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Abstract: This paper proposes a novel image watermarking method based on local energy
and maximum entropy aiming to improve the robustness. First, the image feature distribution
is extracted by employing the local energy model and then it is transformed as a digital
watermark by employing a Discrete Cosine Transform (DCT). An offset image is thus obtained
according to the difference between the extracted digital watermarking and the feature
distribution of the watermarked image. The entropy of the pixel value distribution is computed
first. The Lorenz curve is used to measure the polarization degree of the pixel value distribution.
In the pixel location distribution flow, the maximum entropy criteria is applied in segmenting the
offset image into potentially tampered regions and unchanged regions. All-connected graph and
2-D Gaussian probability are utilized to obtain the probability distribution of the pixel location.
Finally, the factitious tampering probability value of a pending detected image is computed through
combining the weighting factors of pixel value and pixel location distribution. Experimental results
show that the proposed method is more robust against the commonly used image processing
operations, such as Gaussian noise, impulse noise, etc. Simultaneously, the proposed method
achieves high sensitivity against factitious tampering.
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1. Introduction

1.1. Relevant Background

Image watermarking is currently a research hot spot as it is an effective secure information
transformation approach. In a real network transmission environment, a digital image is vulnerable
to human tampering attacks, such as cropping, replacement, etc. Meanwhile, during the data
transmission process, especially in a wireless environment, an image might experience noise
interference generated by many factors, such as the distance, terrain, the spatial environment, and
lack of power in both the transmitter and/or receiver. These types of interference cause further
different degrees of change in the image content. The image data changes caused by natural noise are
usually considered to be acceptable, whereas those caused by factitious tampering are unacceptable.
Image tampering detection that must distinguish noise interference from factitious tampering often
requires high robustness. When the image information is almost similar, a certain degree of distortion
is allowed. However, malicious tampering, which could obviously change image information, is not
allowed. Image watermarking algorithms that can detect the changes in image content caused by
factitious tampering with a certain degree of tolerance to natural noise have been developed and
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widely used [1–7]. Cox [8] embedded watermarks into the perceptually most significant spectral
components of original images. This method used a watermark comparison method so it could find
the image changes, but this method didn’t use a content-based image authentication technique so it
could not identify whether the image content was tampered with or not. Kang [9] used the difference
of the frequency coefficients derived from a discrete cosine transform or a discrete wavelet transform.
The BCH code as the sync signal has been used to error-correct the watermark bits to withstand JPEG
compression and cropping attacks, but this method can’t distinguish JPEG compression and cropping
attacks. Walton [10] used the quantized wavelet coefficient to embed watermarking and then
quantized the image by employing the Haar wavelet coefficient. The robustness of the watermarking
is controlled by the size of the quantization step. To identify whether an image has suffered from
malicious tampering, an attack estimate function is employed. The disadvantage of this algorithm
is that determining the quantization step length is easy to perform, so attackers can change the
image content while keeping the watermarking information. Egger [11] applied the scalar encoder to
encode the watermarking information and quantized the selected 8 ˆ 8 block coefficient through
the corresponding scalar quantization function. He then used binary pseudo-random sequence
images to embed the watermark. At the authentication step, a mixed operation is applied on the
corresponding quantitative function and the pending detection images to obtain a verified value.
However, the disadvantage of this algorithm is its high sensitivity to the histogram equalization and
sharpening operations. Lu [12] separated the masking threshold wavelet coefficients into masking
threshold units (MTUs) and chose wavelet coefficients in the frequency domain that has similar
dimensions and orientations, and the absolute value is larger than the Just Noticeable Distortion
(JND) threshold. Afterward, a cocktail watermarking scheme is used to adjust the wavelet coefficients
to complete the watermark embedding. The original quantitative information is used as a secret
key to restore the original image. Two types of watermark detection were operated to complete the
authentication. The method took the features of two types of watermarking into account, but when
used in image tampering detection, the original watermarking has to be stored, which could affect the
robustness and lead to equilibrium fragility. Yu [13] proposed embedding the watermarking through
quantifying a weighted average of the wavelet coefficients. By assuming that the change of wavelet
coefficients follow a normal distribution, factitious tampering can cause a larger variance of the local
change. However, the variance of the image distortion caused by noise is always smaller. Under
this assumption, image tampering detection that differentiates factitious tampering from malicious
tampering can be realized. Compared with the direct quantitative wavelet coefficient, it has better
robustness. However, when the tampering happens in a small area, the accuracy is usually poor.
After studying the above mentioned algorithms, a new image watermarking method with the aim
of achieving a high detection accuracy for image operations, such as cutting, replacement, and
conventional factitious tampering is investigated in this paper. Meanwhile, satisfactory robustness
against noise attacks should be achieved. The algorithm should also ensure excellent accuracy, even
in a communication channel with a low signal-to-noise ratio.

