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1. Jordan Block and Jordan Basis for CB Models in the Neighborhood of a Double Zero
Bifurcation

1.1. A Jordan Block Always Arise

We will prove that in any CB model, if there is a double zero bifurcation, a Jordan block always
will arise and therefore one has a Bogdanov-Takens bifurcation. If we meet the double zero eigenvalue
condition for CB models (Equations (16) and (17) in the main text), the critical linear matrix is written
as

Lc =


0 β0M1 . . . β0MN
0 α1 + β1M1 . . . β1MN
...

...
. . .

...
0 βN M1 . . . αN + βN MN


It is immediate to see that the vector χ(0) below is an eigenvector for the eigenvalue 0.

χ(0) =


1
0
...
0


With a little bit of algebra, it can be shown that the second condition in the main text

(Equation (17)) is equivalent to impose that the submatrix Lc
N×N has a determinant equal to zero.

If this holds, it always exists an N component vector χ̃(1) = (x̃1, x̃2 . . . , x̃N−1, x̃N) such that

Lc
N×N χ̃(1) = 0

Then if we consider the vector ( ν is arbitrary)

χ(1) ≡ 1
β0 ∑N

j=1 Mj x̃j


ν

x̃1
...

x̃N

 with ν ∈ R

this vector χ(1) is the second vector of the Jordan basis of the critical matrix Lc as the following
equation trivially shows

Lcχ(1) =


0 β0M1 . . . β0MN
0 α1 + β1M1 . . . β1MN
...

...
. . .

...
0 βN M1 . . . αN + βN MN




ν

x̃1
...

x̃n

 =
β0 ∑N

j=1 Mj x̃j

β0 ∑N
j=1 Mj x̃j


1
0
...
0

 = χ(0)

We have then proved that the critical matrix of a generic double zero bifurcation in CB models
will always have two vectors such that

Lcχ(0) = 0

Lcχ(1) = χ(0)

which is the definition of a Jordan block for a double zero bifurcation. Therefore, we proved that when
any CB model undergoes a double zero bifurcation this bifurcation always will be a Bogdanov-Takens
bifurcation.

S2



1.2. Analytical Expression for the Jordan Basis

In Section 1.1 we show that the first vector of the Jordan basis is

χ(0) =


1
0
...
0

 (1)

Therefore, the equation that must be solved to explicitly find the second vector of the Jordan
basis is

Lcχ(1) = χ(0)

Then, the explicit linear equations read

β0M1x1 + β0M2x2+ · · · · · · +β0MN xN = 1
(α1 + β1M1)x1 + β1M2x2+ · · · · · · +β1MN xN = 0

...
...

...
...

...
... =

...
β j M1x1 + β j M2x2+ · · · (αj + β j Mj)xj · · · +β j MN xN = 0

... · · ·
...+

...
...

... =
...

βN M1x1 + βN M2x2+ · · · · · · +(αN + βN MN)xN = 0

(2)

Let us number these N + 1 equations beginning with the first equations as the equation 0 and
the last one as equation N. If we perform the following operation with the equations

equation j)× β0 − equation 0)× β j

We find that
αjβ0xj = −β j

Because neither αj ,β0 or β j are singular

xj = −
β j

αjβ0

And if we choose ν = 0 we find that the second vector of the Jordan basis, which we call χ(1),
also belongs to the two dimensional Jordan block subspace and it is given by

χ(1) = − 1
β0



0
β1
α1
β2
α2
...

βN
αN


(3)

It is important to notice that if we plug-in the Expression (3) in the original linear Equations (2)
the equations are fulfilled and are written in terms of the second condition for the Bogdanov-Takens
Bifurcation (Equation (17) in the main text).

Now we have an analytical expression for the two vectors χ(0) and χ(1), and they belong to the
Jordan block subspace. To find the other N − 1 vectors of the Jordan base, let us suppose the most
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generic case when all the rest of the N − 1 eigenvalues ({λ2, λ3 . . . λN}) are different. Therefore, the
general equation for the N − 1 vectors is (l = 2, 3, . . . , N)

Lcχ(l) = λlχ
(l)

Then the equations are

−λl x
(l)
0 + β0M1x(l)1 + · · · +β0MN x(l)N = 0

(α1 + β1M1 − λl)x(l)1 + · · · +β1MN x(l)N = 0
...

...
... =

...

β j M1x(l)1 + · · · (αj + β j Mj − λl)x(l)j +β j MN x(l)N = 0
...

...
... =

...

