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Abstract: In this paper we develop a new procedure for entropic image edge detection. The
presented method computes the Jensen–Shannon divergence of the normalized grayscale histogram
of a set of multi-sized double sliding windows over the entire image. The procedure presents a good
performance in images with textures, contrast variations and noise. We illustrate our procedure in
the edge detection of medical images.
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1. Introduction

Image segmentation is a main subject in the image processing field, and its goal is to cluster
pixels into image regions, corresponding to objects, natural parts or textures present in the image.
Therefore, the main idea is based on dividing an image into separate, significant parts. Image
segmentation is required as a step prior to a wide variety of applications. Among the long list,
one can emphasize: object detection, recognition and classification, measurement. The range of
practical applications includes computer vision, robotics, medical diagnostics, as well as industrial
and military applications [1–3].

Image segmentation is a subject that is certainly not new and has been deeply studied [1–6], but
it remains today as a hard problem, because high human supervision is usually needed to obtain
good results. The scientific and technical literature on segmentation is copious. Nevertheless, a still
unresolved problem is to design a universal method that can be automated; that is, that can provide
good image segmentation in all cases without human intervention. This objective may in reality be
unattainable and is being replaced by an endless variety of partial solutions to specific problems.

In general, segmentation algorithms are based on two important criteria to consider: the internal
homogeneity of the regions and the discontinuity between adjacent different regions; but it is difficult
to design an automatic algorithm that detects satisfactorily all of the set of segmented regions in
any case. The obtained results generally depend on the parameter values. Therefore, methods
usually fail on either merging regions that must not be separated, or splitting regions that must be
separated, because the information about uniformity and discontinuity is not well incorporated into
the algorithms.
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At a low level, three basically different procedures are very popular to obtain the segmentation of
a digital image: edge detection techniques [1–3], growing and merging of regions methods [4,7] and
deformable models [8,9]. In the first case, dividing lines are assured, but not their connection and,
hence, segmentation into regions. Most of these techniques are based on local differential operators,
like the gradient or the Laplacian. In the second, regions in the image start from a few seeds and grow
until segmentation is assured, but the suitability of the edges depends on the initial seeds. In the third
one, the user has to put a set of snakes near the image frontiers, which strongly conditions the result.
This is, in brief, the state of the art.

The paper is structured as follows. In Section 2, a review of the divergences used in information
theory to analyze probability distributions is presented. In Section 3, the use of Jensen–Shannon
divergence as an edge detector to get a matrix of divergences, which constitutes the first module of
the algorithm, is explained. In Section 4, the use of a multi-sized sliding window to get a segmentation
based on edge detection that contains all feasible regions is explained. Section 5 is devoted to develop
a technique to obtain a binary image of edges from the divergences matrix. Experimental results are
shown in Section 6, as well as a comparison with some popular edge detection algorithms such as
Sobel and Canny. Finally, Section 7 contains the conclusions.

2. f-Divergences and Jensen–Shannon Divergence

In this section, we review some basic results and properties for divergence for the sake of being
self-contained. The general idea of divergence or f-divergence was first introduced and studied in
[10–12], by Solomon Kullback and Richard Leibler in 1951, as the directed divergence between two
distributions with the following definition,

D(P, Q) =
∫

ω
f
(

dP
dQ

)
dQ (1)

over a space ω. This integral can be simplified by imposing assumptions on the probability
distributions P and Q. As is summarized in [13], changing the choice of the function f leads to a
new f-divergence formula. Therefore, we recover many well-known divergences in the literature,
such as Kullback–Leibler divergence, Hellinger distance divergence, χ2 divergence and σ divergence.
In the first table, we show the generator of the some divergences.

One of the main questions for researchers, not always discussed clearly in the literature, is the
specific choice of the divergence in each context. In fact, this question is worth little discussion,
since not all divergences are symmetric, even though there are some misleading on in discussing the
divergences, as a metric, indeed, need not to be symmetric, i.e., D(P, Q) 6= D(Q, P).