1.2. Motivations and Contributions

This paper proposes a robust image watermarking algorithm combining the information of pixel
value and pixel location distributions based on maximum entropy criteria. First, the Itti model [14]
is applied to get the original image feature, which is referred to as the saliency map. Then the
saliency map is used as the watermarking, and then the watermarking is embedded into the original
image using the Discrete Cosine Transform-Singular Value Decomposition (DCT-SVD) technique [15].
In the watermarking extraction step, the inverse transformation of DCT-SVD is used to extract the
watermarking from the pending detection image, which is the saliency map of the original image.
After that the local energy model [16] is also applied to get the saliency map of the watermarked
image. Then the two saliency maps are substracted to get the offset image. The information in
the offset image will be used to carry out the image tampering detection. Two main types of
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information are necessary in this study: pixel value and pixel location distributions. Therefore,
the image tampering detection algorithm is divided into two workflows: pixel value and pixel
location. In the pixel value flow, the entropy of the pixel distribution in the offset image is calculated.
The difference algorithm based on the Lorenz curve is also utilized to obtain the divergence indicator
of the pixel value distribution. The pixel value entropy and divergence indicator are then combined
to produce a joint weighting factor. In the pixel location flow, the maximum entropy model is
adopted to segment the offset image into potential tampered and untampered regions. Next, an
all-connected graph of pixel difference matrix is applied to obtain the average distance between the
potential tampering pixels. The deviation function of high-difference pixels is obtained based on the
distribution probability of the coordinate. The next step is to compute the weighting factor of the
pixel location distribution. Finally, the weighting coefficients of the pixel value and pixel location are
combined. The results of image tampering detection are obtained by comparing the coefficients with
the pre-set threshold. The whole image tampering detection workflow includes the following steps:

1. Watermark generation: The original image’s saliency map is adopted as the watermark.
2. Watermark embedding: Embedding the watermark into the original image by DCT-SVD.
3. Image transmission: Sender sends the image to receiver (through a lossy channel).
4. Watermark extraction: Extracting the watermark from the pending detection image.
5. Saliency map extraction: Extracting the saliency map from the pending detection image.
6. Tamper detection: Determining whether the image has been factitiously tampered with.

The simple process based on the proposed method is shown in Figure 1.
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The main contributions of this study are as follows:

1. A new watermarking model based on the local energy and maximum entropy model is proposed.
The watermarking itself contains relevant information to the original image. Unlike previous
digital watermarking algorithms, this watermarking is embedded with high redundancy, which
ensures that the watermarking remains high robustness.

2. To increase the accuracy of image tampering detection, the difference algorithm based on the
Lorentz curve, combined with information entropy, is adopted to verify the uniformity of the
pixel distribution.

3. An all-connected graph pixel average distance algorithm based on the maximum entropy model
is proposed. The distribution uniformity of the pixel coordinates is evaluated through the
probability distribution function to obtain the degree of deviation between the average distance
and the maximum likelihood estimate of the pixels, which can further improve the effect of image
tampering detection.

The detailed flowchart based on the proposed method is shown in Figure 2.
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Figure 2. The flowchart of the proposed method based on the maximum entropy model. 

2. Materials and Methods  

2.1. Saliency Map Based on Local Energy Channel 

In different areas of the image, the distribution of the information varies. Thus, the proposed 
method could extract the saliency map based on the distribution of the information of image 
distribution. A similar known method is the Itti model, which uses feature integration theory. This 
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the saliency map. 
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2. Materials and Methods

2.1. Saliency Map Based on Local Energy Channel

In different areas of the image, the distribution of the information varies. Thus, the proposed
method could extract the saliency map based on the distribution of the information of image
distribution. A similar known method is the Itti model, which uses feature integration theory.
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This method utilizes center-around mechanism, low-level features and normalization method, to
build the saliency map.

This study uses the Itti model and local-energy model to extract the image distribution features.
Henriksson [17] found the phase congruency pixels have a tendency to cluster. Compared with phase
congruency, the local energy can obviously reflect the whole image features. It could also compensate
for the limitations of phase congruency, which has relatively sparse information. The local energy
model is structured by the odd and even of the Gabor function. Venkatesh and Owens [18] provided
the plural forms of local energy:

Epxq “
b

I2pxq ` H2pxq (1)

where I2(x) indicates the component of the real part and H2(x) represents the component of the
imaginary part. There is a kind of relationship between phase congruency and local energy:

Epxq “ PCpxq
ÿ

n
An (2)

where E(x) represents of local energy, PC(x) represents the phase congruency and An represents local
range. The phase is at every position of the image. A measurement method of the phase similarity in
each frequency component, the phase congruency PC(x) can be represented as follows:

PCpxq “ max

ř

n
Ancospθnpxq ´ θpxqq

ř

n
An

pθpxq P r0, 2πs (3)

Here, θn(x) represents the phase of the n frequency component and θpxq represents the
superimposed phase of all frequency components. The original image’s feature information is
obtained by the color, direction, intensity and the local energy channel. Then different feature
information is combined to produce saliency map. The process of generating the saliency map is
shown in Figure 3.
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Compared with the Itti model, the local energy model combines the local energy features to
calculate the saliency degree of each pixel and express it as a grayscale image which reflects the image
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information distribution. The image watermark obtained by the variable-size block model is used to
contract the grayscale image. In our proposed method we generate 8ˆ 8 blocks to get watermarking.

