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Abstract: In this paper, a proposed computational method referred to as Projected Differential 

Transformation Method (PDTM) resulting from the modification of the classical Differential 

Transformation Method (DTM) is applied, for the first time, to the Black–Scholes Equation  

for European Option Valuation. The results obtained converge faster to their associated exact 

solution form; these easily computed results represent the analytical values of the associated 

European call options, and the same algorithm can be followed for European put options. It 

is shown that PDTM is more efficient, reliable and better than the classical DTM and other 

semi-analytical methods since less computational work is involved. Hence, it is strongly 

recommended for both linear and nonlinear stochastic differential equations (SDEs) encountered 

in financial mathematics. 

Keywords: analytical solution; Black–Scholes model; projected differential transform 

method; option valuation; European options; stochastic differential equations 

Mathematics Subject Classification: 35A20; 35R60; 91B70 

 
  

OPEN ACCESS



Entropy 2015, 17 7511 

 

 

1. Introduction 

Pricing of options is a key aspect of financial mathematics and financial engineering. In 1973 Black 

and Scholes derived the most famous and significant valuation model, known as Black–Scholes Model 

for options [1]. The model is used for European or American options—be it a call option or a put option. 

The model is based on some assumptions, among such are the no–arbitrage opportunities, no inclusion 

of transaction costs associated with hedging, the asset price is lognormally distributed, the drift and the 

volatility rates are assumed constants, trading of all securities and derivatives are assumed continuous [2]. 

The assumption of the volatility as a constant function has really posed a challenge in option valuation 

using the Black–Scholes Model, since it is not the case in reality. 

In a bid to address parts of the challenges posed by the aforementioned assumptions, many researchers 

have resorted to different approaches and modified models. Among these are the inclusion of jumps or 

stochastic parameters such as volatility in the price processes of option, Levy processes [3,4], the 

derivative of a no arbitrage determinant theorem for Liu’s stock model in uncertain markets [5], models 

driven by uncertain processes for option pricing [6–8] and so on. 

We remark here that the market value of a call option is a function of the underlying asset price, the 
exercise price, interest rate, expiration time, and the stock volatility [ ]( , , , , )C S E r Tδ . Despite these 

shortcomings, the Black–Scholes Model remains the hallmark of option pricing models for derivative 

security, and still proves very useful and vital both empirically and theoretically for the following 

reasons: the price of the option does not explicitly rely on the preferences of investors—risk –neutral 

valuation relationship (RNVR. Therefore, there is a greater need for better semi-analytical methods for 

solutions of such models resulting from stochastic differential equations (SDEs) and uncertain 

differential equations (UDEs). 

In what follows, we will consider the classical celebrated Black–Scholes option pricing model: 
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where ( ),f f S τ=  is the value of the contingent claim S , at time, τ  0 t≤ τ ≤ , ( ) ( ), 0,S R T+τ ∈ × , 
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where ( )*max ,0S  indicates the large value between *S  and 0. 

Theorem 1. [One-dimensional Ito formula] [9,10] 

For an adapted stochastic process { }: 0tX X t= ≥ , satisfying the stochastic differential equation (SDE): 
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where ( ) ( )1,2, ( )m m t X t C T R= ∈ × . 

For the derivation of Equation (1), Theorem 1 is applied (see [11] and the references therein for other 

necessary details). We remark here that Equation (1) holds for options whose underlying stock do not 

pay dividends provided that [ ]1,2 [0, ]f C R T∈ × , and upon the satisfaction of the assumptions associated 

with the Black–Scholes model. 

Many researchers and authors have attempted to obtain the solution of Equation (1) analytically 

and/or numerically, thereby adopting and using various direct and iterative methods, respectively. The 

classical Black–Scholes model is notable for its explicit closed form solution of European–style options 

(call and put options). On the other-hand, this is not generally true for non-European-style options whose 

closed form solutions do not exist, and even if they do exist, the techniques and approaches are 

complicated and even not easy to obtain using the conventional approaches, or methods, as such, 

Smeureanu and Fanache in [12], by means of several processors, via the finite difference method 

consider numerical solution of the Black–Scholes equation. 

Cen and Le in [13] consider a numerical method based on central difference spatial discretization on 

a piecewise uniform mesh and an implicit time stepping technique for generalized Black–Scholes 

equation. In [14], Mosneagu and Dura apply numerical methods based on finite differences for solving 

Black–Scholes equation. Their intention is to create a general numerical scheme for different types  

of options. 

