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Abstract: Physical Phenomena’s located around us are primarily nonlinear in nature and 

their solutions are of highest significance for scientists and engineers. In order to have a 

better representation of these physical models, fractional calculus is used. Fractional order 

oscillation equations are included among these nonlinear phenomena’s. To tackle with the 

nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed 

method, Picard’s iteration is used to convert the nonlinear fractional order oscillation 

equation into a fractional order recurrence relation and then Legendre wavelets method is 

applied on the converted problem. In order to check the efficiency and accuracy of the 

suggested modification, we have considered three problems namely: fractional order  

force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher 

order fractional Duffing equations. The obtained results are compared with the results 

obtained via other techniques. 
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1. Introduction 

Importance of fractional calculus [1–3] has increased a lot especially over the past few decades. 

Physical phenomena, describing fractional oscillation equations [4–6], are mainly nonlinear in nature. 

In general, exact solutions of these governing fractional oscillation equations are not available. 

Therefore, different techniques for finding approximate analytical solutions of such problems were 

developed. Recent commonly used techniques are Adomian’s Decomposition Method [7,8], Homotopy 

Perturbation Method [9], Exp-function Method [10], Rational Homotopy Perturbation Method [11], 

Variational Iteration Method [12] and Wavelets Techniques [13–25]. Wavelet techniques, one of the 

relatively new techniques, employed for solving wide range of problems related to various branches of 

engineering and applied sciences. Wavelet techniques are used in image processing, flow injection 

analysis, infrared spectrometry, chromatography, mass spectrometry, ultraviolet-visible spectrometry 

and voltammetry. Wavelets are also used to solve certain problems in quantum chemistry and chemical 

physics, see [13–25] and the references therein. With the passage of time, lots of developments have 

been taking place in this area, which are helpful in increasing the accuracy of these schemes. The most 

common related schemes are Haar Wavelets [14], Harmonic Wavelets of successive approximation [14], 

Legendre Wavelets [15,16,21], CAS Wavelets [17], Wavelet Collocation [18,19,22–25] and Chebyshev 

Wavelets [20]. It is to be highlighted that Abd-Elhameed and Youssri [22] introduced new spectral 

solutions of multi-term fractional order initial value problems with error analysis in the recent past. 

Moreover, Abd-Elhameed et al. [23] extended new spectral second kind Chebyshev wavelets 

algorithm for solving linear and nonlinear second order differential equations involving singular and 

Bratu type equations. It is worth mentioning that Youssri et al. and Doha et al. [24–25] developed an 

excellent scheme which is called Ultraspherical wavelets method and applied the same on Lane–

Emden type equations, some other initial and boundary value problems and hence calculated extremely 

accurate results. Inspired and motivated by ongoing research in this area, we propose Legendre 

Wavelet-Picard Method (LWPM) to solve the nonlinear fractional oscillation equations. The obtained 

results are highly encouraging and reflect an excellent level of accuracy. Finally, solutions obtained by 

LWPM are compared with Variational Iterational Method (VIM) using exact Lagrange multiplied and 

Ultraspherical Wavelets Collocation Method (UWCM) [24]. It is observed that wavelets basis of the 

suggested scheme may be obtained as a direct case of Ultraspherical wavelets, see [22–25] and the 

references therein. 

The fractional order forced Duffing–van der Pol oscillator is given by the following second order 

differential equation [3]: ܦఈ(ݐ)ݕ − ൫1ߤ − (ݐ)ᇱݕ൯(ݐ)ଶݕ + (ݐ)ݕܽ + (ݐ)ଷݕܾ = ݃(݂, ߱, ,(ݐ 1 < ߙ ≤ 2, 
where ܦఈ is the Caputo derivative, ݃(݂, ߱, (ݐ =  represents the periodic driving function of (ݐ߱)ݏ݋݂ܿ

time with period ܶ = 2π/ω, where ߱ is the angular frequency of the driving force, ݂ is the forcing 

strength and ߤ > 0 is the damping parameter of the system. Duffing–van der Pol oscillator equations 

can be expressed in three physical situations: 

(1) single-well ܽ > 0, ܾ > 0; 
(2) double-well ܽ < 0, ܾ > 0; 
(3) double-hump ܽ > 0, ܾ < 0. 
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Caputo’s fractional derivative of order ߙ is given by 