2.2. Watermark Embedding

At the sender’s terminal, the DCT-SVD of the original image is computed and the watermark is
added to the low frequency component of the image. Here we use hamming error-correcting code
to generate the watermarking checking information, hamming check bit k and data bit m has the
following expression:

2k ě m` k` 1 (4)

Then the robustness of the watermark has observably increased.

2.3. Image Preprocessing

At the receiver’s terminal, the inverse DCT-SVD transformation is applied to extract the
watermarking in the watermarked image. After the embedded watermarking is obtained, the saliency
map of the received image can also be extracted by local energy model algorithm. The offset image is
obtained by subtracting the original image saliency map from the received image.

2.4. Maximum Entropy Value Based on Image Pixel Value Distribution

Given the strong direction and purpose, the factitious tampered image parts will inevitably cause
significant changes to the image information, whereas the rest of the area of the image information
will remain unchanged. This can result in higher pixel values of the tampered area than those in the
untampered area (nearly zero). If a pixel value distribution histogram is built, obvious differences will
appear in the tampered area, but for the noise-interfered area, no obvious regularity will be observed.
Therefore, the pixel value distribution entropy of the offset image is as follows:

HPV “ ´

n
ÿ

i“0

ppiqlog ppiq (5)

where n stands for the grayscale number, p(i) is the probability of the ith grayscale, and HPV is the
pixel value distribution entropy of the whole image. Compared with the factitious tampered image,
the noise-interfered image presents more chaos. Thus, its entropy is higher. In other words, compared
with the results of the noise interference, HPV of factitious tampered image area will be significantly
lower, the HPV value as shown in Figure 4.

Entropy 2015, 17, 1–19 

6 

2.2. Watermark Embedding 

At the sender’s terminal, the DCT-SVD of the original image is computed and the watermark is 
added to the low frequency component of the image. Here we use hamming error-correcting code to 
generate the watermarking checking information, hamming check bit k and data bit m has the 
following expression: 

2 1k m k    (4) 

Then the robustness of the watermark has observably increased. 

2.3. Image Preprocessing 

At the receiver’s terminal, the inverse DCT-SVD transformation is applied to extract the 
watermarking in the watermarked image. After the embedded watermarking is obtained, the 
saliency map of the received image can also be extracted by local energy model algorithm. The offset 
image is obtained by subtracting the original image saliency map from the received image. 

2.4. Maximum Entropy Value Based on Image Pixel Value Distribution 

Given the strong direction and purpose, the factitious tampered image parts will inevitably 
cause significant changes to the image information, whereas the rest of the area of the image 
information will remain unchanged. This can result in higher pixel values of the tampered area than 
those in the untampered area (nearly zero). If a pixel value distribution histogram is built, obvious 
differences will appear in the tampered area, but for the noise-interfered area, no obvious regularity 
will be observed. Therefore, the pixel value distribution entropy of the offset image is as follows: 

0

( ) log ( )
n

PV
i

H p i p i


   (5) 

where n stands for the grayscale number, p(i) is the probability of the ith grayscale, and HPV is the 
pixel value distribution entropy of the whole image. Compared with the factitious tampered image, 
the noise-interfered image presents more chaos. Thus, its entropy is higher. In other words, compared 
with the results of the noise interference, HPV of factitious tampered image area will be significantly 
lower, the HPV value as shown in Figure 4. 

3.1732PVH 2.1516PVH  
Figure 4. Maximum entropy results between image noise and factitious tampering (the ratio of the 
changed region area is 1%). 

The exact changing degree of factitious tampering and noise interference is uncertain. If a slight 
change or noise happens in an image, the offset image is generally near 0. Thus, even if the 
distribution of the non-zero pixel in the offset image is uniform, the entropy of the whole offset image 
is not high. However, the offset image has numerous non-zero pixels if an image is considerably 
changed, because of its substantial differences from the original, which will increase its whole 
information entropy. Therefore, the pixel values based on entropy distribution exhibit a certain 
degree of sensitivity according to how much the image is changed. To compensate, a difference 

Figure 4. Maximum entropy results between image noise and factitious tampering (the ratio of the
changed region area is 1%).

