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Abstract: New patterns of steady-state chemical kinetics for continuously stirred-tank 

reactors (CSTR) have been found, i.e., intersections, maxima and coincidences, for two-

step mechanism A↔B→C. There were found elegant analytical relationships for 

characteristics of these patterns (space times, values of concentrations and rates) allowing 

kinetic parameters to be easily determined. It was demonstrated that for the pair of species 

involved into the irreversible reaction (B and C), the space time of their corresponding 

concentration dependence intersection is invariant and does not depend on the initial 

conditions of the system. Maps of patterns are presented for visualization of their 

combinations and ranking in space time, and values of concentration and rates. 
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1. Introduction 

Recently new properties of simplest chemical systems, linear and non-linear, have been  

discovered [1–9]. It was found that some simple chemical reactions with commensurate parameters 

exhibit previously unknown interesting temporal behavior features. Different classes of new patterns 

have been described for the description of non-steady concentration evolutions in batch reactors (BR) 

and, identically, for longitudinal profiles in plug-flow reactors (PFR), and for Temporal-Analysis-of-

Products (TAP) reactors; in particular, (1) time invariances in reciprocal kinetic experiments,  

(2) intersections and (3) coincidences. All analyzed models presented sets of differential equations, 

either ordinary (BR- or PFR-models) or partial (TAP-reactor models). 

Presently only one class of typical models of chemical reactors was remained out  

of such pattern analysis, viz. algebraic models of open reactors with perfect mixing, i.e.,  

steady-state continuously-stirred tank reactors (CSTRs). 

1.1. Time Invariances in Reciprocal Kinetic Experiments 

In experiments performed in BR or PFR or TAP-reactors from symmetrical initial conditions, 

certain mixed quotient-like functions of selected concentrations from both experiments are always 

equal to the equilibrium constant of the reaction. 

The first-order reversible reaction A↔B presents the simplest example of this phenomenon. To 

demonstrate it, we can design two different, reciprocal experiments, regarding the initial concentration 

of the two chemical species involved. In the first, we record the concentration-time profile of B 

produced from pure A, CBA(t). In the second experiment we record the temporal evolution of the 

concentration of A produced from pure B, CAB(t). The composition of A and B will be the same at the 

end of both experiments, when equilibrium is achieved at t→∞, i.e., Keq = k+/k− = CB(t→∞) / 

CA(t→∞), where Keq is the equilibrium constant of the reversible reaction, and k+ and k− the first-order 

kinetic constants of the forward and backward single reactions, respectively. Therefore, for this 

example a remarkable feature occurs: the ratio of concentrations CBA(t)/CAB(t) is constant in time and 

equal to the equilibrium constant Keq at any time, not only under equilibrium conditions (see Figure 1a, 

Yablonsky et al. [1]). 

A general theory of this phenomenon was presented in [2], based on the property of linear or 

linearized kinetics with microreversibility, dx/dt = Kx, that the kinetic operator, K, is symmetric in the 

entropic inner product. This form of Onsager’s reciprocal relations implies that the shift in time,  

exp (Kt), is also a symmetric operator. It generates the reciprocity relations between the kinetic curves. 

For example, for the Master equation, if we start the process from the i-th pure state and measure the 

probability pj(t) of the j-th state (i not equal j), and similarly measure pj(t) for the process which starts 

at the j-th pure state, then, the ratio of both probabilities, pj(t) / pi(t) will be constant in time and 

coincides with the ratio of equilibrium probabilities. Therefore, in such reciprocal experiments the ratio 

of concentrations will be governed by a thermodynamic relationship if the corresponding substances 

are related to the linear sub-mechanism. 
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Figure 1. (a) Temporal evolution of BA (upper solid curve) and AB (lower solid curve), for 

the system A↔B; (k+, k−) = (3, 1 s−1). The ratio BA/AB is always constant, and equal to  

Keq = k+/k−. (b) Temporal evolution of BA (solid curve) and CA (dashed curve), for the 

system A→B→C; k1 = k2 = 1 s−1. See refs. [1] and [3]. 

Similar reciprocal relations between kinetic curves have been found in pulse-response TAP-studies 

of the Water-Gas-Shift (WGS) reaction over iron oxide catalyst. These data offered an excellent 

confirmation within the experimental error. 

