is no content] for all t. In particular,


X=γ˙p,X(0)=[image: there is no content](0)=τ˙p,q(0)21−α∑i=1npiqipi1−α2−∑j=1npjqjpj1−α2[image: there is no content]



(36)




A comparison of the Equation (35) and Equation (36) yields


τ˙p,q(0)∑j=1npjqjpj1−α2=1[image: there is no content](1)











4. Canonical Divergences for Positive and Probability Measures


4.1. The Relative Entropy (KL-Divergence)

Now we apply the ansatz of Equation (12) in order to define divergence functions for the m- and e-connections on the cone [image: there is no content] of positive measures. The inverse maps of the corresponding exponential maps are given by



X(m)(q,p)∑i=1n(pi−qi)[image: there is no content]X(e)(q,p)∑i=1nqilnpiqi[image: there is no content]



(37)




We can easily verify that the corresponding vector fields


q↦X(m)(q,p),q↦X(e)(q,p)



(38)




are gradient fields: The functions


fi(q):=piqi,andgi(q):=lnpiqi








trivially satisfy the integrability condition [image: there is no content] and [image: there is no content] for all [image: there is no content]. Therefore, for both connections, there are canonical divergence functions which solve the corresponding Equation (12).
We derive the canonical divergence of the m-connection first, which we denote by [image: there is no content]. We consider two positive measures p and q and a curve γ:[0,1]→[image: there is no content] connecting q with p, that is [image: there is no content] and [image: there is no content]. This implies



X(m)(γ(t),p),γ˙(t)=∑i=1n1γi(t)(pi−γi(t))γ˙i(t)



(39)




and


D(m)(p∥q)=∫01X(m)(γ(t),p),γ˙(t)dt=∑i=1n∫011γi(t)(pi−γi(t))γ˙i(t)dt=∑i=1npilnγi(t)−γi(t)01=∑i=1npilnpi−pi−pilnqi+qi=∑i=1nqi−pi+pilnpiqi








With the same calculation for the e-connection, we obtain the corresponding canonical divergence, which we denote by [image: there is no content]. Again, we consider a curve γ connecting q with p. This implies



X(e)([image: there is no content],p),γ˙(t)=∑i=1nγ˙i(t)lnpiγi(t)



(40)




and


[image: there is no content](p∥q)=∫01X(e)([image: there is no content],p),γ˙(t)dt=∑i=1n∫01γ˙i(t)lnpiγi(t)dt=∑i=1nγi(t)1+lnpiγi(t)01=∑i=1npi−qi1+lnpiqi=∑i=1npi−qi+qilnqipi=D(m)(q∥p)








These calculations give rise to the following definition:


Definition 1. 
The function D:[image: there is no content]×[image: there is no content]→R defined by



D(p∥q):=∑i=1nqi−∑i=1npi+∑i=1npilnpiqi



(41)




is called the relative entropy or Kullback–Leibler divergence. Its restriction to the set of probability distributions is given by


D(p∥q):=∑i=1npilnpiqi



(42)







Proposition 1. 
The following holds:



X(m)(q,p)=−[image: there is no content]D(p∥·),X(e)(q,p)=−[image: there is no content]D(·∥p)



(43)




Furthermore, D is the only function on [image: there is no content]×[image: there is no content] that satisfies the conditions Equation (43) and D(p∥p)=0 for all p.



Proof. 
We first compute the partial derivatives



∂D(p∥·)∂qi(q)=−piqi+1,∂D(·∥p)∂qi(q)=−lnpiqi








With the Formula (16), we obtain


[image: there is no content]D(p∥·)i=qi−piqi+1=−pi+qi[image: there is no content]D(·∥p)i=−qilnpiqi








A comparison with Equation (37) verifies the Equation (43) which uniquely characterize D(p∥·) as well as D(·∥p), up to a constant depending on p. With the additional assumption D(p∥p)=0 for all p, this constant is fixed. ☐


One can now ask whether the restriction Equation (42) of the Kullback–Leibler divergence to the manifold [image: there is no content] is the right divergence function in the sense that Equation (43) also hold for the exponential maps of the restricted m- and e-connections. It is easy to verify that this is indeed the case. Let us elaborate on the geometric reason for this. We consider a general Riemannian manifold M and a submanifold N in it. Given an affine connection ∇ on M, we can define its restriction [image: there is no content] to N. More precisely, denoting the projection of a vector Z in [image: there is no content] onto [image: there is no content] by [image: there is no content], we define [image: there is no content]XYp:=Πp⊤∇XYp, where X and Y are vector fields on N. Furthermore, we denote the exponential map of [image: there is no content] by [image: there is no content] and its inverse by [image: there is no content].

