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Abstract: This paper proposes a new four-dimensional hyperchaotic map based on the 

Rabinovich system to realize chaotic encryption in higher dimension and improve the 

security. The chaotic sequences generated by Runge-Kutta method are combined with the 

chaotic sequences generated by an exponential chaos map to generate key sequences. The 

key sequences are used for image encryption. The security test results indicate that the new 

hyperchaotic system has high security and complexity. The comparison between the new 

hyperchaotic system and the several low-dimensional chaotic systems shows that the 

proposed system performs more efficiently. 
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1. Introduction 

In recent years, chaos [1–4] has been used widely in encryption schemes. In 1979, Rossler [5] 

described the first hyperchaos system. Based on some classical systems, many scholars have made new 

development [6,7], but even so, generating a new hyperchaotic system is still a challenge. 
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Based on the Chen system, Jia [8] constructed a four-dimensional hyperchaos by adding one 

dimension and changing xy to y2. Based on the Rossler system, Deng [9] constructed a new four 

dimensional hyperchaotic Rossler system by adding a feedback control. Based on the Lü system,  

Shen [10] added one new nonlinear term and Pang [11] added two nonlinear terms to construct the 

four-dimensional hyperchaos. Huang et al. constructed a four-dimensional non-linear dynamics  

system [12] based on the features of nonlinear parts of Qi attractor and Chen attractor. Zhang [13] 

constructed a Qi unified hyperchaos system by adding linear feedback control and new dimensions in 

the Qi chaos system. In addition, some three-dimensional chaotic systems, such as chaotic financial 

system [14] and Rabinovich system [15], are proposed and proved. These three-dimensional systems 

provide a reference and basis for future studies. 

In all the chaotic systems, the hyperchaotic system has two or more than two positive Lyapunov 

exponents. To generate a hyperchaotic system, it needs at least four dimensions for the integer order 

continuous autonomous system. Chaotic sequences of hyperchaotic system are more dependent on the 

parameters and the initial conditions, so its dynamic behaviors are more difficult to predict and  

the chaos attractor is more complex. Diffusion and confusion can be carried out simultaneously in several 

dimensional spaces. Therefore, hyperchaotic system has a distinct advantage over low  

dimensional chaos. 

2. Design and Dynamic Behavior Analysis of New Hyperchaotic System 

In this section, a new hyperchaotic system is constructed and proved to be hyperchaotic. Then the 

dynamic behaviors of this new hyperchaotic system are presented. Finally, the exponential chaotic 

map is introduced. The proposed hyperchaotic system will be combined with the exponential chaotic 

map to design a pseudorandom number generator (PRNG) in Section 3. 

2.1. Design of New Hyperchaotic System 

Rabinovich system, closely associated with Lorenz chaotic system, is described as follows: 
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The dynamic properties of this system and that of the Lorenz system are similar, but they are not 

topology equivalent. When a = 4, b = d = 1, 4.84 < h < h0 (where h0 (≥4.92) is the value of one of the 

features), the system is chaotic. By adding a new parameter w to the Rabinovich system, a new 

hyperchaotic system is constructed. It is: 
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where xy is fed back into the new parameter w. The appearance of chaos attractor is controlled by the 

parameters. 
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As we know, hyperchaotic system must meet the following conditions: 

(1) The dimension of the phase space of an autonomous system is at least four. 

(2) There are two equations at least to increase the instability of the system. The two equations have 

one nonlinear term at least, respectively. 

(3) The system has two or more than two positive Lyapunov exponents. Moreover, the sum of the 

four Lyapunov exponents is less than zero. 

(4) The Lyapunov dimension of the system is a fraction. 

For the proposed system, the first two conditions are satisfied obviously. Now we consider the last 

two conditions. When a = 4, b = −0.5, d = 1, h = 8.1 and c = −2.2, the four Lyapunov exponents of the 

proposed system, calculating by Wolf algorithm, are λL1 = 1.090046, λL2 = 0.012243, λL3 = −3.105106 

and λL4 = −4.697183. Thus the system meets the third condition. The Lyapunov dimension can be 

calculated by Kaplan-Yorke conjecture: 
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Then the system meets the fourth condition. So the proposed system is a hyperchaotic system. 

Lyapunov exponent characterizes the separation rate of infinitesimally close trajectories. The bigger 

the Lyapunov exponent is, the faster the trajectories separate is. Moreover, the maximal Lyapunov 

exponent characterizes the typical dynamic speciality of a system. We have compared the Lyapunov 

exponents of the proposed hyperchaotic system and that of other hyperchaotic systems. The results are 

shown in Table 1. 

Table 1. Lyapunov exponents comparison. 