βN M1x(l)1 + · · · +(αN + βN MN − λl)x(l)N = 0

(4)

Doing the following operation with the equations

equation j)β0 − equation 0)× β j

we find that

x(l)j =
β j

β0

λl
λl − αj

x(l)0

Then we find that

χ(l) =
λl x

(l)
0

β0



1
β1

λl−α1
β2

λl−α2
...

βN
λl−αN


(5)

Where x(l)0 is a free parameter. Similar to the previous case, if we plug-in the Expression (5) in the
original linear Equation (4) the equations are fulfilled. But now the expression that arises is written in
terms of the analytical general expression of the characteristic polynomial (Equation (15) of the main
text).

2. Two Time Scales Gating Variables

In this section we will analyse when the two time scales gating variables scenario is fullfiled. We
want to prove the statement: if the two time scales gating variables condition holds, then the sum
of the fast gating functions must be amplifying (negative) and the sum of the slow gating functions
must be resonant (positive).

Let us assume that we have two sets of gating variables in a CB model: the fast gating variables
with relaxation times of the order of τF (set of variables F) and the slow gating variables with
relaxation times of the order of TS (set of variables S), i.e.

τk ∼ τF k ∈ F

τl ∼ TS l ∈ S

with
τF
TS
� 1 (6)
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Hence, the Bogdanov-Takens conditions (Equations (16) and (17) in the main text) are written as

1 + τ0

[
∑
l∈S

βl Ml + ∑
k∈F

βk Mk

]
= 0 (7)

1− TS ∑
l∈S

βl Ml − τF ∑
k∈F

βk Mk = 0 (8)

If we define

BMS ≡ ∑
l∈S

βl Ml

BMF ≡ ∑
k∈F

βk Mk

the Equations (7) and (8) become

1 + τ0 [BMS + BMF] = 0 (9)

1− TSBMS − τFBMF = 0 (10)

Then, after some algebra

BMS =
1

TS

1 + τF
τ0

1− τF
TS

(11)

BMF = − 1
TS

1 + TS
τ0

1− τF
TS

(12)

Since τF/TS � 1 we conclude that

BMS > 0 (13)

BMF < 0 (14)

Proving our claim.

3. Quadratic Coefficient Bogdanov-Takens Normal Form

In this section we will show that the quadratic term of the force in the Bogdanov-Takens normal
form is proportional to the second derivative of the I-V curve. Let us consider the generic equation
for a conductance based model (Equation (9), main text)

u̇ = I(t)− I∞(u;~σT ,~η)− IT(u,~x;~σT ,~η)

ẋj = −
xj

τj(u;~σj)
+ β j(u;~σj)u̇ j = 1, 2, . . . , N (15)
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And define

M(1)
i ≡ − ∂IT(u,~x;~σT ,~η)

∂xi

∣∣∣∣
u=u∗ ,xi=0

M(2)
i,j ≡ − ∂2 IT(u,~x;~σT ,~η)

∂xi∂xj

∣∣∣∣∣
u=u∗ ,xi=0

M(2)
i,u ≡ − ∂2 IT(u,~x;~σT ,~η)

∂xi∂u

∣∣∣∣
u=u∗ ,xi=0

F(1) ≡ − ∂I∞(u;~σT ,~η)
∂u

∣∣∣∣
u=u∗

F(2) ≡ − ∂2 I∞(u;~σT ,~η)
∂u2

∣∣∣∣
u=u∗

α
(0)
i ≡ − 1

τi(u∗;~σi)
i = 1, . . . , N

α
(1)
i ≡ − ∂

∂u

(
1

τi(u∗;~σi)

)∣∣∣∣
u=u∗

β
(1)
i ≡ −

∂m∞
i (u;~σi)

∂u

∣∣∣∣
u=u∗

β
(2)
i ≡ −

∂2m∞
i (u;~σi)

∂2u

∣∣∣∣∣
u=u∗

Where u∗ is a Bogdanov-Takens bifurcation point and the indexes go from 1 to N. For simplicity,
let us re-write Equation (15) defining V = (δu, δx1, · · · , δxN). Then Equation (15) expanded around
the bifurcation points up to the quadratic order read

V̇0 =
N

∑
j=1

M(1)
j Vj −

1
2

F(2)V2
0 +

N

∑
j=1

M(2)
j,u V0Vj +

1
2

N

∑
j=1

M(2)
j,j V2

j +
1
2

N

∑
i 6=j

M(2)
i,j ViVj +O(3)

