Next Article in Journal
Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study
Previous Article in Journal
Estimating a Repeatable Statistical Law by Requiring Its Stability During Observation
Article Menu

Export Article

Open AccessArticle
Entropy 2015, 17(11), 7468-7492; doi:10.3390/e17117468

Information Theoretic Measures to Infer Feedback Dynamics in Coupled Logistic Networks

Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews, Urbana, IL 61801, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Raúl Alcaraz Martínez
Received: 9 July 2015 / Revised: 19 October 2015 / Accepted: 21 October 2015 / Published: 28 October 2015
(This article belongs to the Section Information Theory)
View Full-Text   |   Download PDF [4171 KB, uploaded 28 October 2015]   |  

Abstract

A process network is a collection of interacting time series nodes, in which interactions can range from weak dependencies to complete synchronization. Between these extremes, nodes may respond to each other or external forcing at certain time scales and strengths. Identification of such dependencies from time series can reveal the complex behavior of the system as a whole. Since observed time series datasets are often limited in length, robust measures are needed to quantify strengths and time scales of interactions and their unique contributions to the whole system behavior. We generate coupled chaotic logistic networks with a range of connectivity structures, time scales, noise, and forcing mechanisms, and compute variance and lagged mutual information measures to evaluate how detected time dependencies reveal system behavior. When a target node is detected to receive information from multiple sources, we compute conditional mutual information and total shared information between each source node pair to identify unique or redundant sources. While variance measures capture synchronization trends, combinations of information measures provide further distinctions regarding drivers, redundancies, and time dependencies within the network. We find that imposed network connectivity often leads to induced feedback that is identified as redundant links, and cannot be distinguished from imposed causal linkages. We find that random or external driving nodes are more likely to provide unique information than mutually dependent nodes in a highly connected network. In process networks constructed from observed data, the methods presented can be used to infer connectivity, dominant interactions, and systemic behavioral shift. View Full-Text
Keywords: mutual information; process network; synchronization; chaotic logistic equation; redundancy; synergy; induced feedback mutual information; process network; synchronization; chaotic logistic equation; redundancy; synergy; induced feedback
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Goodwell, A.; Kumar, P. Information Theoretic Measures to Infer Feedback Dynamics in Coupled Logistic Networks. Entropy 2015, 17, 7468-7492.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top