Now, given [image: there is no content], we consider a function [image: there is no content] on M, which satisfies the Equation (12). With the restriction [image: there is no content] of [image: there is no content] to the submanifold N, this directly implies



Πq⊤X(q,p)=−[image: there is no content][image: there is no content]








However, in order to have X¯(q,p)=−[image: there is no content][image: there is no content], which corresponds to the Equation (12) on the submanifold N, the following equality is required:


X¯(q,p)=Πq⊤X(q,p)



(44)




This condition is satisfied for the m- and e-connections on [image: there is no content] and its submanifold [image: there is no content], which implies the following proposition.

Proposition 2. 
The following holds:



X¯(m)(q,p)=−[image: there is no content]D(p∥·),X¯(e)(q,p)=−[image: there is no content]D(·∥p)



(45)




where D is given by Equation (42) in Definition 1. Furthermore, D is the only function on [image: there is no content]×[image: there is no content] that satisfies the conditions (45) and D(p∥p)=0 for all p.


The objects and derivations of this section represent a special case of a general dually flat manifold M, which will be studied in Section 5.



4.2. The α-Divergence

We now extend the method of Section 4.1 to the α-connections, leading to a generalization of the relative entropy, the so-called α-divergence. From the definition of the α-exponential map on the manifold [image: there is no content] of positive measures, given in Equation (29), we obtain the inverse



[image: there is no content](q,p):=expq(α)−1(p)=21−α∑i=1nqipiqi1−α2−1[image: there is no content]



(46)




In order to derive the canonical divergence [image: there is no content] of the α-connection, which is integrable, we consider two points p and q and a curve γ:[image: there is no content]→[image: there is no content] connecting q with p. We obtain


[image: there is no content](γ(t),p),γ˙(t)=21−α∑i=1nγ˙i(t)piγi(t)1−α2−1



(47)




and


D(α)(p∥q)=∫01[image: there is no content](γ(t),p),γ˙(t)dt=∑i=1n∫0121−αγ˙i(t)piγi(t)1−α2−1dt=∑i=1n41−α2γi(t)1+α2pi1−α2−21−αγi(t)01=∑i=1n21+αpi−41−α2qi1+α2pi1−α2−21−αqi=∑i=1n21−αqi+21+αpi−41−α2qi1+α2pi1−α2








Obviously, we have


D(−α)(p∥q)=D(α)(q∥p)



(48)




These calculations give rise to the following definition:


Definition 2. 
The function [image: there is no content]:[image: there is no content]×[image: there is no content]→R defined by



[image: there is no content](p∥q):=21−α∑i=1nqi+21+α∑i=1npi−41−α2∑i=1nqi1+α2pi1−α2



(49)




is called the α-divergence. Its restriction to probability measures is given as


[image: there is no content](p∥q)=41−α21−∑i=1nqi1+α2pi1−α2











Proposition 3. 
The following holds:



[image: there is no content](q,p)=−[image: there is no content][image: there is no content](p∥·)



(50)




Furthermore, [image: there is no content] is the only function on [image: there is no content]×[image: there is no content] that satisfies the condition (50) and [image: there is no content](p∥p)=0 for all p.



Proof. 
We compute the partial derivative



∂[image: there is no content](p∥·)∂qi(q)=21−α1−qi1+α2−1pi1−α2








With the Formula (16), we obtain


[image: there is no content][image: there is no content](p∥·)i=qi·21−α1−qi1+α2−1pi1−α2=21−αqi−qi1+α2pi1−α2








A comparison with Equation (46) verifies Equation (50) which uniquely characterizes [image: there is no content](p∥·), up to a constant depending on p. With the additional assumption [image: there is no content](p∥p)=0 for all p, this constant is fixed. ☐


In what follows, we use the notation [image: there is no content] also for [image: there is no content] by setting D(−1)(p∥q):=D(p∥q) and D(1)(p∥q):=D(q∥p) where D is relative entropy defined by Equation (41). This is consistent with the definition of the α-connections, given by Equation (26), where we have the m-connection for [image: there is no content] and the e-connection for [image: there is no content]. Note that [image: there is no content] is closely related to the Hellinger distance



dH(p,q):=∑i=1npi12−qi12212








More precisely, we have


[image: there is no content](p∥q)=2dH(p,q)2



(51)