V̇l = α
(0)
i Vl + β j

N

∑
j=1

M(1)
j Vj +

N

∑
j=i

α
(1)
j V0Vj + β

(2)
i

N

∑
j=1

M(1)
j V0Vj +

β
(1)
l

(
−1

2
F(2)V2

0 +
N

∑
j=1

M(2)
j,u V0Vj +

1
2

N

∑
j=1

M(2)
j,j V2

j +
1
2

N

∑
i 6=j

M(2)
i,j ViVj

)
+O(3) (16)

To calculate the normal form, we need to write Equation (16) in the Jordan base. Using the results
obtained in Section 1.2 we define the change of base matrix as

S = [χ(0), χ(1), χ(2), · · · , χ(N)]

With analytical expressions for the Jordan base, we can perform all the calculations of the normal
form explicitly. As Elphick, Tirapegui, Brachet, Coullet and Iooss showed in [1], using the inner
product that the authors define, we can write the adjoint of the homologic operator (that depends on
the critical linear matrix, A(Ĵc)) of any dynamical system as the homologic operator of the adjoint of
the critical linear matrix, i.e. A(Ĵc)† = A([Ĵc]†). Therefore, using this inner product and knowing the
form of the linear matrix operator in a given basis projected in the critical subspace (Ĵc), we can find
all the terms of the normal form of a given bifurcation. When one works in the basis in which the
original critical linear matrix is in its Jordan form, the homologic operator has the form

A(Ĵc) = Jc
α,βcβ

∂

∂cα
− Ĵc (17)
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And the the adjoint of the homologic operator A(Ĵc) is

A(Ĵc)† = (Jc
β,α)
∗cα

∂

∂cβ
− (Ĵc)† (18)

Where cα are the variables of the normal form. In the case of Bogdanov-Takens the operator Ĵc

has the form

Jc =

[
0 1
0 0

]
(19)

Then the adjoint of the homologic operator reads

A(Ĵc)† =

[
1 0
0 1

]
c1

∂

∂c2
−
[

0 0
1 0

]
(20)

Therefore, if the vector ξ(c1, c2)=

(
ξ1(c1, c2)

ξ2(c1, c2)

)
is an element of the kernel of the adjoint of the

homologic operator, then

c1
∂ξ1(c1,c2)

∂c2
= 0

c1
∂ξ2(c1,c2)

∂c2
−ξ1(c1, c2) = 0

It is straightforward to show that at order m in the components (c1, c2) the vector ξ(c1, c2) has
the form

ξ1(c1, c2) = c1ψ(m−1)(c1)

ξ2(c1, c2) = c2ψ(m−1)(c1) + ϕ(m)(c1)

where ϕ(m)(c1) is a monomial in c1 of order m and ψ(m−1)(c1) is a monomial in c1 of order m − 1.
Therefore, the kernel of the homologic operator for the Bogdanov-Takens bifurcation written in the
Jordan basis is

KernelBT

[
A(Ĵc)†

]
=

{
ψ(m−1)(c1)

(
c1

c2

)
, ϕ(m)(c1)

(
0
1

)}
(21)

To obtain the normal form, we must impose the general solubility condition for linear equations
of the form A~x = ~b where A is a linear operator in a finite-dimensional vector space (a matrix), ~x
the unknown vector and ~b a given vector. This condition (Fredholm alternative) is that ~b must be
orthogonal to the adjoint A∗ of A in any nondegenerate scalar product defined in the vector space. In
our case we have two critical variables (c1, c2) and the original physical variables of the CB models
V = (u, x1, x2, . . . , xN) are expressed in terms of (c1, c2) in a series of the form V = U[1](c1, c2) +

U[2](c1, c2) + U[3](c1, c2) + . . . . Where U[r](c1, c2) is a vector whose components are polynomials of
order r in the variables (c1, c2), and at each polynomial order r we have to solve the homological
equation A(Ĵc)U[r](c1, c2) = I[r](c1, c2)− f [r](c1, c2), r = 1, 2, . . . . Where I[r](c1, c2) is a known vector

determined by the previous orders and f [r](c1, c2) =

(
f [r]1 (c1, c2)

f [r]2 (c1, c2)

)
are also unknown, and they

determine the rth polynomial order in the differntial equations of the normal form which are

∂tc1 = f [1]1 (c1, c2) + f [2]1 (c1, c2) + f [3]1 (c1, c2) + . . .