(ݔ)ݕ௔ఈܦ = 1Γ(݊ − ܽ)න(ݔ − ௡ିఈିଵ(ݐ ൬ ൰௡ݐ݀݀ ௫ݐ݀(ݐ)ݕ
௔  

For ܽ < ݔ ≤ ܾ, where ݊ − 1 < ߙ ≤ ݊, ݊߳ℕ. 
2. Legendre Wavelets and Picard’s Iteration 

2.1. Legendre Wavelets 

Wavelets [20] are defined by the following formula, where ܽ and ܾ are dilation and translation 

parameters  ߰௔,௕(ݐ) = |ܽ|ିభమ߰ ൬ݐ − ܾܽ ൰ , ܽ, ܾ ∈ ܴ, ܽ ≠ 0. 
By restricting the parameters ܽ and ܾ to discrete values as ܽ = ܽ଴ି௞, ܾ = ܾ݊଴ܽ଴ି௞, ܽ଴ > 1, 	ܾ଴ > 0,  
we have  ߰௞,௡(ݐ) = |ܽ|ೖమ߰൫ܽ଴௞ݐ − ܾ݊଴൯, ݇, ݊ ∈ ℤ, 
where ߰௞,௡ form a wavelet basis for ܮଶ(ܴ). Legendre wavelets ߰௡,௠(ݐ) = ߰(݇, ݊,݉,  involve four (ݐ

parameters in which 	݊ = 1,2,⋯ , 2௞ିଵ, ݇  is any positive integer, ݉	 is the degree of the Legendre 

polynomials and t is normalized time. They are defined on the interval (−1, 1) as ߰௡,௠(ݐ) = ൝2ೖమܮ෨௠(2௞ݐ − 2݊ + 1), ݊ − 12௞ିଵ ≤ ݔ ≤ ݊2௞ିଵ ,0, otherwise  (1)

where ܮ෨௠(ݐ) = ට ଶଶ௠ାଵ (2) ,(ݐ)௠ܮ

0,1,2, , 1m M= − . For orthonormality, coefficients are used which are given in Equation (2). Here ܮ௠(ݐ) are the Legendre polynomials of degree m and satisfy the following recursive formula ܮ଴(ݐ) = 1, (ݐ)ଵܮ = ,ݐ (݉ + (ݐ)௠ାଵܮ(1 = (2݉ + (ݐ)௠ܮݐ(1 − ݉,(ݐ)௠ିଵܮ݉ = 1,2,3,⋯. 

Legendre polynomial’s are also a special case of Ultrasperical harmonic polynomials [22–25] and can 

also be derived from these directly. 

The solution obtained by Legendre wavelets is of the form  (ݐ)ݕ = ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ஶ
௠ୀ଴

ஶ
௡ୀଵ  

where ߰௡,௠(ݐ) is given by the Equation (1). We approximate (ݐ)ݕ by the truncated series 

(ݐ)௞,ெݕ = ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ . (3)
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Then a total number of 2୩ିଵM conditions should exist for determination of 2୩ିଵM coefficients ܿଵ଴, ܿଵଵ,⋯ , ܿଵெିଵ, ܿଶ଴, ܿଶଵ,⋯ , ܿଶெିଵ,⋯ , ܿଶೖషభ଴, ܿଶೖషభଵ,⋯ , ܿଶೖషభெିଵ. 

Some equations are furnished by the initial or boundary conditions, while for remaining equations 
we replace ݕ௞.ெ(ݐ) in our differential equation to recover the unknown coefficients ܿ௡,௠. 

Convergence 

Convergence of Legendre wavelet method is discussed in [21]. The statement of theorem is as follows: 

Theorem 1. The series solution (3) converges to ݕ(t), when 2୩ିଵ,M → ∞.  

2.2. Picard’s Iteration 

Picard technique is used for solving nonlinear differential equations. Consider the following 

nonlinear, second order differential equation: ݀ଶݐ݀ݕଶ = ݂ ൬ݕ, ൰ݐ݀ݕ݀ + ݃ ൬ݕ, ൰ݐ݀ݕ݀ + ℎ(ݐ),	 
where ݂ ቀݕ, ௗ௬ௗ௧ቁ consists of linear term and ݃ ቀݕ, ௗ௬ௗ௧ቁ consists of nonlinear terms only, with conditions ݕ(ݐ଴) = ܽ, ݐ݀(ଵݐ)ݕ݀ = ܾ. 