Hyperchaotic system λL1 λL1 λL1 λL1 
Proposed 1.090046 0.012243 −3.105106 −4.697183 
Rössler system 0.112 0.019 0 −25.188 
Reference [16] 0.648 0.153 0 −38.468 

Obviously, the maximal Lyapunov exponent of the proposed hyperchaotic system is bigger than 

that of other systems. So the proposed system has better dynamic characteristics. 

2.2. Dynamic Behavior Analysis of New Chaotic System 

2.2.1. Dissipation and Existence of Hyperchaotic Attractor 

In Equation (2), when a = 4, b = −0.5, d = 1, h = 8.1 and c = −2.24, there is 
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. That is, the system is a dissipative system. For the 

volume element of which initial volume is V0. When t→∞, it exponentially converges to 0 with the 

rate, a + b + d − c, along the system track. That is, the track curve of the system will eventually be 

fixed to an attractor. When a = 4, b = −0.5, d = 1, h = 8.1, c = −2.2 and the initial value is  

[0.8, 0.3, 10.1, 4.5], two dimensional phase planes of the chaotic attractors of the hyperchaotic 

Rabinovich system is shown in Figure 1. 
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Figure 1. Phase planes of new Rabinovich system. (a) x-y phase plane; (b) x-z phase plane; 

(c) y-z phase plane; (d) z-w phase plane. 

(a) (b) 

(c) (d) 

It is shown that the proposed Rabinovich map has clear strange attractor in two-dimensional planes. 

Numerical simulation proves the existence of the chaotic attractor. The x-y-z phase planes of the 

chaotic attractors of the proposed Rabinovich system is shown in Figure 2a. The x-y-w phase planes of 

the chaotic attractors are shown in Figure 2b. From Figures 1 and 2, we can see the strange attractors 

of the proposed system clearly. 

Figure 2. (a) x-y-z phase plane; (b) x-y-w phase plane. 

(a) (b) 

2.2.2. Equilibrium and Stability 

When a = 4, b = −0.5, d = 1, h = 8.1, c = −2.2, set 0==== wzyx  , we can find the equilibrium 

points of the system. In the equilibrium point P0(0,0,0,0), Jacobi matrix is: 



Entropy 2015, 17 185 

 

 



















−
−

−
−

=

c

d

bh

ha

J

000

000

00

00

0
. (4) 

The eigenvalues of the Jacobi matrix are −2.2, −1, 76.775 and −80.275. If there is at least one 

eigenvalue of the Jacobi matrix of which the real part is greater than 0, then the equilibrium state is 

unstable. Calculations shows that the equilibrium point P0(0,0,0,0) is unstable. For the remaining eight 

equilibrium points, each equilibrium point has at least one eigenvalue of which the real part is greater 

than 0. Therefore, the equilibrium points are all unstable. 

2.2.3. Non-periodic Flow 

Using fourth-order Runge-Kutta method, we can get the chaotic sequences of the proposed system 

with step size 0.01. When a = 4, b = −0.5, d = 1, h = 8.1 and c = −2.2, we can get time responses of the 

four variables. The four variables of the proposed system change with time t are shown in Figure 3. As 

can be seen from this figure, each variable changes on a certain range over time. Obviously, the change 

of variable shows a disorderly and unsystematic characteristic, not a periodic characteristic. 

Theoretical analysis and numerical simulation show that the proposed system has the following 

characteristics: qualified dimensionality is greater than or equal to 4; there are two equations at least 

which have at least one nonlinear term; it has dissipative structure and two positive Lyapunov 

exponents; equilibrium points are unstable; strange attractors can be observed clearly on three 

dimensional phase planes. Therefore, the proposed system is a hyperchaotic system. 

Figure 3. State variables of proposed system change with time t. (a) Change of parameter x; 

(b) Change of parameter y; (c) Change of parameter z; (d) Change of parameter w. 

(a) (b) 

(c) (d) 
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2.3. Exponential Chaos Algorithm 

A low-dimensional chaotic map is just a simple iteration. Its iterative process is too singular, with 

less initial values and parameters. It has a stable periodic window, but the chaotic sequence generation 

speed is faster than in a hyperchaotic system, so we combine the proposed hyperchaotic map and the 

one-dimensional exponential chaos map together to generate key-stream sequences to get better 

performance. The exponential chaos map [17] is shown as follows: 

1 (mod 1)nx
nx index+ = . (5) 

where the variable x∈[0, 1] and the parameter index is an arbitrary real number greater than 1. 

Let index = 200, x0 = 0.05 and the iteration number be 10,000. The chaotic sequence values 

generated by the exponential chaotic map are shown in Figure 4. Moreover, the sequence is  

even-distributed in the interval [0, 1]. The histogram of the sequence distribution is shown in Figure 5. 