Shannon entropy is defined as follows. Let P = {pi, i = 1, ..., n} be a discrete probability
distribution, where 0 ≤ pi ≤ 1 for all 1 ≤ i ≤ n and ∑n

i=1 pi = 1. Then,

H(P) = −
n

∑
i=1

pi log(pi), (2)

where 0 log(0) = 0 is assumed by continuity and where binary logarithms are commonly used. In [4],
the authors discuss all of its properties, since H(P) measures the diversity of events distributed in P.
For a degenerate distribution or one sure event H(P) = 0 and for equiprobable events, it attains
the maximum.

Some interesting properties of Shannon entropy are the following:

1. H(P) ≥ 0 ∀P
2. H(P) = 0 if and only if P is a degenerate distribution
3. H(P1, ..., Pn, 0) = H(P1, ..., Pn)
4. H(P) ≤ H( 1

n , ..., 1
n )∀P.

7997



Entropy 2015, 17, 7996–8006

Jensen–Shannon divergence was proposed by Lin in [14] as a measure of the discrepancy (or
dissimilarity or inverse cohesion) between two or more discrete probability distributions.

The generalized Jensen–Shannon divergence (JS) for n probability distributions with the same
sample space is:

JS(P1, P2, ..., Pn) = H

(
n

∑
i=1

wiPi

)
−

n

∑
i=1

wi H(Pi) (3)

where Pi are probability distributions and wi is a set of positive weights, such that w = {wi :
0 < wi < 1, i = 1, ..., n, } and ∑ wi = 1. The most typical case for weights is 1/n (that is, the
unbiased set of weights); that is the weight used in this work. The generalized Jensen–Shannon
divergence provides a useful way to measure similarity between two probability distributions, and
some authors started to call it the information radius (IRad) [15] or the total divergence to the average.
Herein, we list some of the basic properties of the Jensen–Shannon divergence [4,13,16,17]:

1. JS is symmetric with respect to its arguments
2. It is non-negative, and it is zero only if all arguments are identical
3. It is upper bounded with a reachable bound
4. Its square root is a metric

An interesting particular case is for n = 2. In this case, this information theory measure takes its
minimum value of zero, if and only if P1 and P2 are identical. On the other hand, it takes its maximum
value when P1 and P2 are degenerate orthogonal distributions, that is the most different from each
other.

3. Jensen–Shannon Divergence as an Edge Detector

In this section, we will explain how to use unweighted Jensen–Shannon divergence to detect
edges. Many of the image segmentation methods by edge detection are based on detecting high
gradients of color or gray levels, making them very sensitive to noise and textures, so that they are
not adequate noisy images, or for images containing textured objects.

As has been explained in Section 2, Jensen–Shannon divergence is a measure of dissimilarity
or inverse cohesion between two (or more) probability distributions. In the case of two probability
distributions, if those are representative of two different regions in an image, then this fact can be
used to guess whether they are coming from the same object or not. A way to get representative
information of the composition of a given object or texture inside an image is by means of the
histogram, as the distribution of gray levels (or colors) of a sample. The histogram (see Figure 1)
tells us about the gray level variety and composition, not about the location of pixels.

Figure 1 show three images, and the histograms of some image samples are presented. In the
histograms, the horizontal axis in the graph is the gray level, and the vertical axis is the corresponding
absolute frequency. As can be seen, in the first image, the region marked by the square is entirely
composed of only two gray levels. Thus, the corresponding histogram, below the image, contains
only two nonzero frequencies. The second example is the previous image corrupted by a Gaussian
noise of mean zero and sigma 20. Obviously, the noise produces in the histogram, below the image, a
great dispersion of gray levels, with a loss of information. The third image is Lenna. This image has a
lot of very different regions. Feathers in her hat (first histogram at the right) show a characteristic gray
level distribution with a wide range of colors. However, the shoulder of Lenna (second histogram at
the right) has a histogram with less scattering of gray levels.
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Figure 1. Histograms of square samples from several images. In the first case (top left), there are
only two gray levels with the same absolute frequency. The second case (top right) corresponds to
the previous image affected by gaussian noise, so that a strong scattering of the histogram can be
appreciated. In the image of Lenna, the first histogram (left) corresponds to shoulders and the right
histogram to feathers.