Uddin, Ahmed and Bhowmik in [15], consider solution methods for the Black Scholes model  

with European options, by studying a weighted average method using different weights numerical 

approximations, and as such approximate the model using finite difference scheme. Algliardi,  

Popivanov and Slavova [16,17] consider the solution of the Black–Scholes equation via a Mellin 

transformation approach. Qiu and Lorenz in [18] study a modification of the Black–Scholes equation 

with regard to existence and uniqueness of solution to the Cauchy problem. 

For the solution of fractional type Black–Scholes equation, Elbeleze, Kilicman and Taib combine the 

homotopy perturbation method (HPM), Sumudu transform, and He’s polynomial [19], Kumar, Kumar 

and Singh in [20] apply a numerical algorithm [HPM], Ahmad et al. in [21] apply the Variational Iteration 

Method (VIM), while Kumar et al. [22], provide an analytical solution for the fractional Black–Scholes 

option pricing equation by homotopy perturbation method with coupling of the Laplace transform. 

Considering the solutions of linear and nonlinear Black–Scholes equations, other methods—Adomian 

Decomposition Method (ADM), modified ADM (MADM), modified VIM (MVIM), homotopy analysis 

method (HAM) and modified HAM (MHAM) are applied [23–25]. 

In solving both ordinary differential equations and partial differential equations of various forms 

including integro-differential equations encountered in finance [26], the fractional type ordinary differential 

equation in [27]; the relatively new semi–analytical method known as differential transform method 

(DTM) is shown to be effective, reliable and easier in application when compared to other  

semi-analytical methods [28,29], even when the results agree. 

In this work, a modification of the DTM referred to as projected differential transform method (PDTM) 

is adopted and presented for the first, in solving the famous Black- Scholes equation in option valuation. 

The remaining part of the paper is structured as follows: in Section 2, we give a brief introduction  

to DTM, PDTM and their fundamental properties; in Section 3, the PDTM is applied to solve some 
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examples of the Black–Scholes equation, while in Section 4, we compare our results with regards to 

graphical interpretation, and in Section 5, we give concluding remarks. 

2. The Differential Transformation Method (DTM) and Its Modification 

In this section, we give a brief introduction to DTM, PDTM and their fundamental properties. 

2.1. Analysis of a Two-Dimensional DTM 

Suppose ( ),r x y  a two-variable function is analytic at ( )* *,x y  in the Domain, D  then, the 

differential transform of ( ),r x y  is defined and denoted as: 

( ) ( )
( ) ( )* *, ,

,1
,

! !

k h

k h

x y x y

r x y
R k h

k h x y

+

=

 ∂
=  ∂ ∂ 

 (5)

and the differential inverse transform of ( ),R k h  is: 

( ) ( )( ) ( )* *
0 0

, ,
k h

k h

r x y R k h x x y y
∞ ∞

= =

= − −  (6)

The following theorems and properties can be deduced from Equations (5) and (6) [30,31]: 

Theorem 2. If ( ) ( ) ( ) ( ) ( ) ( ), , ,   then  , , ,a b a br x y r x y r x y R h k R h k R h k= α ± β = α ± β . 
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,   then  , 1 , 1a
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∂
. 

Theorem 4. If ( ) ( ) ( ) ( ) ( ),
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∂
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Theorem 5. If ( ) ( ) ( ) ( ) ( )*,  then , , * *m mr x y x y R k h k m h m k m h m= = δ − − = δ − δ −   

where: 
( ) {
( ) {

1 , if 
0 , if 

1 , if **
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k mk m
k m
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δ

δ

=− = ≠
=− = ≠

. 

The differential transformation method (DTM) has been studied by many researchers and showed to 

be easier in terms of application when solving both linear and nonlinear differential equations as it converts 

said problems into their equivalents in algebraic recursive form. This is unlike other semi-analytical 

methods: ADM, VIM, HAM and so on, that require the determination of a successive term only by 

integrating a previous component [32,33]. 

Despite the many advantages of the DTM over other semi-analytical methods, some level of difficulty is 

still met when dealing mainly with the nonlinearity of differential equations and differential equations 

with variable coefficients. This again gives room for modification of the DTM in various forms by many 

authors and researchers [34,35]. 

In this work, a relatively new version of the modification referred to as the projected differential transform 

method (PDTM) will be applied to Black–Scholes equations for analytical and numerical solutions. 
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2.2. The Overview of the PDTM 

Suppose ( ),w x t  is analytic at ( )* *,x t  in a domain D , then in considering the Taylor series of ( ),w x t , 

regard is given to some variables vs t=  instead of all the variables as seen in the classical DTM. Thus, 

the projected DTM of ( ),w x t  with respect to t  at *t  is defined and denoted by: 

( ) ( )
*

,1
,

!

h

h

t t

w x t
W x h

h t
=

 ∂
=  ∂ 

 (7)

and as such: 

( ) ( )( )*
0

, ,
h

h

w x h W x h t t
∞

=

= −  (8)

where Equation (8) is referred to as the projected differential inverse transform (PDIT) of ( ),W x h  with 

respect to t . 