In fact, the derivation of [image: there is no content] was based on the idea to associate a distance-like function to the α-connections through the general Equation (12). However, it turns out that, although being naturally motivated, the functions [image: there is no content] do not share all properties of the square of a distance, except for [image: there is no content]. The symmetry is obviously not satisfied. On the other hand, we have [image: there is no content](p∥q)≥0, and [image: there is no content](p∥q)=0 if and only if [image: there is no content].
We now ask whether the restriction of [image: there is no content], which is defined for positive measures, to the simplex [image: there is no content] of probability distributions is the canonical divergence for the α-connections on [image: there is no content]. We have seen that this is the case for the m- and e-connections, that is for [image: there is no content]. However, for general α, the situation is more complicated. From Equation (36) we obtain



X¯(α)(q,p)=τ˙q,p(0)Πq⊤[image: there is no content](q,p)








This equality deviates from the condition of Equation (44) by the factor [image: there is no content], which proves that the restriction of the α-divergence to [image: there is no content] does not coincide with the canonical α-divergence on the simplex. As an example, we consider the case [image: there is no content], where the α-connection is the Levi-Civita connection of the Fisher metric. As we will see in the next section, the canonical divergence in that case equals D¯(0)(p∥q)=12[image: there is no content](p,q)2, where [image: there is no content] denotes the distance with respect to the Fisher metric (see Equation (62)). Obviously, this divergence is different from the divergence [image: there is no content], given by Equation (51), which is based on the distance in the ambient space [image: there is no content], the Hellinger distance.



5. General Canonical Divergence and Its Consistency


5.1. Canonical Divergence

We have derived a canonical divergence when the vector field X of the inverse exponential map, that is [image: there is no content] for all p and q, is integrable. We now define a canonical divergence in a general n-dimensional dual manifold (M,g,∇,[image: there is no content]). Consider a ∇-geodesic [image: there is no content]:[image: there is no content][image: there is no content] connecting q and p. We define a tangent vector field [image: there is no content] along this geodesic:



Xt(q,p):=X[image: there is no content](t),p



(52)




Obviously,


X0=X(q,p)



(53)






X1(q,p)=0



(54)





Definition 3. 
A canonical divergence from p to q is defined by the path integral



D(p∥q)=∫01Xt(q,p),γ˙q,p(t)dt



(55)






Replacing the ∇-geodesic [image: there is no content] from q to p by the reversed ∇-geodesic [image: there is no content] from p to q and the vector field [image: there is no content] by the vector field Xt*(p,q):=X*[image: there is no content](t),p of the dual connection [image: there is no content] leads to the following related definition of a canonical divergence:



[image: there is no content](p∥q):=∫01Xt*(p,q),[image: there is no content](t)dt



(56)






=−∫01X*([image: there is no content](t),q),γ˙q,p(t)dt



(57)




Although motivated and derived in different terms, the divergence of the article [9] turns out to coincide with [image: there is no content]. The authors apply Hooke’s law to a “[image: there is no content]-spring” and define their divergence, in terms of an expression related to Equation (57), as the work that is necessary to move a point of unit mass from q to p along the ∇-geodesic [image: there is no content] against the force field X*([image: there is no content](t),q). We became aware of this article after submission of our present article. The divergence [image: there is no content] shares many nice properties of our canonical divergence. However, in the integrability case, it is not generally true that X(q,p)=−[image: there is no content][image: there is no content](p∥·), a property that serves as main motivation of our article and which is satisfied by our canonical divergence of Equation (55).
Before stating the main result that the canonical divergence defined by Equation (55) induces the same Riemannian metric g and the same pair of affine connections ∇ and [image: there is no content], we show some of its properties. Since the geodesic connecting [image: there is no content](t) and p is a part of the geodesic connecting q and p, corresponding to the interval [image: there is no content], the inverse exponential map at [image: there is no content](t) satisfies



Xtq,p=(1−t)γ˙q,p(t)



(58)




Hence, we have


D(p∥q)=∫01(1−t)γ˙q,p(t)2dt



(59)




where


γ˙q,p(t)2=γ˙q,p(t),γ˙q,p(t)



(60)




This already proves D(p∥q)≥0, and D(p∥q)=0 if and only if [image: there is no content]. If we replace the parameter t by [image: there is no content] and use [image: there is no content](t)=[image: there is no content](1−t), we directly obtain the following representation of the canonical divergence:

Proposition 4. 
The divergence of Definition 3 is given by



D(p∥q)=∫01t[image: there is no content](t)2dt



(61)




where [image: there is no content] denotes the geodesic from p to q.