In general, we expect that histograms coming from different parts of the same object will be
similar, but histograms coming from diverse objects will be different. This is the principle we will
use to detect edges. In order to apply JS as an edge detector, two neighbor samples S1 and S2 are
taken along the whole image by means of a double sliding window centered on every pixel of the
image. Unweighted Jensen–Shannon divergence of the corresponding normalized histograms P1 and
P2 tells us about the similarity of the samples and, likely, will allow us to decide if the two samples
are coming from the same object, the same region or are not in the image. In this way, if divergence
between S1 and S2 is low, it means that both samples are very similar, probably coming from the same
region. Conversely, if divergence is high, then S1 and S2 are quite different, almost certainly coming
from two different regions.

Several orientations of the double window should be taken for each pixel image. This is to
properly detect edges in any direction and to avoid a bias towards edges in a particular course. Due
to the special discrete nature of digital images, four basic orientations are the simplest to use: 0, 45, 90
and 135 degrees (that we transform into 0, 1

4 , 1
2 and 3

4 linearly). Thus, associated with each pixel, four
divergences d1, d2, d3 and d4 are obtained in practice. The best way to combine them into a unique
measure is by interpolating a periodic function, such as [6]:

JS(d) ≈ c + m sin(2πd) + n cos(2πd), d ∈ [0, 1] (4)

where c, m and n are constants to be adjusted. Since the cost of the numerical computation of
trigonometric functions is high, we prefer to approximate such functions by quadratic splines, which
are second degree piecewise polynomials having class 1 (with a continuous derivative). Therefore,
we obtain,

sin(2πx) ≈ ψ(x) =

{
−16x2 + 8x, if x ∈ [0, 1

2 ]

16x2 − 24x + 8, if x ∈ [ 1
2 , 1].

(5)
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and the cosine function in JS can be similarly approximated by:

cos(2πx) ≈ φ(x) =


−16x2 + 1, if x ∈ [0, 1

4 ]

16x2 − 16x + 3, if x ∈ [ 1
4 , 3

4 ]

−16x2 + 32x− 15, if x ∈ [ 3
4 , 1].

(6)

These functions are periodic spline functions of degree two and class 1, defined in [0, 1] with
nodes at the points {0, 1

4 , 1
2 , 3

4 , 1}. Using the result in [6], we can approximate JS(d) as a function of
the direction in terms of the spline approximate for the trigonometric functions {ψ(x), φ(x)}; together
with the least-square fit, we can write JS(d) as,

JS(d) =
d1 + d2 + d3 + d4

4
+

d2 − d4

2
ψ(d) +

d1 − d3

2
φ(d). (7)

Simple analysis for the values of di, i = 1, 2, 3, 4 could provide us with the direction of maximum
divergence, as shown in the following list, and finally, the divergence associated with the pixel
at hand is the maximum value of the spline function, JS(d), except singularities (for example in a
homogeneous region, in which case the direction has no sense).

If then the maximum attains at

d1 − d3 ≥ 0, d2 − d4 ≥ 0 d = d2−d4
4(d1−d3)−(d2−d4)

∈ [0, 1
4 ]

d1 − d3 ≥ 0, d2 − d4 ≤ 0 d = 4(d1−d3)−3(d2−d4)
4(d1−d3)−(d2−d4)

∈ [ 3
4 , 1]

d1 − d3 ≤ 0, d2 − d4 ≥ 0 d = 2(d1−d3)−(d2−d4)
4(d1−d3)−(d2−d4)

∈ [ 1
4 , 1

2 ]

d1 − d3 ≤ 0, d2 − d4 ≤ 0 d = 2(d1−d3)+3(d2−d4)
4(d1−d3)−(d2−d4)

∈ [ 1
2 , 3

4 ]

By means of this procedure, two real numbers, divergence and direction, are associated with
each pixel in the image. In the sequel we consider only the first one. If it is low, then the pixel is
likely interior to a region, and if it is high, then the pixel is likely an edge. Now, we can represent this
matrix of divergences in a visual fashion. The example shown in Figure 2 on the right represents a
divergence matrix. Light pixels correspond to low divergences, hence to the interior of regions, while
dark pixels are rather frontiers between regions. The original image is of Lenna.