Applying Picard technique to Equation (7) converts it into the form  ݀ଶݕ௡ାଵ݀ݐଶ = ݂ ൬ݕ௡ାଵ, ݐ௡ାଵ݀ݕ݀ ൰ + ݃ ൬ݕ௡, ݐ௡݀ݕ݀ ൰ + ℎ(ݐ) 
with conditions ݕ௡ାଵ(ݐ଴) = ܽ, ݐ݀(ଵݐ)௡ାଵݕ݀ = ܾ. 
3. Applications 

Problem 1. Consider the following fractional order forced Duffing–van Der Pol oscillator equation [4] ܦఈ(ݐ)ݕ − ൫1ߤ − (ݐ)ᇱݕ൯(ݐ)ଶݕ + (ݐ)ݕܽ + (ݐ)ଷݕܾ = ݂ cos(߱ݐ)	 , 1 < ߙ ≤ 2, 
subject to the initial conditions (0)ݕ = 1 and ݕᇱ(0) = 0. 

Firstly applying Picard Technique, we have ܦఈݕ௡ାଵ(ݐ) − (ݐ)ᇱ௡ାଵݕߤ + ௡ᇱݕ(ݐ)௡ଶݕߤ (ݐ) + (ݐ)௡ାଵݕܽ + (ݐ)௡ଷݕܾ = ݂ cos(߱ݐ)	 , 1 < ߙ ≤ 2, 
with initial conditions ݕ௡ାଵ(0) = 1 and ݕ௡ାଵᇱ (0) = 0. 

Now applying Legendre wavelets method on the above equation, we have 



Entropy 2015, 17 6929 

 

 

ఈܦ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ ቍ − ߤ ݐ݀݀ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ

௠ୀ଴
ଶೖషభ
௡ୀଵ ቍ + ௡ᇱݕ(ݐ)௡ଶݕߤ (ݐ)

+ ܽ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ ቍ + (ݐ)௡ଷݕܾ = ݂ cos(߱ݐ)	 , 1 < ߙ ≤ 2, 

with initial approximations ݕଵ(0) = 1 and ݕଵᇱ(0) = 0. 
(1) (Single-well ܽ > 0, ܾ > 0). Consider ܽ = 0.5, ܾ = 0.5, ߤ = 0.1, ݂	 = 	0.5, ߱	 = 	0.79. (See Table 1 

and Figure 1). 

Table 1. Comparison of Single-well solution at Picard’s 8th iterationobtained by Legendre 

Wavelet-Picard Method (LWPM) with Variational Iterational Method (VIM) and RK-4, 

for M = 6 and ߙ = 2.  
t VIM Solution 

UWCM [24] 

Solution at M = 6 

LWPM 

Solution at M = 6 
RK-4 Solution 

Error in 

UWCM [24] 
Error in LWPM 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.0 × 10−9 1.2 × 10−10 

0.1 0.99750286 0.99750276 0.99750274 0.99750272 4.0 × 10−8 2.1 × 10−8 

0.2 0.99004534 0.99004513 0.99004508 0.99004504 9.0 × 10−8 4.3 × 10−8 

0.3 0.97772778 0.97772579 0.97772572 0.97772567 1.2 × 10−7 5.2 × 10−8 

0.4 0.96071284 0.96070262 0.96070255 0.96070236 2.6 × 10−7 1.9 × 10−7 

0.5 0.93922114 0.93918360 0.93918327 0.93918299 6.1 × 10−7 2.8 × 10−7 

0.6 0.91352389 0.91341578 0.91341532 0.91341497 8.1 × 10−7 3.5 × 10−7 

0.7 0.88393496 0.88367502 0.88367483 0.88367344 1.6 × 10−6 1.4 × 10−6 

0.8 0.85080112 0.85025195 0.85025145 0.85024907 2.8 × 10−6 2.1 × 10−6 

0.9 0.81449135 0.81343957 0.81343786 0.81343631 3.3 × 10−6 2.5 × 10−6 

1.0 0.77538351 0.77352648 0.77352488 0.77352238 4.1 × 10−6 3.2 × 10−6 

 