2.3. Some Fundamental Theorems and Properties of the PDTM 

Theorem 6. If ( ) ( ) ( ), , ,bv x t v x t v x t= α + β  then ( ) ( ) ( ), , ,a bV x h V x h V x h= α + β   

Theorem 7a. If ( ) ( )* , t
,

n

n

v x
v x t

t

∂
= α

∂
 then ( ) ( ) ( )*

!
, ,

!

h n
V x h V x h n

h

+
= α + . 

Theorem 7b. If ( ) ( )* ,
,

v x t
v x t

t

∂
= α

∂
 then ( ) ( ) ( ) ( ) ( )*

*

1 ! , 1
, 1 , 1

!

h V x h
V x h h V x h

h

+ +
= α = α + + . 
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Theorem 9. If ( ) ( ) ( ) ( ) ( ) ( ) ( )2
* * *

0

, , ,  then , , , .
h

r

v x t p x v x t V x h p x V x r V x h r
=
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3. Applications and Illustrative Examples 

In this section, we solve some examples of the Black–Scholes equations with the proposed modified 

version of the DTM. 

Example 1. Consider the following Black–Scholes equation [25]: 

( )
2

2
1

v v v
k kv

t x x

∂ ∂ ∂= + − −
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 (9)

subject to: 

( ) ( ),0 max 1,0xv x e= −  (10)

Procedure w.r.t. Example 1: 

Taking the PDTM of Equations (9) and (10) gives: 
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where: 

( ) ( ){ }max ,0 max 1,0x xH e e= − −  (19)
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Equation (20) is the exact solution of Equation (9). 

Example 2. Consider the following Black–Scholes equation {Ex 7 & Ex 2 [19,20], for α 1= }: 

( )
2

2 2
2

0.08 2 0.06 0.06 0
v v v

Sinx x x v
t x x

∂ ∂ ∂+ + + − =
∂ ∂ ∂

 (21)

subject to: 

( ) ( )0.06,0 max 25 ,0v x x e−= −  (22)

Procedure w.r.t Example 2: 

Taking the PDTM of Equations (21) and (22) gives: 
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where 0.06max( 25 ,0)A x x e− = − −   
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 (32)

So, simplifying Equation (32) using Equation (31) yields: 

( )
( ) ( )

0.060.06

0.0

0.06

6 0.06 0.06

( , ) max max( 25 ,0)

          1 max 2

 25 ,0 (1

,

)

5 0

t

t t

v x t x x e

x e e

x

e

e e

x

− −

−

− + −  = − − 

= − + −
 (33)

Equation (33) is the exact solution of Equation (21) subject to Equation (22). 

4. Discussion of Results 

We present in this section Figures 1–4 to discuss our obtained results in comparison with their 

associated exact forms. 

 

Figure 1. ( , ) at 2,  65v x t k n= = . 
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Figure 2. ( , ) at 2,  5000v x t k n= = . 

Figures 1 and 2 are 3D plots of solutions to the problem in Example 1 at different values of n  for 

fixed k . 

 

Figure 3. ( , ) for  55v x t n = . 

 

Figure 4. The exact solution , ( , )v x t . 

Figures 3 and 4 are 3D plots of the approximate solution and exact solution (respectively) to the 

problem in Example 2. 
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5. Concluding Remarks 

In this study, a proposed computational method known as Projected Differential Transformation 

Method (PDTM) has been successfully applied, for the first time, to the Black–Scholes Equation for 

European Option Valuation. We solved some illustrative and numerical examples to test the efficiency 

of the proposed method. The results obtained converge faster to their associated exact solutions,  

even with less computation, without linearization or perturbation; showing that the method can also be 

used easily for approximate solutions in a direct form; these easily computed results represent the 

analytical values of the associated European call options, the same algorithm can be followed for 

European put options. 

Finally, we remarked that the PDTM is very efficient, reliable; and faster in application (even without 

giving up accuracy) when compared with the classical DTM [20], ADM [17], HAM and HPM [12]; 

though the results via these methods are in strong agreement. Hence, it is strongly recommended for 

both linear and nonlinear stochastic differential equations (SDEs) encountered in financial mathematics 

and other areas of applied sciences. 
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