Figure 2. Left: Picture of Lenna, a real scene. Middle: smoothed JS matrix of Lenna processed
with semicircular sliding windows of radius 3. Right: the same as the previous image, but using
semicircular sliding windows of radius 20. Smoothing procedure is explained below in this Section.
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Figure 3 shows four test images. The first image is made of four different solid gray levels.
In the second row, three sharp leaps can be seen in a line of the modulus of the gradient obtained
applying the Sobel edge detector to Image 1. The leaps match the transitions from one homogeneous
region to the next. Under this graph, there is another one corresponding to a line of edge detection
obtained applying JS to Image 1, with two square semi-windows with a size of 5× 5 (this size is used
in all of the images in Figure 3). Both edge methods detect all of the edges present in Image 1. Due
to that the image being clean, free of noise and textures, and the boundary between the regions being
straight, the edge detection is easy.

Figure 3. Four test images (top row) for edge detection. Image 1: a synthetic image made of
four homogeneous regions with different, equally-spaced gray levels. Image 2: the same image
as the first corrupted by salt and pepper noise over 10% of the image pixels. Image 3: an image
composed of four different gray levels, with different distances between gray levels. Image 4: an
image composed of four different textures. Second row: representation, along a horizontal line in the
middle of each image, of the respective gradient modules of the images, using the Sobel mask. Third
row: corresponding representation of the JS of the images using two square semi-windows with a
5× 5 size.

The second image is the same as the previous image, but corrupted by impulsive salt-and-pepper
noise affecting 10% of the image pixels. As can be seen, the gradient plot looks random. Nevertheless,
edge detection using JS allows one to get all edges.

The third image is made of four different homogenous gray level bands, but the distance between
gray levels is different in the three frontiers present in the image. In the corresponding plot of
gradients for this image, the left frontier has a very much lower gradient than the others, being the
highest the central one. However, in the corresponding JS plot, both borders have been detected with
the same JS value.

Finally, the fourth image presents four different textures. The detection with Sobel is impossible,
as can be seen in the corresponding gradient plot. Nevertheless, JS detects all of the borders correctly.

If the JS value is low for a given pixel, then the pixel is likely interior to a region. Conversely,
if the JS value is high, then the pixel is likely an edge. However, in practice, due to the presence of
textures, noise or any other statistical fluctuations, the image may contain many small irregularities
that could lead the JS calculation to many local maxima with very low value. Then, it is advisable
to apply a smoothing median-like filter to the calculated divergences. Since it is important not to
lose directional local maximum divergences, a common median filter 3× 3 is not advisable. We are
interested in preserving directional local maxima. Hence, the following smoothing algorithm may be
iteratively applied until the root is reached:
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- Center a 3× 3 window on each position of the divergence matrix and get a sample of nine JSs.
- Consider all sets of three pixels aligned in the four main directions containing the central

pixel. Take the four corresponding median values.
- Output the maximum of both the central divergence and the four medians.

In this paper all divergences matrices are smoothed by means of this procedure.
Note that by using JS, we are detecting not only gradients, as many methods do, but also many

structural and texture differences between samples (see Image 4 in Figure 3).
Figure 2 illustrates a common problem in the edge detection field: a window size that is too

small leads to an over-segmented image, with many undesired pixels marked as edges. Additionally,
a window size that is too big leads to blurred and misplaced edge detection. Since the adequate
window size depends on the objects present in the image, in general, then, the correct election of
the window size should be done by the user. In the next section, a multi-size window strategy is
described to deal with this problem.

4. The Size of the Sliding Window

The use of a double sliding window clearly implies that some choices must be done by the user,
namely the shape and the size. With respect to the shape, we have decided to use at all times a round
window divided into two semicircles. This is the most unbiased decision with respect to all directions.
Obviously, all this has to be adapted to the discrete array of pixels in a digital image. However, the
size cannot be setup independently of the image. This is a factor bound to the particular image at
hand, the size of the objects and the resolution. In Figure 4, we show the matrix of divergences for
several radii {2, 3, 4, 6, 8, 11, 16, 23, 32, 45, 64} distributed as a rounded geometric progression of a ratio
of
√

2; the corresponding images show good and bad choices of the radius. The choice of a size that
is too small can give something like the first image on the top at the left, where many divergences are
very high, thus saturated, and objects will be hardly detected, because they are hidden among many
unimportant details. Conversely, a size that is too big, apart from the high computation time, can
lead us to something like the image at the right at the bottom, cleaner, but where edges appear very
blurred and a little out of place.