Figure 1.Comparison of solutions for different fractional values by RK-4 solution for 

single well case.  
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(2) (Double-well ܽ	 < 	0, ܾ	 > 	0). ܽ	 = 	−0.5, ܾ	 = 	0.5, 	ߤ = 	0.1, ݂	 = 	0.5, ߱	 = 	0.79. (See Table 2 

and Figure 2) 

Table 2. Comparison of Double-well solution at Picard’s 8th iteration obtained by 

Legendre Wavelet-Picard Method (LWPM) with Variational Iterational Method (VIM) and 

RK-4, when M = 6 and ߙ = 2. 
 VIM Solution ࢚

UWCM [24] 

Solution at M = 6 

LWPM 

Solution at M = 6 

RK-4 

Solution 

Error in 

UWCM [24] 

Error in 

LWPM 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.0 × 10−10 1.2 × 10−13 

0.1 1.00249660 1.00249669 1.00249669 1.00249670 1.1 × 10−8 1.0 × 10−8 

0.2 1.00994530 1.00994541 1.00994542 1.00994545 4.0 × 10−8 3.1 × 10−8 

0.3 1.02222113 1.02222170 1.02222174 1.02222179 9.0 × 10−8 5.9 × 10−8 

0.4 1.03911114 1.03911438 1.03911446 1.03911459 2.1 × 10−7 1.3 × 10−7 

0.5 1.06030866 1.06032195 1.06032214 1.06032231 3.6 × 10−7 1.7 × 10−7 

0.6 1.08540584 1.08544861 1.08544887 1.08544906 4.5 × 10−7 1.9 × 10−7 

0.7 1.11388470 1.11400052 1.11400072 1.11400108 5.6 × 10−7 3.6 × 10−7 

0.8 1.14510669 1.14538393 1.14538393 1.14538468 7.5 × 10−7 7.5 × 10−7 

0.9 1.17830101 1.17890549 1.17890570 1.17890664 1.1 × 10−6 9.4 × 10−7 

1.0 1.21255189 1.21377602 1.21377710 1.21377819 2.1 × 10−6 1.1 × 10−6 

 

Figure 2. Comparison of solutions for different fractional values by RK-4 solution for 

double well case. 
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(3) (Double-hump ܽ	 > 	0, ܾ	 < 	0). ܽ	 = 	0.5, ܾ	 = 	−0.5, 	ߤ = 	0.1, ݂	 = 	0.5, ߱	 = 	0.79. (See Table 3 

and Figure 3) 

Table 3. Comparison of Double-Hump solution at Picard’s 8th iteration obtained by 

Legendre Wavelet-Picard Method (LWPM) with Variational Iterational Method (VIM) and 

RK-4, when M = 6 and ߙ = 2. 
 VIM Solution ࢚

UWCM [24] 

Solution at M = 6 

LWPM 

Solution at M = 6 
RK-4 Solution 

Error in 

UWCM [24] 

Error in 

LWPM 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.0 × 10−9 1.0 × 10−11 

0.1 1.00250077 1.00250088 1.00250086 1.00250078 1.0 × 10−7 8.0 × 10−8 

0.2 1.01001232 1.01001263 1.01001258 1.01001240 2.3 × 10−7 1.8 × 10−7 

0.3 1.02256255 1.02256359 1.02256352 1.02256311 4.8 × 10−7 4.1 × 10−7 

0.4 1.04019982 1.04020342 1.04020320 1.04020266 7.6 × 10−7 5.4 × 10−7 

0.5 1.06299669 1.06300891 1.06300878 1.06300754 1.4 × 10−6 1.2 × 10−6 

0.6 1.09105590 1.09109135 1.09109104 1.09108901 2.3 × 10−6 2.0 × 10−6 

0.7 1.12451829 1.12460876 1.12460856 1.12460496 3.8 × 10−6 3.6 × 10−6 

0.8 1.16357278 1.16377998 1.16377964 1.16377494 5.0 × 10−6 4.7 × 10−6 

0.9 1.20846809 1.20890678 1.20890608 1.20890103 5.8 × 10−6 5.1 × 10−6 

1.0 1.25952626 1.26040318 1.26040254 1.26039413 9.1 × 10−6 8.4 × 10−6 

 

Figure 3. Comparison of solutions for different fractional values by RK-4 solution for 

double hump case. 