The exact changing degree of factitious tampering and noise interference is uncertain. If a
slight change or noise happens in an image, the offset image is generally near 0. Thus, even if the
distribution of the non-zero pixel in the offset image is uniform, the entropy of the whole offset image
is not high. However, the offset image has numerous non-zero pixels if an image is considerably
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changed, because of its substantial differences from the original, which will increase its whole
information entropy. Therefore, the pixel values based on entropy distribution exhibit a certain degree
of sensitivity according to how much the image is changed. To compensate, a difference algorithm is
utilized based on the Lorenz curve to measure the difference degree of the pixel value distribution.

The main function of the Lorenz curve, which is widely used in economics, is to calculate the
Gini coefficient that could measure the gap of national population between the rich and the poor.
In this study, the Lorenz curve is utilized to calculate the difference degree between pixel values.
First, the offset image is sorted by pixel values in ascending order. Second, the number of each pixel
value V and the sum of all pixel values N are obtained. For the number of the ith pixel, y(i) means
number of pixels no less than i, and x(i) means the sum of all pixel values less than i. If y(i)/V is set as
the ordinate and x(i)/N as the abscissa, the Lorenz curve is obtained, as shown in Figure 5.
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Figure 5 shows that if a great difference exists between the image pixel values, the area of the
S3 is smaller. If not, the area of the S3 is larger. A difference parameter ϕ is used to describe the
difference degree as follows:

ϕ “ S2{pS3 ` S2q (6)

If the value ϕ is higher, the difference degree is greater, thus, the image is more likely to be
tampered by an attacker, as shown in Figure 6.

Compared with the entropy model, the sensitivity of difference parameter significantly
decreases, as shown in Figure 7.
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The probability of changed and unchanged regions conforms to the following conditions, here 
t  is the threshold to segment the image into changed region and unchanged region: 

1

1

t

Changed i
i=0

L

Unchanged i
i=t

p (t)= p

p (t)= p







 (9) 

Figure 7. HPV and ϕ in different levels of random noise interference.

By utilizing HPV and φ, a combined weighted factor can be described as follows:

φ “
ϕ

HPV
ˆ γ (7)

where γ is the compensation factor, and in this study, γ = 3.
If the entropy of image pixel value distribution and pixel value difference are combined through

the Lorenz curve, φ can effectively distinguish the change of image information between irregular
noise interference and regular factitious tampering.

2.5. Image Pixel Position Weight Based on Maximum Entropy

The offset images after factitious tampering and noise interference not only show great
differences in pixel values, but also exhibit otherness in pixel location distribution, because in the
factitious tampered image, changes often happen in one or a few concentrated areas, and other areas
do not show any changes. Thus, the offset image would show the highest value pixels in one area.
Meanwhile, the changes for the image caused by noise interference will be distributed in various
parts. Therefore, noise interference will not cause regional aggregation, and on the contrary, its
distribution will show randomness. Based on these reasons, an algorithm of distance difference
between the pixel distributions and the maximum entropy model is proposed. An all-connected
graph to describe the aggregation degree in the offset image is investigated in this study.

The offset image entropy is calculated based on the maximum entropy criterion. The received
image is assumed to be composed of changed (potential tampered) and unchanged regions.
The entropy means the degree of pixel value similarity in each region. If the entropy of a region is
large, it indicates the differences of pixel values distribution are not significant. On the contrary,
when the entropy of a region is small, it indicates that there are significant differences in the pixel
values distribution. When the entropies of the changed and unchanged regions are both large, the
entropy of the whole image would be the maximum. The gray level that maximizes entropy is the
threshold to segment the image into changed and unchanged regions. Given that the image whose
size is Mˆ N, the image gray level collection is G “ t0, 1, ¨ ¨ ¨ , i, ¨ ¨ ¨ , L´ 1u, and ni is the occurrence
time of the ith gray value. If pi is the probability of the i-th gray value occurrence, then pi is as follows:

pi “
ni

M ˚ N
(8)

The probability of changed and unchanged regions conforms to the following conditions, here t
is the threshold to segment the image into changed region and unchanged region:

pChangedptq “
t
ř

i“0
pi

pUnchangedptq “
L´1
ř

i“t`1
pi

(9)
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Thus, the entropy Hptq of the two regions could be expressed as follows:

HChangedptq “ ´
t
ř

i“0

pi
pChangedptq

log
pi

pChangedptq

HUnchangedptq “ ´
L´1
ř

i“t`1

pi
pUnchangedptq

log
pi

pUnchangedptq

(10)

The image of general entropy is as follows:

Htotalptq “ HChangedptq ` HUnchangedptq (11)

When the entropy Htotalptq is maximum, it means the differences in each internal region are
the smallest, but the differences between changed region and unchanged region is the biggest.
Then t is the optimal threshold to segment the whole image into changed (potentially tampered) and
unchanged regions. If the number of the pixels in potential tampering region is assumed as m,
the 2-D coordinate distribution of these pixels can be obtained. The triangular adjacency matrix A
of the all-connected graph is established based on the pixel coordinates:

A “

»

—

—

—

—

—

—

—

—

–

0 a12 a13 ¨ ¨ ¨ a1m

0
. . . a23

. . . a2m
...