1.2. Intersections 

An intersection of two or more temporal characteristics, for instance, CA(t) and CB(t), means that 

those concentrations can be considered equal at some moment in time, CA(t) = CB(t). As well known, 

phase trajectories do not intersect or merge. Nevertheless, the temporal trajectories may well intersect, 

or not, and this fact is used as additional source of information. 
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1.3. Coincidences 

A coincidence in time means that at least two special events occur at the same point in time. When 

two special events occur at the same value of concentration we have a coincidence in value, i.e.  

CA(t) = CB(t). For example, the culmination point of one concentration dependence may coincide with 

the point at which this dependence intersects with another concentration; or the intersection between 

three concentration dependences may occur at the same moment in time, i.e., a triple intersection. 

Some spectacular examples of coincidences for the irreversible consecutive mechanism A→B→C are 

presented in Figure 1b. At k1 = k2, where k1 and k2 are the kinetic constants of the first and the second 

reaction, respectively, the concentration dependence of BA intersects the concentration dependence of 

CA at its peak, and CA,0/CB, max = e, where CA,0 is the initial concentration of substance A, and Bmax is 

the maximum concentration of substance B, respectively. 

In [7], Constales et al. presented a thorough study of both reciprocal symmetries, times of 

intersections and concentration values at these points, and coincidences as well for the reaction scheme 

A↔B→C in a batch reactor.  

Summing up, the described new patterns open new possibilities: 

(a) For testing the validity of the corresponding model; 

(b) For estimating the parameters of the model based on the occurrence of patterns; 

(c) For predicting kinetic behavior. 

1.4. Goal 

The goal of this paper is to reveal the similar patterns related to the steady-state kinetic behavior of 

reactions in a continuously stirred tank reactor (CSTR). As mentioned, this class of models was still 

not analyzed regarding the possible new patterns. In comparison with previously analyzed reactor 

models (models of BR, PFR and TAP-reactor models), CSTR-models are sets of algebraic equations, 

not differential ones. This creates an additional advantage in obtaining the general analytic relationship 

for new patterns. Also the CSTR is very convenient in change of control parameters, inlet 

concentrations and space time controlled by the flow rate. It is assumed that the temperature in the 

reactor remains constant throughout the reaction, i.e., the isothermal condition is guaranteed. The reader 

is referred to [7,10] to cover the influence of the temperature on the values of the kinetic coefficients. 

1.5. Model 

The general form of CSTR models of complex chemical reactions in homogeneous reactors is: 

Fj − Fj,0

V
=
qVCj − qV,0Cj,0

V
= Rj =∑υij

i

𝑟𝑖 j = 1, 2…n (1) 

where Fj = qVCj and Fj,0 = qV,0Cj,0 [mol∙s−1] are the molar flow rates of the j-th species inside the reactor 

and its inlet, respectively, Cj and Cj,0 [mol∙m−3] are the concentrations of the j-th species inside the 

reactor and its inlet, respectively, and Rj is its rate of species change [mol∙m−3∙s−1] in the course of the 

i-th reaction. Rj = ∑ υiji 𝑟𝑖, where ri is the rate of step of complex chemical reaction [mol∙m−3∙s−1], vij is 

the stoichiometric coefficient of the j-th species in the i-th step. qV represent the flow rate in the reactor  
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[m3∙s−1], qV,0 is the initial flow rate, and V represents the volume of the reactor [m3]. In our case, all 

reactions will be considered as monomolecular (first-order reactions), and there is no change of 

volume during each reaction. Consequently, the flow rate qV = qV,0, and the space time of the reactive 

mixture  can be defined as   V/qV,0, and Rj = (Cj − Cj,0)/ [10]. 

For a heterogeneous catalytic reactor, say a heterogeneous catalytic reactor, similarly τ =
vcat

𝑞𝑉,0
, 

where vcat is the catalyst volume [m3]. In many cases, τ =
Scat

𝑞𝑉,0
, where Scat is the active catalyst surface 

[m2]. Corresponding to these dimensions, the chemical rate has to have the dimension [mol·m−2·s−1]. 

The best known and most studied event of reacting chemical mixture is reaching equilibrium. Based 

on the equilibrium chemical composition, it is easy to find equilibrium constants of all steps of the 

assumed mechanism taking into account the principle of detailed equilibrium (PDE) if necessary. By 

definition, this can be done only if all steps of the mechanism are reversible. However using the 

equilibrium composition, it is impossible to determine kinetic parameters of separate reactions even 

applying the PDE. In contrary to the described traditional approach, we are going to present a method 

for determining the kinetic parameters of separate reactions, both reversible and irreversible, based on 

characteristics of special events (patterns), in particular times of intersections and maxima of 

concentrations dependences, and values of concentrations and rates at temporal points of these events. 