Remark 1. 
In the special case where M is self-dual, ∇=[image: there is no content] is the Levi-Civita connection with respect to g. In that case, the velocity field [image: there is no content] is parallel along the geodesic [image: there is no content], and therefore



∥[image: there is no content](t)∥[image: there is no content]=∥[image: there is no content](0)∥p=∥X(p,q)∥p=d(p,q)








where [image: there is no content] denotes the Riemannian distance between p and q. This implies that the canonical divergence corresponds to the energy of the geodesic [image: there is no content], that is


D(p∥q)=12d2(p,q)



(62)




In the general case, where ∇ is not necessarily the Levi-Civita connection, we obtain the energy of the geodesic [image: there is no content] as the symmetrized version of the canonical divergence:


12D(p∥q)+D(q∥p)=12∫01[image: there is no content](t)2dt



(63)







Remark 2. 
Let us compare the canonical divergence D of the affine connection ∇ with the canonical divergence [image: there is no content] of its dual connection [image: there is no content], both defined by Equation (55) or equivalently by Equation (61). In the special case of the α-connection [image: there is no content], we have [image: there is no content](p∥q)=D(q∥p) (see Equation (48)). In Section 5.3, we will prove that this kind of symmetry holds in the general case of a dually flat manifold. However, our canonical divergence does not necessarily have this property, when the space is not dually flat. This is contrary to most other approaches where the symmetry is considered to be a natural property of any divergence. In order to have that property also in our setting, we can consider the mean canonical divergence



[image: there is no content](p∥q):=12D(p∥q)+[image: there is no content](q∥p)



(64)




which obviously satisfies


Dmcd([image: there is no content])(p∥q)=[image: there is no content](q∥p)



(65)




As we will prove in the next section, the canonical divergence D induces the metric g and the connections ∇ and [image: there is no content]. The same holds for the mean canonical divergence [image: there is no content]. However, if ∇ is integrable, then it is not generally true that X(q,p)=−[image: there is no content][image: there is no content](p∥·), which is inconsistent with the main motivation of our canonical divergence (see Equation (12)).




5.2. Main Consistency Result

Let [image: there is no content], [image: there is no content], and [image: there is no content]D be the geometrical objects derived from the canonical divergence D as defined in Equation (55). We recall the corresponding definitions from Section 1 in terms of a local coordinate system [image: there is no content]:



[image: there is no content](p)=∂i′∂j′D([image: there is no content]∥[image: there is no content])q=p



(66)






ΓDijk(p)=−∂i∂j∂k′D[image: there is no content]∥[image: there is no content]q=p



(67)






Γ*Dijk(p)=−∂i′∂j′∂kD[image: there is no content]∥[image: there is no content]q=p



(68)




We have defined our canonical divergence D based on a metric g and an affine connection ∇. It is natural to require that this divergence is consistent in the sense that the objects [image: there is no content], [image: there is no content], and [image: there is no content]D coincide with the original objects g, ∇, and [image: there is no content] of M, where [image: there is no content] is the dual affine connection of ∇ with respect to g. Since the geometry is determined by the derivatives of D[image: there is no content]∥[image: there is no content] at [image: there is no content], we consider the case where p and q are close to each other, that is


[image: there is no content]



(69)




is small for all i. We evaluate the divergence by Taylor expansion up to [image: there is no content]. Note that [image: there is no content] is of order [image: there is no content].

Proposition 5. 
When ∥[image: there is no content]∥=∥[image: there is no content]−[image: there is no content]∥ is small, the canonical divergence is expanded as



D(p∥q)=12gij(p)zizj+16[image: there is no content](p)zizjzk+O[image: there is no content]4



(70)




where


[image: there is no content]=2∂igjk−Γijk



(71)







Proof. 
We obtain the local coordinates [image: there is no content] of the geodesic [image: there is no content](t) in Taylor series as



ξi(t)=ξpi+tXi−t22ΓjkiXjXk+O∥tX∥3



(72)




where [image: there is no content]. When [image: there is no content] is small, X is of order O(∥[image: there is no content]∥). Hence, we regard Equation (72) as Taylor expansion with respect to X, and [image: there is no content] when [image: there is no content] is small. When [image: there is no content], we have


zi=Xi−12ΓjkiXjXk



(73)




where the higher-order terms are neglected. This in turn gives


Xi=zi+12Γjkizjzk



(74)




We calculate D(p∥q) by using Equation (61). The velocity at t is given as


ξ˙i(t)=Xi−tΓjkiXjXk



(75)