...
. . . . . .

...
... 0 ¨ ¨ ¨

. . . am´1,m
0 ¨ ¨ ¨ . . . . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(12)

In this matrix, aij (i < j) means the Manhattan distance d between pixels i and j in potential
tampering region. Assuming that ∆ x means the abscissa difference between the coordinates of pixel
i and pixel j, ∆y means the ordinate difference, and Manhattan distance d is defined as follows:

d “ ||∆x` ∆y||1 (13)

When all the elements in the triangular adjacency matrix are summed, the sum value of
Manhattan distance S is obtained in potential tampering pixels. The average distance value d is
computed by S and m:

d “
S

C2
m

(14)

Here C2
m “ mpm ´ 1q{2, it means the number of all connection lines for every two pixels in

potential tampering region. Given the strong pertinence of a factitious tampered image, its potential
tampered points are clustered, and the average distance value d is small. Thus, if the value of d is
small, the probability of the image being changed by artificial tampering is high. By contrast, if the
value of d in potential tampering region is large, this indicates the distribution of potential tampering
points is scattered. Thus the image is more likely changed by noise interference.

If the pixels in potential tampering region completely follow a random distribution, the pixel
coordinates follow the 2-D uniform distribution:

f px, yq “

$

&

%

1
D

, px, yq P D

0, px, yq R D
(15)
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For the regular rectangular image, the abscissa and the ordinate are linearly independent. Thus,
the 2-D uniform distribution can be expressed by multiplying two 1-D uniform distributions:

PpXYq “ PpXqPpYq (16)

The Manhattan distance d of two random pixels is as follows:

d “ d1 ` d2 (17)

where d1 is the absolute value of abscissa difference between two pixels, and d2 is the absolute value
of ordinate difference between two pixels. Thus, for the two pixels randomly distributed in the region,
the random probability density function could be expressed as follows:

f pxq “
2pα´ xq

α2 f pyq “
2pβ´ yq

β2 (18)

where α and β are the length and width of images, respectively. Then based on probability theory, the
following equation is obtained:

EpXq “
α

3
EpYq “

β

3

DpXq “
α2

18
DpYq “

β2

18
EpX`Yq “ EpXq ` EpYq “

α` β

3

(19)

Given the linear independence between PpXq and PpYq, the following equation could also
be obtained:

DpX`Yq “ DpXq `DpYq ` 2covpXYq “ DpXq `DpYq “
α2 ` β2

18
(20)

The expectation of the Manhattan distance between two random pixels in the offset image is
pα ` βq{3, and the variance is pα2 ` β2q{18. When the number of random pixels m is large enough
(m ě 10), the number of lines in the all-connected graph C2

m is also very large. The length of
any lines in the all-connected graph di can hardly affect the average Manhattan distance d, and the
length between any two lines almost have no correlation. Therefore, based on central limit theorem,
the average Manhattan distance d nearly follows a Gaussian distribution:

f pxq “
1

σ
?

2π
expr´

px´ µq2

2σ2 s (21)

In addition, the expectation of Gaussian distribution µ “ pα` βq{3, and the variance σ2 “ C2
m ˆ

pα2 ` β2q{18, based on the maximum likelihood probability. When the average Manhattan distance
Ppx R µ ˘ 3σq « 0.003 of potential tampering pixels is pα ` βq{3, the distribution of image pixel is
extremely random, simultaneously we can obtain the maximum entropy.

Compared with the potential tampering pixels caused by noise interference, the potential
tampered pixels caused by factitious tampering have strong aggregation. The average Manhattan
distance dn of the all-connected graph caused by factitious tampering is much lower than that caused
by noise interference.