We will try to select a class of chemical mechanism that is as wide as possible for the application of 

this method. Then, we will illustrate this method using as an example the multi-step mechanism which 

includes both reversible and irreversible mechanism. We consider such reversible-irreversible 

mechanism very typical for chemistry of complex reactions. Rigorously speaking, all chemical 

reactions are reversible. However, in reality most of important reactions (reactions of hydrocarbon 

oxidation, hydrogen combustion, enzyme reactions) are generally irreversible. At the same time, some 

of the reactions included into the complex mechanism are reversible, e.g., primary generation of H 

radicals in hydrogen combustion, adsorption of the substrate in the Michaelis-Menten enzyme 

mechanism, etc. That is why this reversible-irreversible mechanism is chosen as a subject for studies in 

our paper. 

As an example, we are using a two-step consecutive reaction A ↔ B → C, where the first reaction 

is reversible and the second one is irreversible. For this mechanism, the CSTR model is: 

{
 
 

 
 

CA(τ) − CA(0)

τ
= RA(τ) = −k1

+CA(τ) + k1
−CB(τ) 

CB(τ) − CB(0)

τ
= RB(τ) = k1

+CA(τ) − (k1
+ + k2)CB(τ)

CC(τ) − CC(0)

τ
= RC(τ) = k2CB(τ) 

 (2) 

where  is the space time, Ci() and Ci(0) are the space time-dependent concentration and the initial 

concentration on the reactor of the i species, respectively. Ri() is the rate of change of the i species. 

The forward and backward kinetic constants for the first reversible reaction are k1
+ and k1

−, 

respectively, and k2 the kinetic constant of the second, irreversible reaction. 

The solution of the kinetic model described in (2) is obtained by isolating the Ci() terms, and, 

assuming κ = 1 + (k1
+ + k1

− + k2)τ + k1
+k2τ

2 , the corresponding concentration-space time 

expressions are simple, as follows: 
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{
 
 

 
 CA(τ) =

CA(0)(1 + k2τ) + (CA(0) + CB(0))k1
−τ

κ

CB(τ) =
(CA(0) + CB(0))k1

+τ + CB(0)

κ
 

CC(τ) = CC(0) + k2τCB(τ) 

 (3) 

Two reciprocal trajectories will be considered. Substituting CAA(0) = 1; CBA(0) = CCA(0) = 0 in (3), 

we obtain: 

{
  
 

  
 CAA(τ) =

1 + (k2 + k1
−)τ

κ
 

CBA(τ) =
k1
+τ

κ
 

CCA(τ) = k2τCBA(τ) =
k1
+k2τ

2

κ

 (4) 

On the other hand, substituting with CBB(0) = 1; CAB(0) = CCB(0) = 0, we have: 

{
 
 

 
 CAB(τ) =

k1
−τ

κ
 

 CBB(τ) =
1 + k1

+τ

κ
 

CCB(τ) = k2τCBB(τ) =
(1 + k1

+τ)k2τ

κ

 (5) 

Explicit expressions for the values of the rates of formation are given in Equations (6) and (7): 

{
  
 

  
 RAA(τ) = −

k1
+(1 + k2τ)

κ

RBA(τ) =
k1
+

κ
 

RCA(τ) =
k1
+k2τ

κ
 

 (6) 

{
 
 

 
 RAB(τ) =

k1
−

κ
 

RBB(τ) = −
k1
− + k2(1 + k1

+τ)

κ

RCB(τ) =
k2(1 + k1

+τ)

κ
 

 (7) 

2. Existence of Intersections and Maxima 

From the detailed analysis of the equations depicted in (4) and (5) we can find the necessary 

conditions to observe the intersections and maxima of the concentration profiles of CAA, CBA, CCA, CAB, 

CBB  and CCB . Some observations can be advanced, that can be easily demonstrated from the 

corresponding equations in (4) and (5): the curves CAA  and CBB  are monotonically decreasing, and 

have trivial intersections at  = 0 and  → ∞. The rates of reaction R plots of these curves are also 

monotonically decreasing. The concentration profiles of C, CCA and CCB, are monotonically increasing, 

and also have trivial intersections for these limiting values of ; also, their corresponding rates of 
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formation are always positive. The curves of CAB and CBA always show a maximum, both occurring at 

the same space time. The ratio CBA/CAB is invariant with the space time, and is equal to k1
+/k1

−. A 

trivial intersection occurs at  = 0, and they coincide identically if k1
+ = k1

−.  