∂tc2 = f [1]2 (c1, c2) + f [2]2 (c1, c2) + f [3]2 (c1, c2) + . . .
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I[n] and f [n] have the form:

I[n] =

(
σ
(1)
n,0 cn

1 + σ
(1)
n−1,1cn−1

1 c2 + · · · · · ·+ σ
(1)
1,n−1c1cn−1

2 + σ
(1)
0,n cn

2

σ
(2)
n,0 cn

1 + σ
(2)
n−1,1cn−1

1 c2 + · · · · · ·+ σ
(2)
1,n−1c1cn−1

2 + σ
(2)
0,n cn

2

)

f [n] =

(
ν
(1)
n,0 cn

1 + ν
(1)
n−1,1cn−1

1 c2 + · · · · · ·+ ν
(1)
1,n−1c1cn−1

2 + ν
(1)
0,n cn

2

ν
(2)
n,0 cn

1 + ν
(2)
n−1,1cn−1

1 c2 + · · · · · ·+ ν
(2)
1,n−1c1cn−1

2 + ν
(2)
0,n cn

2

)

With σ
(1,2)
n−j,j and ν

(1,2)
n−j,j coefficients of the monomial in c1 and c2. The functions ( f [m]

1 (c1, c2), f [m]
2 (c1, c2))

are determined by the soulubility condition applied to the linear homological equation through the
equations 〈

I(m) − f (m), ψ(m−1)(c1)

(
c1

c2

)〉
= 0 (22)〈

I(m) − f (m), ϕ(m)(c1)

(
0
1

)〉
= 0 (23)

We obtain using the inner product described in [1] that for any order we must have

n(σ(1)
n,0 − ν

(1)
n,0 ) + (σ

(2)
n−1,1 − ν

(2)
n−1,1) = 0 (24)

σ
(2)
n,0 − ν

(2)
n,0 = 0 (25)

These two last equations can be satisfied in more than one way and we shall use this freedom.
Apart from this general feature, these two last equations leave an inherent freedom to incorporate
to the normal from f (m) elements that do not belong to the Kernel of the adjoint of the homologic
operator; a freedom which exists in any normal form. In the Bogdanov-Takens bifurcation we have
two extreme choices to write the normal form: The Arnold’s choice and The Takens choice. In the
Arnold’s choice σ

(1)
n,0 = 0 and σ

(2)
n−1,1 = nν

(1)
n,0 + ν

(2)
n−1,1 and σ

(2)
n,0 = ν

(2)
n,0 and the normal form can be

written as a perturbed hamiltonian system [1]. The other extreme choice is the Takens choice with
σ
(2)
n−1,1 = 0 and σ

(1)
n,0− = ν

(2)
n−1,1/n + ν

(2)
n−1,1 and σ

(2)
n,0 = ν

(2)
n,0 . Because in the Arnold’s choice we gain all

the Hamiltonian intuition, in this work we will use the Arnold form for the Bogdanov-Takens normal
form. Then we have that the coefficient of the quadratic term of the normal form is

σ
(2)
2,0 = ν

(2)
2,0

Writing Equation (16) in the Jordan base, we have that

σ
(2)
2,0 = ν

(2)
2,0 = −1

2
F(2)

[
(S−1)1,0 +

N

∑
j=1

(S−1)1,jβ
(1)
j

]

Then we have shown that in the notation of the main text

γ2 ∝
∂2 I∞(u;~σT ,~η)

∂u2

∣∣∣∣
u=u∗

4. The Morris-Lecar Model

4.1. The Model

The model has three conductances: Potassium, Calcium and a leak. In the simplest version of
the model, the Calcium current depends instantaneously on the voltage. Then there is no differential
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equation for the variable m. The Morris-Lecar is representative of the conductance based models that
have excitability class 1 and Class 2 [2], and the global and local bifurcations characteristics of this
kind of neuronal dynamics [3]. The mathematical formulation of the Morris-Lecar model is

v̇ =
1

Cm
[I − gKn(v− EK)− gCam∞(v)(v− ECa)− gL(v− EL)] (26)

ṅ = φ
n∞(v)− n

τ(v)
(27)

with

m∞(v) =
1
2

(
1 + tanh

v−V1
V2

)
(28)

n∞(v) =
1
2

(
1 + tanh

v−V3
V4

)
(29)

τ(v) =
1

cosh v−V3
2V4

(30)

To transform the equations to a dimensionless form we can use the scaling

Table S1. Dimensionless parameters for the Morris-Lecar model.