Problem 2. Consider the ߙ-th order fractional force-free Duffing-Van der Pol oscillator equation [6] ܦఈ(ݐ)ݕ − ൫1ߤ − (ݐ)ᇱݕ൯(ݐ)ଶݕ + (ݐ)ݕܽ + (ݐ)ଷݕܾ = 0	, 1 < ߙ ≤ 2, 
subject to the initial conditions (0)ݕ = 1 and ݕᇱ(0) = 0. 

Firstly applying Picard Technique, we have ܦఈݕ௡ାଵ(ݐ) − (ݐ)ᇱ௡ାଵݕߤ + ௡ᇱݕ(ݐ)௡ଶݕߤ (ݐ) + (ݐ)௡ାଵݕܽ + (ݐ)௡ଷݕܾ = 0, 1 < ߙ ≤ 2, 
with initial conditions ݕ௡ାଵ(0) = 1 and ݕ௡ାଵᇱ (0) = 0. 

Now applying Legendre wavelets method on the above equation, we have 
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ఈܦ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ ቍ − ߤ ݐ݀݀ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ

௠ୀ଴
ଶೖషభ
௡ୀଵ ቍ + ௡ᇱݕ(ݐ)௡ଶݕߤ (ݐ)

+ ܽ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ ቍ + (ݐ)௡ଷݕܾ = 0	, 1 < ߙ ≤ 2, 

with initial approximationsݕଵ(0) = 1 and ݕଵᇱ(0) = 0. Solutions are given in Table 4 and Figure 4. 

Table 4. Comparison of Force-Free Duffing equation solution at Picard’s 8th iteration 

obtained by Legendre Wavelet-Picard Method (LWPM) with Variational Iterational 

Method (VIM) and RK-4, when M = 6 and ߙ = 2. 
 VIM ࢚

Solution 

UWCM [24] 

Solution at M = 6 

LWPM 

Solution at M = 6 
RK-4 Solution 

Error in 

UWCM [24] 
Error in LWPM 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.0 × 10−9 1.2 × 10−9 

0.1 0.99495428 0.99495428 0.99495427 0.99495427 1.0 × 10−8 7.0 × 10−9 

0.2 0.97986771 0.97986769 0.97986765 0.97986761 8.0 × 10−8 4.1 × 10−8 

0.3 0.95488865 0.95488784 0.95488778 0.95488770 1.4 × 10−7 8.3 × 10−8 

0.4 0.92025739 0.92025265 0.92025256 0.92025243 2.2 × 10−7 1.3 × 10−7 

0.5 0.87630062 0.87628321 0.87628308 0.87628280 4.1 × 10−7 2.8 × 10−7 

0.6 0.82342666 0.82337721 0.82337705 0.82337636 8.5 × 10−7 6.9 × 10−7 

0.7 0.76212192 0.76200270 0.76200234 0.76200157 1.1 × 10−6 7.7 × 10−7 

0.8 0.69294873 0.69269483 0.69269436 0.69269338 1.5 × 10−6 9.8 × 10−7 

0.9 0.61654510 0.61605312 0.61605226 0.61604996 3.1 × 10−6 2.3 × 10−6 

1.0 0.53362658 0.53274003 0.53273896 0.53273066 9.3 × 10−6 8.3 × 10−6 

 

Figure 4. Comparison of solutions for different fractional values by RK-4 solution for 

Problem 2.  
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Problem 3. Consider the higher order fractional Duffing equation [5] ܦఈ(ݐ)ݕ + (ݐ)ᇱᇱݕ5 + (ݐ)ݕ4 − (ݐ)ଷݕ16 = 0, 3 < ߙ ≤ 4. 
subject to the initial conditions: (0)ݕ = 0, ᇱ(0)ݕ = ᇱᇱ(0)ݕ 1.91103 = 0, ᇱᇱᇱ(0)ݕ = −1.15874. 
The exact solution, when 4 = ߙ, is given by (ݐ)ݕ = 2.1906 sin(0.9	ݔ) − 0.02247 sin(2.7ݔ) + 0.000045	sin	(4.5ݔ) 
Applying Picard’s method to above considered problem, we have ܦఈݕ௡ାଵ(ݐ) + ௡ାଵᇱᇱݕ5 (ݐ) + (ݐ)௡ାଵݕ4 − (ݐ)௡ଷݕ16 = 0, 3 < ߙ ≤ 4. 
with initial conditions: ݕ௡ାଵ(0) = 0, ௡ାଵᇱݕ (0) = ௡ାଵᇱᇱݕ 1.91103 (0) = 0, ௡ାଵᇱᇱᇱݕ (0) = −1.15874. 
Implementing Legendre Wavelet method to above equation, we have  