Considering the six expressions for the trajectories in Equations (4) and (5), and the expressions for 

the rates of formation given in Equation (2), the only possible scenarios for intersections and 

coincidences are shown in Table 1. Some of these events always occur; obviously, all trajectories of 

product concentrationCC  and the trajectories of concentrations CAA  and CBB always intersect. Some 

events occur conditionally, i.e., intersections of concentration dependences CAA  and CBA , CBA  and 

CBC , CAB  and CBB , and CAB  and CCB  as well, depending on simple inequalities involving the kinetic 

constants. On the other hand, some intersections are never observed; an interesting example is given by 

trajectories CAA  and CAB ; an illustration of the impossibility of the intersection at any condition is 

shown in Figure 2. The intersection of the corresponding reciprocal pair of trajectories, CBB and CBA, is 

also restricted. If such peculiarity is observed in an experiment, the presented two-step model can be 

dismissed. 

Table 1. Conditions of existence, space time and values of the possible intersections. 

Event Condition Space Time Value 

𝐶𝐴𝐴 = 𝐶𝐵𝐴 if 𝑘1
+ > 𝑘1

− + 𝑘2 

1

𝑘1
+ − (𝑘1

− + 𝑘2)
 

1

𝐶𝐴𝐴
=

1

𝐶𝐵𝐴
= 2 +

𝑘2
𝑘1
+ − (𝑘1

− + 𝑘2)
 

𝐶𝐴𝐴 = 𝐶𝐶𝐴 Always (
𝑘1
− + 𝑘2
2𝑘1

+𝑘2
) + √(

𝑘1
− + 𝑘2
2𝑘1

+𝑘2
)

2

+
1

𝑘1
+𝑘2

 
1

𝐶𝐴𝐴
=

1

𝐶𝐶𝐴
= 2 +

√(𝑘1
− + 𝑘2)

2 + 4𝑘1
+𝑘2 − (𝑘1

− + 𝑘2)

2𝑘2
 

𝐶𝐴𝐴 = 𝐶𝐶𝐵 Always (
𝑘1
−

2𝑘1
+𝑘2

) + √(
𝑘1
−

2𝑘1
+𝑘2

)

2

+
1

𝑘1
+𝑘2

 
1

𝐶𝐴𝐴
=

1

𝐶𝐶𝐵
= 2 −

2(𝑘2 − 𝑘1
+)

𝑘1
− + 2𝑘2 +√(𝑘1

−)2 + 4𝑘1
+𝑘2

 

𝐶𝐵𝐴 = 𝐶𝐶𝐴  

Always 
1

𝑘2
 

1

𝐶𝐵𝐴
=

1

𝐶𝐶𝐴
= 2 +

𝑘1
− + 2𝑘2
2𝑘1

+  

𝑅𝐵𝐴 = 𝑅𝐶𝐴 𝑟𝐵𝐴 = 𝑟𝐶𝐴 =
𝑘1
+𝑘2

𝑘1
− + 2(𝑘1

+ + 𝑘2)
 

𝐶𝐵𝐵 = 𝐶𝐶𝑩 
1

𝐶𝐵𝐵
=

1

𝐶𝐶𝐵
= 2 +

𝑘1
−

𝑘1
+ + 𝑘2

 

𝐶𝐵𝐴 = 𝐶𝐶𝑩 

if 𝑘1
+ > 𝑘2 

𝑘1
+ − 𝑘2
𝑘1
+𝑘2

 

1

𝐶𝐵𝐴
=

1

𝐶𝐶𝐵
= 2 +

𝑘1
−

𝑘1
+ +

𝑘2
𝑘1
+ − 𝑘2

 

𝑅𝐵𝐴 = 𝑅𝐶𝑩 𝑟𝐵𝐴 = 𝑟𝐶𝑩 =
(𝑘1

+)2𝑘2
2𝑘1

+(𝑘1
+ + 𝑘1

−) − (𝑘1
+𝑘1

− + 𝑘1
+𝑘2 + 𝑘1

−𝑘2)
 