I g1 g2 g3 u1 u2 u3 c a1 b1 a2 b2
Ī

gL |EL |
gK
gL

gCa
gL

1 EK
|EL |

ECa
|EL |

1 gL
φCm |EL|/V4 -V3/V4 |EL|/V2 -V1/V2

We scale time as
t =

Cm

gL
t̄

and the variable u as
u =

v
|EL|

Then the new equations are

u̇ = I − g1n(u− u1)− g2m∞(u)(u− u2)− g3(u− u3) (31)

ṅ =
n∞(u)− n

τ(u)
(32)

with

m∞(u) =
1
2
[1 + tanh (a2u + b2)] (33)

n∞(u) =
1
2
[1 + tanh (a1u + b1)] (34)

τ(u) =
c

cosh ( a1u+b1
2 )

(35)

Using the non singular change of variable proposed in the main text we have

x = n− n∞(u) (36)

Using definition (8) in the main text we also have

I∞(u) = g1n∞(u)(u− u1) + g2m∞(u)(u− u2) + g3(u− u3) (37)
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Then doing the calculations that we developed for the general case in the main text we obtain

u̇ = I − I∞(u)− g1x(u− u1) (38)

ẋ = − x
τ(u)

− ∂n∞

∂u
[I − I∞(u)− g1x(u− u1)] (39)

Using the definition from the main text

β(u) = −∂n∞

∂u
= −1

2
a1sech2(a1u + b1)

the equations finally take the form

u̇ = I − I∞(u)− g1x(u− u1) (40)

ẋ = − x
τ(u)

+ β(u)u̇ (41)

4.2. Morris-Lecar in a second order derivative form

We begin by doing the time derivative in (40), which leads to

ü = −∂ f (u)
∂u

u̇− g1 ẋ(u− u1)− g1xu̇ (42)

Then using Equation (41) in (42) we obtain

ü = −∂ f (u)
∂u

u̇− g1(u− u1)

{
− x

τ(u)
+ β(u)u̇

}
− g1xu̇ (43)

If we use Equation (40) we have

x =
I − f (u)

g1(u− u1)
− u̇

g1(u− u1)

and if we plug this expression in Equation (43) and consider the definitions for the gating
function of the slowest variable n, i.e.

Gn = τ(u)g2
∂n∞(ū)

∂ū

∣∣∣∣
ū=u

(u− u2)

Then we obtain Moris-Lecar model in its second derivative form

ü =
I − f (u)

τ(u)
− u̇

(
I − f (u)
u− u1

+
∂ f (u)

∂u
+

1− Gn(u)
τ(u)

)
+

u̇2

u− u1
(44)

In the main text we explore the previous equation when we neglect the term u̇2

u−u1
, which is

ü =
I − f (u)

τ(u)
− u̇

(
I − f (u)
u− u1

+
∂ f (u)

∂u
+

1− Gn(u)
τ(u)

)
(45)

We also refer to the reduced model when we additionally neglect the term −u̇
(

I− f (u)
u−u1

)
, which

is

ü =
I − f (u)

τ(u)
− u̇

(
∂ f (u)

∂u
+

1− Gn(u)
τ(u)

)
(46)
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5. Simulations Parameters

5.1. Figure 3

The parameters used for simulations presented in Figure 3 are

Table S2. Parameters Figure 3 top: saddle-node homoclinc bifurcation.

α γ2 γ3 β λ1 λ2
7 ·10−6 -7.7·10−4 -3.5 ·10−3 -5·10−3 -0.1 1

Table S3. Parameters Figure 3 middle: big homoclinc bifurcation.

α γ2 γ3 β λ1 λ2
1.5·10−6 1.9·10−5 -2.1·10−3 -8.8·10−3 -0.1 0.35

Table S4. Parameters Figure 3 bottom: saddle homoclinc bifurcation.

α γ2 γ3 β λ1 λ2
2.8·10−5 -1.8·10−3 -2.6·10−3 -8.3·10−3 -0.1 0.73

5.2. Figure 4

The parameters used for simulations presented in Figure 4 are

Table S5. Parameters Figure 4 top: saddle-node homoclinc bifurcation.

g1 g2 g3 u1 u2 u3 c a1 b1 a2 b2
4 2 1 -1.4 2 -1 1.49 3.45 -0.69 3.33 0.07

Table S6. Parameters Figure 4 middle: big homoclinc bifurcation.

g1 g2 g3 u1 u2 u3 c a1 b1 a2 b2
4 2.2 1 -1.4 2 -1.03 3.13 2 -0.07 2.8 0.51

Table S7. Parameters Figure 4 bottom: saddle homoclinc bifurcation.

g1 g2 g3 u1 u2 u3 c a1 b1 a2 b2
4 2 1 -1.4 2 -1 0.364 3.45 -0.69 3.36 0
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