Given that Gaussian distribution outside of x “ µ ˘ 3σ region has a low probability
Ppx R µ˘ 3σq « 0.003), the deviation degree parameter div is introduced:

div “

ˇ

ˇ

ˇ
µ´ d

ˇ

ˇ

ˇ

σ
(22)
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As a deviation degree parameter based on maximum entropy of image pixel position
distribution, div not only reflects the information of pixel position distribution difference, but also
shows satisfactory discrimination between factitious tampering and noise interference, as shown
in Figure 8.Entropy 2015, 17, 1–19 
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To test the validity of the method proposed in this study, the algorithm is simulated in MATLAB. 
In the watermarking embedding stage, the local energy image that contains information of the image 
itself as watermarking is embedded into the image spatial domain by employing the DCT-SVD 
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distortion degree. PSNR is an engineering term for the ratio between the maximum possible power 
of a signal and the power of corrupting noise that affects the fidelity of its representation. Given that 
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10

255
10 log ( )PSNR

MSE
  (24) 

The MSE is the mean square error between the two images, such as two RGB images I  and K  
whose sizes are both m n . If the noise in the two images is approximately similar, their mean square 
error is defined as follows: 

3

2
1 1 1

1
( , , ) ( , , )

3

m n

i j k

MSE I i j k K i j k
mn   

   (25) 

The abovementioned formula shows that the larger the image changes caused by noise 
interference, the bigger the MSE value, and the smaller the PSNR value. Based on this principle, the 
change of embedded watermarking in the original image is measured, as shown in Figure 9 below. 

The watermark computed by DCT-SVD and hamming error-correcting is robust to noise 
interference and factitious tampering. The watermark can be almost fully tested under different sorts 
of image changes. The image transmission is simulated in a noisy channel using many sorts of noise 
interference and factitious tampering. The results are shown in Figure 10. 

Figure 8. Compared deviation degree parameter ε “
a

φ2 ` div2 with factitious tampering and
noise interference.

2.6. Image Tampering Detection Based on Combined Weighted Threshold

φ and div are applied as a joint weighting factor. An exception should be considered, that is,
if only one weight is overly large, the possibility of factitious tampering is much larger than that in
two weights that are both moderately large. Therefore, this study adopted two-norm as the final
weight function:

ε “
b

φ2 ¨ div2 (23)

Comparing ε with the pre-set threshold helps verifying whether the image has been factitious
tampered under high noisy environment or not.

3. Experimental Verification

3.1. Watermark Robustness Testing

To test the validity of the method proposed in this study, the algorithm is simulated in MATLAB.
In the watermarking embedding stage, the local energy image that contains information of the image
itself as watermarking is embedded into the image spatial domain by employing the DCT-SVD
transformation. The peak signal-to-noise ratio (PSNR) is introduced to determine the image distortion
degree. PSNR is an engineering term for the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its representation. Given that the range
of signal fluctuation is usually wide, PSNR is normally expressed in decibels (dB). Its formula is
as follows:

PSNR “ 10log10p
2552

MSE
q (24)

The MSE is the mean square error between the two images, such as two RGB images I and K
whose sizes are both m ˆ n. If the noise in the two images is approximately similar, their mean
square error is defined as follows:

MSE “
1

3mn

m
ÿ

i“1

n
ÿ

j“1

3
ÿ

k“1

||Ipi, j, kq ´ Kpi, j, kq||2 (25)

The abovementioned formula shows that the larger the image changes caused by noise
interference, the bigger the MSE value, and the smaller the PSNR value. Based on this principle, the
change of embedded watermarking in the original image is measured, as shown in Figure 9 below.

The watermark computed by DCT-SVD and hamming error-correcting is robust to noise
interference and factitious tampering. The watermark can be almost fully tested under different sorts
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of image changes. The image transmission is simulated in a noisy channel using many sorts of noise
interference and factitious tampering. The results are shown in Figure 10.Entropy 2015, 17, 1–19 
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Figure 10 shows that even in high degree of noise environments, the extracted watermarking has
excellent robustness. This r can guarantee that the watermarking is tamper-proof. Compared with
the traditional robust watermarking algorithm, watermarking generated by DCT-SVD and hamming
error-correction has outstanding performance. Here we use the parameter normalized correlation NC
(normalized correlation) to measure the similarity between two images. For two images y1 and y2,
their NC values are defined as follows:

NCpy1, y2q “
yT

1 y2

||y1||¨||y2||
(26)

When the value of NC is closer to 1, the two images is more similar. Table 1 shows that compared
with other robust watermarking algorithms based on DCT [19,20], our method has better robustness.

Table 1. The NC value of different robust watermarking algorithm.

Various Noise NC Value
(Our Method)

NC Value
(Method [19])

NC Value
(Method [20])

Contrast adjustment 0.9912 0.9558 0.9338
Average filter (size = [3, 3]) 0.9937 0.9914 0.9909

Poisson noise 0.9884 0.9811 0.9754
Salt and pepper (noise density = 0.02) 0.9937 0.9295 0.9289
Salt and pepper (noise density = 0.05) 0.9818 0.8612 0.8420
Gaussian noise (noise density = 0.02) 0.9688 0.8937 0.8116
Gaussian noise (noise density = 0.05) 0.9493 0.8923 0.6814

Table 1 shows that in normal noise environments, the watermark obtained by our method is more
robust than state-of-the-art alternatives. This result can further ensure the veracity of the extracted
offset information image.