𝐶𝐶𝐴 = 𝐶𝐴𝑩 

Always 
𝑘1
−

𝑘1
+𝑘2

 

1

𝐶𝐶𝐴
=

1

𝐶𝐴𝐵
= 2 +

𝑘1
+𝑘1

− + 𝑘1
+𝑘2 + 𝑘1

−𝑘2
(𝑘1

−)2
 

𝑅𝐶𝐴 = 𝑅𝐴𝑩 𝑟𝐶𝐴 = 𝑟𝐴𝑩 =
𝑘1
+𝑘1

−𝑘2
2(𝑘1

−)2 − (𝑘1
+𝑘1

− + 𝑘1
+𝑘2 + 𝑘1

−𝑘2)
 

𝐶𝐶𝐴 = 𝐶𝐵𝑩 Always (
1

2𝑘2
) + √(

1

2𝑘2
)
2

+
1

𝑘1
+𝑘2

 
1

𝐶𝐶𝐴
=

1

𝐶𝐵𝐵
= 2 +

2(𝑘1
− + 𝑘2)

𝑘1
+ + √(𝑘1

+)2 + 4𝑘1
+𝑘2

 

𝐶𝐴𝐵 = 𝐶𝐵𝑩 if 𝑘1
− > 𝑘1

+ 

1

𝑘1
− − 𝑘1

+ 
1

𝐶𝐴𝐵
=

1

𝐶𝐵𝐵
= 2 +

𝑘2
𝑘1
− − 𝑘1

+ 

𝐶𝐴𝐵 = 𝐶𝐶𝑩 

if 𝑘1
− > 𝑘2 

𝑘1
− − 𝑘2
𝑘1
+𝑘2

 

1

𝐶𝐴𝐵
=

1

𝐶𝐶𝐵
= 2 +

𝑘1
+

𝑘1
− − 𝑘2

 

𝑅𝐴𝐵 = 𝑅𝐶𝑩 𝑟𝐴𝐵 = 𝑟𝐶𝑩 =
𝑘1
+𝑘2

𝑘1
+ + 2(𝑘1

− − 𝑘2)
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Figure 2. Impossibility of the intersection of CAA (upper curve) and CAB (lower curve) 

illustrated for the case (k1
+, k1

−, k2) = (1, 2, 3 s−1). 

We observe maxima of concentration and rate curves only in three cases: CAB, CBA and RCA. (see 

Table 2). All the maxima occur at the same space time. The maximum of the rate of formation RCA 

exists, as the rate of formation of C is proportional to the concentration profile of B, i.e., rC(τ) =

k2CB(τ), see (2). 

Table 2. Space time and values of the possible maxima. 

Event Space Time Value 

𝑚𝑎𝑥(𝐶𝐴𝐵) 

1

√𝑘1
+𝑘2

 

𝑚𝑎𝑥(𝐶𝐴𝐵) =
𝑘1
−

𝑘1
− + (√𝑘1

+ +√𝑘2)
2 

𝑚𝑎𝑥(𝐶𝐵𝐴) 
𝑚𝑎𝑥(𝐶𝐵𝐴) =

𝑘1
+

𝑘1
− + (√𝑘1

+ +√𝑘2)
2 

𝑚𝑎𝑥(𝑅𝐶𝐴) 
𝑚𝑎𝑥(𝑅𝐶𝐴) =

𝑘1
+𝑘2

𝑘1
− + (√𝑘1

+ +√𝑘2)
2 

Analyzing the inequalities involving the kinetic constants of the conditional cases depicted in Table 1, 

we can differentiate eight domains of existence, shown in Table 3. The existence of the events is 

associated with the validity of the conditional expressions in the first column. The rest of the columns 

describe the possible combinations of validity of the conditional expressions, being eight in total. The 

domains are plotted in Figure 3. The equilateral triangles represent triples (k1
+, k1

−, k2) in barycentric 

coordinates; the vertex at 12 o’clock represents pure k2, i.e., (0, 0, 1); the vertex at 4 o’clock, pure k1
−, 

i.e., (0, 1, 0), and the vertex at 8 o’clock represents pure k1
+, i.e., (1, 0, 0). For a given point, the values 

(k1
+, k1

−, k2) are obtained by measuring the shortest distance between the point and the left side, right 

side, and the base of the triangle, respectively. 
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Figure 3. Barycentric plot showing the eight possible domains listed in Table 3. 