=zi+12(1−2t)Γjkizjzk



(76)




We also use


gijξ(t)=gij[image: there is no content]+t∂kgijzk



(77)




Collecting these terms, we have


tgijξ(t)ξ˙i(t)ξ˙j(t)=tgijzizj+t2∂igjk+−2t2+tΓijkzizjzk



(78)




By integration, we have


D(p∥q)=∫01tgijξ(t)ξ˙i(t)ξ˙j(t)dt



(79)






=12gijzizj+16[image: there is no content]zizjzk



(80)




where indices of [image: there is no content] are symmetrized because of multiplication of [image: there is no content]. This gives Equation (70). ☐



Theorem 1. 
(Consistency theorem) The geometric quantities [image: there is no content], [image: there is no content], and [image: there is no content]D, derived from the canonical divergence D(p∥q) of Definition 3 coincide with the original quantities g, ∇, and [image: there is no content].




Proof. 
By differentiating Equation (70) with respect to [image: there is no content],



∂iD=12∂igjkzjzk−gijzj−12[image: there is no content]zjzk



(81)






[image: there is no content]=12∂i∂jgklzkzj−2∂igjkzk+gij+[image: there is no content]zk



(82)




of which the indexed quantities of the right-hand side need to be symmetrized with respect to [image: there is no content]. By evaluating [image: there is no content] at [image: there is no content]=[image: there is no content], i.e., [image: there is no content]=0, we have


[image: there is no content]=gij



(83)




proving that the Riemannian metric derived from D is the same as the original one. We further differentiate Equation (82) with respect to [image: there is no content] and evaluate it at [image: there is no content]=[image: there is no content]. This yields


ΓDijk=−∂i∂j∂k′D=2∂igjk−[image: there is no content]



(84)






=Γijk



(85)




Hence, the affine connection [image: there is no content] derived from D is exactly the same as the original affine connection ∇. ☐



Remark 3. 
In the special case ∇=[image: there is no content], the canonical divergence is given by half of the squared norm of the inverse exponential map (see Equation (62)):



D(p∥q)=12∥X(p,q)∥p2



(86)




The right-hand side of Equation (86) defines a divergence for a general connection, which coincides with the canonical divergence in the self-dual case. We have studied this divergence in our previous work [6]. We have shown that this divergence recovers g in terms of Equation (66). However, it fails to recover ∇ and [image: there is no content] in terms of Equations (67) and (68) directly. In order to overcome this shortcoming, we considered the α-connection [image: there is no content]=1−α2∇+1+α2[image: there is no content] and the corresponding inverse exponential map [image: there is no content], which imply the following version of Equation (86):


[image: there is no content](p∥q):=12∥[image: there is no content](p,q)∥p2



(87)




([image: there is no content] does not denote the α-divergence here.) We have shown in [6] that for [image: there is no content] the divergence [image: there is no content], referred to it as standard divergence, induces the original quantities g, ∇, and [image: there is no content]. It turns out, however, that this first attempt to define a canonical divergence has serious limitations. For instance, it does not reduce to the known canonical divergence in the dually flat case. This important property is satisfied by the canonical divergence of Definition 3, which we are going to prove in the next section.




5.3. Canonical Divergence in a Dually Flat Manifold

When a manifold M is dually flat, it has an affine coordinate system [image: there is no content] and a potential function [image: there is no content], where the dual affine coordinates [image: there is no content] are given by



ηi=∂ψ(θ)∂θi,i=1,⋯,n



(88)




The dual potential is then defined as


φ(η)=ψθ−θ·η



(89)




where [image: there is no content] and θ is a function of η by Equation (88). The geodesic connecting p and q, a generalisation of the e-geodesic of Section 3.2, has the form


θ(t)=[image: there is no content]+t[image: there is no content]−[image: there is no content]



(90)




Hence, the velocity is constant


θ˙(t)=[image: there is no content]=[image: there is no content]−[image: there is no content]



(91)




The canonical divergence from [image: there is no content] to [image: there is no content] is defined by


D[image: there is no content]∥[image: there is no content]=∫01tgijθ(t)zizjdt



(92)




Since [image: there is no content], we have


D[image: there is no content]∥[image: there is no content]=∫01t∂i∂jψ[image: there is no content]+t[image: there is no content]zizjdt



(93)






=∫01tψ¨θ(t)dt



(94)






=−∫01ψ˙θ(t)dt+tψ˙θ(t)01



(95)