3.2. The Image Tampering Detection Performance Testing

In the image tampering detection stage, image distortion caused by noise interference can be
distinguished from that caused by factitious tampering through setting a tolerance threshold in
advance. The final weight parameter ε has a satisfactory capability of distinguishing the two different
causes, as shown in Figure 11.

Figure 11 shows that during the noise growth process, the value of the weighted function
displays no obvious change. Instead, it remains steadily around 50. However, for the bottom of
two factitious tampered pictures, the value of the weighted function obviously increased. Therefore,
image distortion caused by noise interference can be distinguished from that caused by factitious
tampering by setting a reasonable threshold. The results show a satisfactory distinctiveness, and the
image tampering detection algorithm is robust to noise interference. As the most three classic test
images in image watermarking(Lena, Baboon and Plane), the value of ε are shown in Table 2.

As shown in Table 2, compared with noise interference, the value of ε by factitious tampering like
clipping or replacing is much higher, so it is intuitional to distinguish noise from factitious tampering
by choosing a reasonable threshold (in this experiments, the threshold can be set as 50).
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Figure 11. Combined weights   of the images after different kinds of attack. 

Table 2. The value   of test image in different sort of image changing. 

Image Changing   Value (Lena)  Value (Baboon)  Value (Plane) 
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Figure 11. Combined weights ε of the images after different kinds of attack.

Table 2. The value ε of test image in different sort of image changing.

Image Changing ε Value (Lena) ε Value (Baboon) ε Value (Plane)

Contrast increasing 23.4205 21.4458 19.5439
Contrast decreasing 23.5799 22.0004 20.0933

Average filter 11.7935 10.9523 11.4423
Image compression 11.4370 11.9632 12.0045

Salt and pepper noise 13.6389 14.6534 14.6238
Gaussian noise 21.6604 22.0954 20.9625

Clipping 92.9642 89.0045 101.4322
Replacing 120.9114 115.4493 109.4830
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We also tested the performance of our proposed algorithm and some other robust watermarking
algorithms [21–23] to compare their capabilities of distinguishing between noise (first four lines) and
factitious tampering (last two lines). The results are shown in Table 3, where Y means the image
identified as being changed by factitious tampering and N means the image identified as just being
changed by noise.

Table 3. The result of noise and factitious tampering.

Image Changing Result of Image Tampering Detection

Our Method Method [21] Method [22] Method [23]

JPEG compress (30) N N N N
Salt and pepper noise (10%) N N N Y

Gaussian noise (10%) N Y Y Y
Average filter (3ˆ3) N N Y Y

Clipping (2%) Y Y Y Y
Replacing (2%) Y Y Y Y

As Table 3 shows, under high intensity noise environment conditions, some other robust
watermarking algorithms make wrong judgments, but our algorithm can accurately distinguish noise
from factitious tampering.

We define M as the pixel number ratio of the factitious tampered pixels to all changed pixels in
pending detection image as follows:

M “
Mtamper

Mimage
(27)

Here Mimage is identified as the total image area and Mtamper is identified as the size of the
tampering area in pending detection image, the definition Mtamper is as follows:

Mtamper P p
Wo f f set

minpWoriginal , Wextractedq
ě ηq (28)

Here the Woffset is represented as the pixel value of the offset saliency map, the Woriginal is
represented as the pixel value of the original image’s saliency map, and the Wextracted is represented
as the pixel value of the pending detection image’s saliency map. η is the threshold, and in this study,
η “ 5. The value of M is set to 0’s when the number of factitious tampered pixels is 0. Here, others
used the methods similar to our M’s which is also to measure the proportion of the image that is a
malicious tampering area. This method keeps the clustered changed pixels intact and the isolated
changed pixels disappear. As a result, the malicious attack in concentrated area leads to a larger
M value due to the removal of mildly distorted changed pixels. Compared with Qi’s method [24],
Xiao’s method [25] and Yang’s method [26], extensive experiments show that the M value fits well on
all 200 test images in five kinds of noise. The result is shown in Figure 12.

Figure 12 clearly indicates that all the average values of our M’s are significantly lower than
Qi’s and Yang’s for five kinds of noise, indicating that our method is more robust in classifying a
watermarked image under any of these image changes such as noise interference or malicious attack.
This is due to the fact our method introduces the offset saliency map algorithm, that is the offset
image between the two saliency map of the original image and pending detection image. Because
the saliency map based on image information has high robustness against operations which do not
change image content such as image processing or noise interference, so the offset saliency map has
good invariance.