Table 3. Domains for the existence of intersections between concentration time dependences. 

 D1 D2 D3 D4 D5 D6 D7 D8 

𝑘1
+ > 𝑘1

− + 𝑘2;  𝐶𝐴𝐴 = 𝐶𝐵𝐴  No Yes No No No Yes No No 

𝑘1
+ > 𝑘2; 𝐶𝐵𝐴 = 𝐶𝐶𝑩 ;  𝑅𝐵𝐴 = 𝑅𝐶𝑩  Yes Yes Yes No No Yes Yes No 

𝑘1
− > 𝑘1

+; 𝐶𝐴𝐵 = 𝐶𝐵𝑩  Yes No No Yes Yes No No No 

𝑘1
− > 𝑘2; 𝐶𝐴𝐵 = 𝐶𝐶𝑩;  𝑅𝐴𝐵 = 𝑅𝐶𝑩  Yes Yes Yes Yes No No No No 

3. Direct Application of the Intersection Characteristics (Times and Concentration Values) 

The expressions for the value and space time of the events shown in Tables 1 and 2 are useful to 

calculate directly the kinetic constants. For example, the value of k2 can be found as the inverse of the 

space time at the intersection of the events CBA  = CCA , CBB  = CCB , and RBA  = RCA  (see Table 1). 

Knowing then the space time at the intersection of the events CCA = CABor RCA = RAB , k1
− / (k1

+k2), see 

Table 1, we can extract the inverse equilibrium constant, Keq = k1
−/k1

+. From the inverse of the space 

time at the intersection CAB  = CBB , 1/(k1
− − k1

+), we can obtain the difference between these two 

kinetic constant of the reversible reaction. As a result, we are able to determine all parameters from 

three independent values of intersection space times. The chosen intersections can be considered as 

independent events, and other events can be considered as dependent ones and their characteristics can 

be calculated using only three determined kinetic parameters. Certainly, we can choose different sets 

of independent events, all listed in Tables 1 and 2. The most convenient choice can be based on 

simplicity of the analytical expressions. It is interesting to use the expression for the space time of the 

maxima, max = (k1
+k2)−1/2 given in Table 2, as, for example, τ(CCA  = CBB)

τ𝑚𝑎𝑥
2 =  k1

−. Parallel 

comparison of the kinetic constants obtained from different events is an elegant test to validate the 

kinetic model. 

An interesting case is the invariant space time of the intersection between the concentration profiles 

of B and C, CB() and CC(), respectively. As mentioned, assuming the initial concentration of C,  

CC(0) = 0, the space time of intersection is 1/k2. This result is general, and it doesn’t depend on the 

origin of B, i.e., the space time of the intersection doesn’t vary if we start from pure B, or if B is 
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produced from pure A. Furthermore, we can expand this result to a system consisting on a cascade of 

reactions, ending with an irreversible one: the space time of the intersection for the two chemical 

species involved in the irreversible reaction corresponds to the inverse of its kinetic coefficient. This 

result is restricted if the two trajectories for these chemical species depart from the same reagent, 

whichever it is. This is an important result and a fingerprint of the described kinetic model in a CSTR. 

A special case is obtained if k1
+ = k2; if so, the space time corresponding to maximum of the curves 

listed in Table 2 coincides with 1/k1
+ = 1/k2, and a triple intersection is observed: in Figure 4 is shown 

an illustration of this triple intersection. Further discussion of the existence of triple intersections will 

be given in the next section. 

 

Figure 4. Triple intersection between CAB (dashed curve), CBB (solid curve) and CCB 

(dot-dashed curve) at  = 1/k1
+, for the case (k1

+, k1
−, k2) = (k1

+, 2k1
+, k1

+). k1
+ = 0.25 s−1. 

4. Ordering Domains and Coincidences 

The relationship between each pair of events are shown in Figures 5–7. The values (space time, 

concentration, or rate, depending on the figure) at each region are ranked depending on the color 

legend, as follows: if both events exists and the corresponding left value is smaller, the region is 

colored in light blue, whereas if the right value is smaller, the color is light yellow. The regions where 

only exists the left side are colored in dark blue, and the regions where exists exclusively the right side 

are colored in dark yellow. Black means that neither the left nor the right side exists. In the appendix is 

shown the analysis of two examples in Figure 6. 