=ψ[image: there is no content]+φηq−[image: there is no content]·ηq



(96)




This shows that our canonical divergence is the same as the canonical divergence defined in terms of the Bregman divergence of M.
Now we come back to the symmetry property that we already addressed in Remark 2. We derived D(p∥q) by using the primal affine connection ∇ and the related inverse exponential map. We can construct its dual [image: there is no content](p∥q) by using the dual affine connection [image: there is no content] and the dual inverse exponential map. The dual affine coordinates are η, and the m-geodesic connecting p and q is given by



η(t)=ηp+tηq−ηp



(97)




Hence, the velocity is constant


η˙(t)=[image: there is no content]*=ηq−ηp



(98)




The dual canonical divergence [image: there is no content] is defined by


[image: there is no content](p∥q)=∫01tgijηtzi*zj*dt



(99)




Here,


gij(η)=∂i∂jφ(η)



(100)




where


∂i=∂∂ηi



(101)




So we have


[image: there is no content](p∥q)=∫01t∂i∂jφηp+t[image: there is no content]*zi*zj*dt



(102)




By similar calculations, we have


[image: there is no content](p∥q)=D(q∥p)



(103)




This proves that ∇ and [image: there is no content] give the same canonical divergence except that p and q are interchanged because of the duality. Such a nice property holds when M is dually flat.



6. Geodesic Projections and Integrability

Given a divergence D on M and a point [image: there is no content], we consider the set of points q that satisfy



D(p∥q)=const



(104)




where p is fixed. This set is the surface of the equi-divergence ball centered at p. When a smooth submanifold S is given, we search for a point [image: there is no content] that minimizes D(p∥q), [image: there is no content]. Intuitively, we obtain such a minimizer by considering a ball centered at p. We increase its radius, starting from 0, until the ball touches S for the first time. Any touch point [image: there is no content] is then a minimizer of D(p∥q), [image: there is no content]. When the geodesic connecting [image: there is no content] and p is orthogonal to S at [image: there is no content], we call [image: there is no content] a geodesic projection of p onto S.

Definition 4. 
We say that the geodesic projection property holds if every minimizer [image: there is no content] of the divergence D is given by the geodesic projection of p onto S.



We know that the geodesic projection property holds when M is dually flat, but it does not hold in general. The following condition guarantees the geodesic projection property:


Proposition 6. 
The geodesic projection property holds when the inverse exponential map [image: there is no content] is in proportion to the gradient of D(p∥q) with respect to q,



X(q,p)=c·[image: there is no content]D(p∥·)



(105)




where c is a constant that may depend on q and p.



Proof. 
Consider the geodesic connecting q=[image: there is no content] and p. Then, the tangent vector at q is [image: there is no content]. Assume that [image: there is no content] has the same direction as the gradient [image: there is no content]D(p∥·), that is, the vector orthogonal to the surface of the ball touching S. Then [image: there is no content] is also orthogonal to the tangent space of S in [image: there is no content], as the tangent space of the ball contains the tangent space of S at this point. This means that [image: there is no content] is a geodesic projection. ☐



Obviously, when the vector field of the inverse exponential map is integrable, the geodesic projection property directly follows from Equation (12). We have shown that this intergrability condition is satisfied for general dually flat manifolds. In particular, the integrability is satisfied for the α-connection [image: there is no content] defined on the cone [image: there is no content] of positive measures, which leads to the α-divergence as canonical divergence. The restriction of the α-connection to the simplex [image: there is no content] of probability distributions, denoted by [image: there is no content], is still integrable, even though [image: there is no content] is not (dually) flat with respect [image: there is no content] if [image: there is no content]. As we have seen, the canonical divergence associated with [image: there is no content] does not coincide with the restriction of the α-divergence to [image: there is no content]. However, this restriction is still useful in the context of applications that require projections onto submanifolds S. The reason is that the geodesic projection property holds for [image: there is no content]. To be more precise, consider the restriction of the α-divergence to the simplex [image: there is no content]:



[image: there is no content](p∥q)=41−α21−∑i=1nqi1+α2pi1−α2








The gradient is given as


[image: there is no content][image: there is no content](p∥·)=−21−α∑iqipiqi1−α2−∑jqjpjqj1−α2[image: there is no content]








Comparing this with Equation (36) we see that


X(q,p)=−τ˙q,p(0)[image: there is no content][image: there is no content](p∥·)








With the condition (105) this implies that the geodesic projection property holds for [image: there is no content], even though it is not the canonical α-divergence on the simplex.
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