7962



Entropy 2015, 17, 7948–7966

Entropy 2015, 17, 1–19 

16 

M
  V

al
ue

M
  V

al
ue

M
  V

al
ue

M
  V

al
ue

(a) (b)

(e)

(c) (d)

Yang’s
Qi’s
Xiao’s
Ours

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 10 20 30 40 50 60 70 80 90 100

Compression Quality Factor (%)Radius of the Circular Averaging Filter

M
  V

al
ue

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
3 4 5 6 7 8 9 10 11 12

Size of Median Filter

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Standard Deviation Sigma

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Noise Density

 
Figure 12. Comparison of various common image processing attacks on M value. (a) Image blurring 
attacks.(b) JEPG compression attacks. (c) Median filtering attacks. (d) Gaussian low-pass filtering 
attacks. (e) Salt and peppers noise attacks. 

In order to test our method in more detail we performed four kinds of representative image 
processing attacks on 200 watermarked images of 512 × 512 size. These attacks included Gaussian 
low-pass filtering attacks using rotationally symmetric Gaussian low-pass filters of size 3 × 3 and 
standard deviation ranging from 0.1 to 1; median filtering attacks using filters of radii of 3–12; salt 
and peppers noise attacks using noise intensity ranging from 0.01 to 0.05; JPEG compression attacks 
using quality factors of 100% down to 10%. We also performed each of the three different pixel size 
replacements (e.g., 24 × 24, 36 × 36, and 48 × 48 pixels replacements), and we then we compared the 
performance of our scheme and five peer schemes: namely, Qi et al.’s method, Maeno et al.’s method 
[27], Yang and Sun’s method, Che et al.’s method [28] and Cruz et al.’s method [29]. The result are 
summarized in Table 4. 

Figure 12. Comparison of various common image processing attacks on M value. (a) Image blurring
attacks.(b) JEPG compression attacks. (c) Median filtering attacks. (d) Gaussian low-pass filtering
attacks. (e) Salt and peppers noise attacks.

In order to test our method in more detail we performed four kinds of representative image
processing attacks on 200 watermarked images of 512 ˆ 512 size. These attacks included Gaussian
low-pass filtering attacks using rotationally symmetric Gaussian low-pass filters of size 3 ˆ 3 and
standard deviation ranging from 0.1 to 1; median filtering attacks using filters of radii of 3–12;
salt and peppers noise attacks using noise intensity ranging from 0.01 to 0.05; JPEG compression
attacks using quality factors of 100% down to 10%. We also performed each of the three different
pixel size replacements (e.g., 24 ˆ 24, 36 ˆ 36, and 48 ˆ 48 pixels replacements), and we then
we compared the performance of our scheme and five peer schemes: namely, Qi et al.’s method,
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Maeno et al.’s method [27], Yang and Sun’s method, Che et al.’s method [28] and Cruz et al.’s
method [29]. The result are summarized in Table 4.

Table 4. Detection results under each simulated attack for 200 watermarked images.

Method
Actual Noise Interference Actual Artificial Tampering

Probability of False Alarm (%) Probability of Miss (%)

Gaussian Median S & P JPEG 24 ˆ 24 36 ˆ 36 48 ˆ 48

Ours 0 17.8 0.8 0.4 32.4 27.2 13.2
Qi 0 39.6 0 9.8 59.2 31.6 13.8

Yang 100 76.4 94.7 8.4 71.2 66.8 59.6
Che 100 64.3 94.5 66.6 100 40.6 40.4

Maeno 100 100 100 22.4 100 100 100
Cruz 8.5 88.6 40.3 24.3 100 100 100

It can be learned from the above table that our method has the lowest probability of false alarm
in actual noise interference and has the lowest miss probability in actual artificial tampering among
the six kinds of method. That means our proposed method obtains the most excellent comprehensive
performance both in the probability of false alarm for four kinds of actual noise interference and the
probability of missing actual artificial tampering. This is due to the fact our saliency map based on
image content is composed of four channel features in different scales. Conventional image noise
can only change a single image feature, such as contrast, color, texture, etc., so the effect of the
saliency map is limited, but malicious tampering operations, such as cutting, replacing, etc., will
make comprehensive information changes in a local area. Therefore, the saliency map will show the
strong changes in this local area.

4. Conclusions

This study proposes a robust image watermarking algorithm based on maximum entropy.
The algorithm uses local energy information as watermarking to embed and extract watermarking.
In the image tampering detection stage, both pixel value and pixel location weighted algorithms
based on the maximum entropy model are utilized. The image tampering detection scheme is
improved by utilizing the difference parameters based on the Lorenz curve and the divergence degree
of the average Manhattan distance between pixels of an all-connected graph. In the experiments, the
proposed algorithm shows excellent performance under high noise interference conditions. In future
study, we will combine a stronger encryption algorithm, such as the asymmetric encryption algorithm
or chaos encryption algorithm, to increase the difficulty of cracking our image watermarking.

Supplementary Materials: The matlab code of our proposed are available online at http://www.mdpi.com/
1099-4300/17/12/7854/s1.
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