Let’s focus our attention in Figure 5, where is shown the comparison between the corresponding 

space time values at the intersection of several pairs of events. In the plots we have two colors that 

indicate a partial restriction (dark yellow and dark blue), and one color indicating a total restriction 

(black, so both the left and the right event are not observed). In this case, if an event is restricted it 

means that the value of the space time when the event takes place is negative. The limits of the regions 

between these three colors correspond to the points (k1
+, k1

−, k2) where at least one value of space time 
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(left or right) is zero, as follows: the limit dark yellow–black corresponds to space time of the right 

side event equal to zero; the limit dark blue–black corresponds to a space time of zero for the left side 

event. 

 

Figure 5. Ordering of the space time values for the indicated pair of events. 

No intersection occurs between regions colored in dark blue and dark yellow, excepting single  

point intersections between regions in black, dark blue and dark yellow, as seen in Figure 5,  

(AA=BA) ≶ (AB=CB), (BA=CB) ≶ (AB=BB), (BA=CB) ≶ (AB=CB) and (AB=BB) ≶ (AB=CB). At these 

single point intersections, both the right and the left side events have a value of space time equal to 

zero. These four combinations of intersections are the only ones that show all the five colors, and all 

possible cases arise, depending on the values of the parameters. 

We should stress out that the regions of the triangular plots shown in Figure 5 that are colored in 

black, dark blue or dark yellow, are replicated exactly, and with the same colors, in Figure 6, where is 

shown the comparison between the concentration values of the same pair of events, because the event 
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happens at a negative value of space time, and so is restricted, and not observed. As it is possible to 

obtain positive values of concentration at negatives values of space time, we are no able to interpret the 

limits between the colors black–dark blue and black–dark yellow as points (k1
+, k1

−, k2) of zero 

concentration for the left or right event, respectively. One of the figures in Figure 5, AA=CA ≶ AB=BB, 

which contains only these three colors, is exactly the same in Figure 6; this is the only case where a 

figure contains only these “restrictive” colors. 

 

Figure 6. Ordering of the concentration values for the indicated pair of events. 

The regions colored in light blue or light yellow indicate the existence of the two compared events. 

For the points (k1
+, k1

−, k2) where the value of the left side event is larger than the value of the right 

side event, the point is colored in light yellow, or in light blue otherwise. The points limiting the 

regions colored in light yellow and light blue corresponds to points of equal value of the two compared 

events. When comparing these regions in the triangular plots shown in Figures 5 and 6, we can observe 
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that the total region occupied by these colors remains unchanged, for the same comparison of events, 

but the relative distribution of both light blue and light yellow colored regions can change. For some  

of the triangular plots, these two colors occupy all the equilateral triangle: (AA=CA) ≶  (BB=CB),  

(BA=CA) ≶ (BA=CB), (BA=CA) ≶ maxAB and (CA=AB) ≶ (CA=BB), in both Figures 5 and 6. This last 

case, (CA=AB) ≶ (CA=BB), and also (BA=CB) ≶ (AB=CB), are the only cases where both light blue and 

light yellow regions remain unchanged in Figure 5 and Figure 6. 

 

Figure 7. Ordering of the rate values for the indicated pair of events. 

 

(a) 

 

(b) 

Figure 8. Ordering of the concentration values for the indicated pair of events, (a) 

departing from pure A, and (b) departing from pure B. 
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In Figure 8 are shown the comparison of the concentration values at the intersections of two  

series of concentration profiles: in Figure 8a, (AA=BA) ≶  (AA=CA), (AA=BA) ≶  (BA=CA) and  

(AA=CA) ≶ (BA=CA), all departing from A, and in Figure 8b, the same set of comparisons but departing 

from B. In the first series of triangular plots, in Figure 8a, we can observe that the three plots share an 

unique curve, k1
+ = k1

− + 2k2, delimiting two regions colored in light blue and light yellow: at these 

values of the kinetic constants, there is a triple intersection between the concentration profiles obtained 

starting from A: AA, BA and CA. On the other hand, in the Figure 8b, the limiting curve between the 

light blue and light yellow colored regions, repeated in the corresponding three plots, is k1
− = k1

+ + k2; 

a triple intersection occur at those values of the kinetic constants that satisfy this equation between the 

concentration profiles departing from B: AB, BB and CB. Besides, in this case, if k1
+ = k2, the 

intersection occurs at the maximum of AB: this special point (k1
+, k1

−, k2) = (0.25, 0.50, 0.25 s−1), is 

observed in Figure 8b, for the case (AB=BB) ≶  (AB=CB), in the crossing point of the curves  

k1
− = k1

+ + k2 and k1
+ = k2, and illustrated in the plots shown in Figure 4. 