ఈܦ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ
௠ୀ଴

ଶೖషభ
௡ୀଵ ቍ + 5 ݐ݀݀ ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ

௠ୀ଴
ଶೖషభ
௡ୀଵ ቍ + 4ቌ෍ ෍ ܿ௡,௠߰௡,௠(ݐ)ெିଵ

௠ୀ଴
ଶೖషభ
௡ୀଵ ቍ − =(ݐ)ଷݕ16 0, 3 < ߙ ≤ 4. 

with initial conditions: ݕ଴(0) = 0, ଴ᇱݕ (0) = ଴ᇱᇱ(0)ݕ 1.91103 = 0, ଴ᇱᇱᇱ(0)ݕ = −1.15874. 
Solutions are given in Table 5 and Figure 5. 

Table 5. Comparison of higher order Duffing equation solution at Picard’s 8th iteration 

obtained by Legendre Wavelet-Picard Method (LWPM) with Variational Iterational 

Method (VIM) and RK-4, for M = 6 and ߙ = 4. 
 VIM Solution ࢚

UWCM [24] 

Solution at M = 6 

LWPM Solution 

at M = 6 
RK-4 Solution 

Error in 

UWCM [24] 

Error in 

LWPM 

0.0 0.00000000 0.00000000 0.00000000 0.00000000 1.0 × 10−9 2.1 × 10−12 

0.1 0.19090972 0.19090974 0.19090975 0.19090978 4.0 × 10−8 3.0 × 10−8 

0.2 0.38065613 0.38065651 0.38065653 0.38065658 7.0 × 10−8 5.0 × 10−8 

0.3 0.56805809 0.56805941 0.56805942 0.56805959 1.8 × 10−7 1.7 × 10−7 

0.4 0.75190092 0.75190395 0.75190402 0.75190437 4.2 × 10−7 3.5 × 10−7 

0.5 0.93092454 0.93092998 0.93093003 0.93093096 9.8 × 10−7 9.3 × 10−7 

0.6 1.10381762 1.10382601 1.10382611 1.10382756 1.6 × 10−6 1.4 × 10−6 
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Table 5. Cont. 

 VIM Solution ࢚
UWCM [24] 

Solution at M = 6 

LWPM Solution 

at M = 6 
RK-4 Solution 

Error in 

UWCM [24] 

Error in 

LWPM 

0.7 1.26921875 1.26922885 1.26922919 1.26923100 2.1 × 10−6 1.9 × 10−6 

0.8 1.42572628 1.42573213 1.42573263 1.42573479 2.7 × 10−6 2.1 × 10−6 

0.9 1.57191725 1.57190182 1.57190210 1.57190495 3.1 × 10−6 2.8 × 10−6 

1.0 1.70637581 1.70629821 1.70630014 1.70630325 5.0 × 10−6 3.1 × 10−6 

 

Figure 5. Comparison of solutions for different fractional values by RK-4 solution for 

Problem 3. 

4. Conclusions 

In this paper, a systematic technique, is employed and executed successfully to solve the emerging 

problems modeled from nonlinear fractional oscillation phenomena. The results are also obtained via 

LWPM, VIM, UWCM and RK-4 method. Comparison with VIM, UWCM of the approximate 

solutions show that UWCM is more accurate as compared to VIM. Moreover, proposed LWPM shows 

slightly better results as compare to UWCM and VIM which is mainly due to the insertion of Picard’s 

iteration technique with the nonlinear part. It is also observed that in certain cases [24], UWCM has 

some edge over LWPM. It is also concluded that suggested scheme (LWPM) may be extended for 

some other nonlinear problems of diversified physical nature. 
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