It may be that choosing a particular radius could be adequate for a particular image. If we do not
know what is the range of sizes of the objects to be detected in the image at hand, then it is advisable
to use several window sizes at the same time and, finally, combining them in a convenient way. To
do this, we chose a set of different radii and take for each image pixel the mean of the divergences, as
is shown in the last figure on the bottom in Figure 4.

In right bottom image of Figure 4 is shown the average divergence matrix corresponding to
eleven different radii from two to 64 in a geometric progression. Depending on what we need, this
last could be more adequate than a particular radius to obtain a good segmentation, as described in
the next section. In addition, this choice makes the general procedure more independent of the double
window size, since the problem of adjusting the radius is automated. Figure 5 shows the variation of
maximum and mean divergence in the matrix for the experiment of Figure 4 (Brain), depending on
the radius.
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Figure 4. In this figure, we compute divergence matrices for radii of {2, 3, 4, 6, 8, 11, 16, 23, 32, 45, 64},
respectively from top to down, left to right. In the last picture, we used multi-size window.

Figure 5. Variation of the maximum and mean divergence in the matrix for the experiment of Figure 4
(Brain), depending on the radius.
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5. Edge Detection: Binarization

In this section, we will explain the binarization of the divergence matrix, a way to select the
final edge pixels. Starting from the divergences matrix, the simplest binarization method is by
thresholding. Pixels having a JS value lower than the threshold are considered interior to a region,
thus marked as not belonging to an edge, and pixels having JS higher than the threshold are in
edges. In general, this procedure is primitive and does not give satisfactory results, since we can
get thick edges while loosing other edges. Another idea is to search for some kind of local maxima
in the matrix. Since we are working in two dimensions, local maxima will be searched in those four
principal directions. A pixel is considered as belonging to an edge if the JS is a local maximum in
at least one of the four principal directions. To do this, a set of four unidimensional windows in the
principal directions is placed over each image pixel. Then, a pixel is declared as an edge if, at least in
one direction, it fulfills the following:

1. The central JS is not less than all of the other JS values in the window
2. There is at least one pixel within the window with a JS value lower than the central one in a

threshold set by the user.

In Section 6, an example of this edge selection procedure is presented, together with a
comparison of our multi-radius sliding window procedure with the Canny and Sobel edge detectors.

Figure 6. In this figure we see on the top row an original image of an angiogram with its edges
detected by using the multi-window procedure with the same set of radii as in Figure 4; on the second
row, we see the results obtained using the Canny method (left) and the Sobel method (right); both
methods fail at detecting the edges due to noise and vertical textures.

6. Applications and Comparisons with Other Edge Detectors

In this section, we compare our method of edge detection with two well-known edge detection
methods, Canny [18] and Sobel [19] filters. In Figure 6, an angiogram picture (top left) and the final
edge images obtained with JS (top right), Canny (bottom left) and Sobel (bottom right) are shown.
It is clear that the best image of edges is that obtained with the proposed multi-window method,
which his very superior to the results of the Canny and Sobel edge detectors. One of the applications
of the segmentation of this picture is the measurement of the width of the veins and arteries and to
automatically detect stenosis.
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7. Conclusions

In this paper, a new entropic edge detection method based on the Jensen–Shannon divergence is
presented. The method works by calculating the Jensen–Shannon divergence between the normalized
histograms of two adjacent semicircular sliding windows. The election of a particular size of window
is avoided by performing a multi-window computation and then computing for each image pixel the
mean Jensen–Shannon divergence of each window size.

One of the main advantages of using Jensen–Shannon divergence is the property of being
invariant to contrast and robust against noise in the picture. This gives the method a big advantage
over other usual edge detection methods. Some experiments performed using medical images show
that our method is very superior compared to the Canny and Sobel edge detectors.
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