An interesting remark are the values of the intersections of some of the curves shown in Figures 5 

and 6, at the sides of the equilateral triangles. These intersections points were studied previously for 

the case where k1
− = 0, i.e., A→B→C, by Yablonsky et. al. [3]; they defined some special points: the 

Euler point, k1
+ = k2; the Acme point, k1

+ = 2k2, and the Golden point, k1
+ = ·k2, where  is the golden 

ratio,  = (√5 + 1) / 2 = 1.618034…. The Euler point, at the middle of the left side of the triangular 

plots, appears in several of the plots shown in Figures 5 and 6. The Acme point can be observed, for 

instance, in the plots for (AA=BA) ≶ (AA=CA) in both figures, in (AA=CA) ≶ (BB=CB) in Figure 5, and 

in (BA=CA) ≶ (AB=BB) in Figure 6. The Golden point can be observed in some intersections at the base 

side of the triangular points (k2 = 0) in Figure 6: in (BA=CA) ≶ maxAB and (BA=CB) ≶ maxAB. Simple 

functions of the Golden point can be observed in some triangular plots at k1
− = 0, in Figure 5: in  

(AA=BA) ≶ (AA=CB), (AA=BA) ≶ (BA=CB), (AA=BA) ≶ maxAB and (BA=CB) ≶ maxAB, intersections at 

the left side of the triangular plots occur at k1
+ = (ϕ + k2. The reader is referred to Figures A2 and A3 

in the appendix to find the full spectrum of plots for comparisons in space time and concentration. 

5. Conclusions 

For steady-state kinetic models of CSTRs, there were found new patterns of kinetic behavior, 

similar to previous results for non-steady kinetic models of BR and TAP reactor. It was demonstrated 

using two-step mechanism A↔B→C as an example. There were obtained simple relationships 

between characteristics of these patterns, i.e., space times of kinetic dependences intersections and 

maxima, values of concentrations and reaction rates as well. It was shown that these relationships are 

useful for efficient determining the kinetic parameters. For the pair of species involved into the 

irreversible reaction (B and C), the space time of their corresponding concentration dependence 

intersection is invariant and does not depend on the initial conditions of the system. Map of patterns were 

presented for visualization of their combinations and ranking in space time, and values of concentration 

and rates. These maps can be useful for predicting kinetic behavior and for mechanism discrimination. In 

the future, these studies will be continued for more general cases, taking advantage of the simplicity of 

the algebraic CSTR models in comparison with differential models of BR and TAP reactors.  
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Appendix 

1st case: (AA=BA) ≶ (AB=CB), see Figure A1a: 

The subdomains are bordered by the lines k2 − k1
− = 0 and k1

+ − k1
− − k2 = 0, and by an arc of the 

ellipse k2
2 − (k1

+ + k1
−)k2 + ( k1

+ − k1
−) k1

+ = 0, which is defined uniquely by the four points  

(k1
+, k1

−, k2) = (1/2, 1/2, 0), (1/2, 1/4, 1/4), (0, 1/2, 1/2), (0, 1, 0), centered in (1/5, 3/5, 1/5). 

2nd case: (BA=CA) ≶ maxAB, see Figure A1b: 

The subdomains are bounded by an arc of the quartic curve (k1
+ − 2k1

−)k2 + 2(k1
+)3/2(k2)1/2 − (k1

−)2 

− k1
+k1

− + (k1
+)2 = 0, which osculates with the vertical line k1

+ − k1
− = 0 at (1/3, 1/3, 1/3) and with the 

horizontal line k2 = 0 at (1/−1/), where  is the golden ratio. 

 

 

(a) (b) 

Figure A1. Subdomains of existence for the intersections in concentration of  

(a) AA =BA ≶ AB=CB and (b) BA =CA ≶ maxAB. 
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Figure A2. Ordering of the space time values for the indicated pair of events. 
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Figure A3. Ordering of the concentration values for the indicated pair of events. 
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