Figure 4. Chaotic sequence values of exponential chaotic map. 

 

Figure 5. Histogram of the exponential chaotic sequence. 

 

3. Design of Pseudo-random Sequence Based on Hyperchaotic Map 

In order to improve encryption security, the pseudo-random sequence is designed affected by 

plaintext: 

(1) Chaotic sequences preprocessing 
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Let the four chaotic sequences obtained by the hyperchaotic map be {xn}, {yn}, {zn} and {wn}, 

respectively. The sensitivity of chaotic trajectories to the initial conditions is the typical characteristic 

of chaos. It is also a cause of applying chaos to encryption, but some values at the beginning don’t 

meet the sensitivity to the initial conditions, so to get better randomness, the previous N0 numbers of 

the four sequences are discarded. The new sequences are denoted still as {xn}, {yn}, {zn} and {wn}, 

respectively. Here we set N0 = 100. 

(2) Determining the size of chaotic sequence 

The plain image is cut into 256 × 256 blocks. Then the size of each chaotic sequence {τn} (τ = x, y, z, w) 

need to be 256 × 256/4, so the total length of the sequence for each block is 256 × 256 when the four 

sequences are put together. When the size of the plain image is M × N, then the final size of the chaotic 

sequence is M × N. The sequence obtained in this stage is denoted by {zn} (n = 1, 2, M × N). 

(3) Chaotic sequence normalization 

Normalize the four chaotic sequences as follows: 

min

max min

n
n

z z
z

z z

−′ =
−

 (6)

where zmax denotes the maximum value and the minimum value of the sequence {zn}, respectively. The 

sequence obtained in this stage is denoted by {z′n}. 

(4) Exponential chaos processing 

The values in the sequence {z′n} are put into the exponential chaos map in Equation (5). Here we 

set the parameter index = 200 in Equation (5). This parameter, index, is used as a key. The iteration 

number, itera, of each value in the sequence {zn} is: 

(50 ) 10nitera ceil z′= × + , (7) 

where ( )ceil ⋅  is the rounded up function. 

At this point, we get a pseudo-random sequence, Rand. The size of this sequence is M × N. And this 

sequence values in [0, 1]. The generation process of the pseudo-random sequence, Rand, is shown in 

Figure 6: 

Figure 6. Pseudo-random sequence generation process. 

 

4. Design of Image Encryption Algorithm Based on Hyperchaotic Map 

4.1. Encryption Algorithm 

Image encryption schemes are usually implemented in two steps: the first step is image scrambling, 

and the second step is pixel substitution. Image scrambling is carried out in the spatial domain. An 

image can be described by the position and the pixel value. Image scrambling is to change the position 
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relationship between the pixels in the image. It changes the image from an original digital image into a 

noise-polluted image. Pixel substitution is implemented by XOR or other operation with other 

sequence or matrix to change original image pixel value. 

(1) Image scrambling 

In image scrambling stage, the chaotic sequence used in scrambling is selected from the  

pseudo-random sequence Rand generated by the pseudo-random sequence generator. 

(A) Plain image preprocessing 

Let the size of the plain image be Mini × Nini. The plain image is cut into 256 × 256 blocks. The 

shortfall is complemented with pixel value 1. Let the size of the complemented plain image be M × N. 

Then the size of the cipher image is M × N too. So the size of the original image, Mini × Nini, needs to 

be sent to the receiver. Thus the receiver can know which are the plain pixels and which are the 

padded pixels. The following operations are implemented in each 256 × 256 block. 

(B) Scrambling in block 

Scrambling in block is carried out as follows: fetch the E different values {Ci|i = 0, 1, 2,…, E − 1} 

from the chaotic sequence sequentially. Sort the sequence {Ci|i = 0, 1, 2,…, E − 1}, and we get the 

sorted sequence {Pi| i = 0, 1, 2,…, E − 1} and an index sequence {Ti| i = 0, 1, 2,…, E − 1}, where the 

symbol Ti is the position index of which Ci is in P. According to the index sequence T, moves the Ti 

row to the i-th row. Then take the F different values {Dj|j = 0, 1, 2,…, F − 1} from the chaotic 

sequence sequentially. Sort the sequence {Dj|j = 0, 1, 2,…, F − 1}, and we get the sorted sequence  

{Qj|j = 0, 1, 2,…, F − 1} and an index sequence {Sj|j = 0, 1, 2,…, F − 1}, where the symbol Sj is 

position index of which Dj is in Q. According to the index sequence S, move the Sj column to the j-th 

column. Column scrambling is carried out. 

(C) Chaos value selection rule 

The selected chaotic sequences used to sort are the same sequences, so the selection rule is 

important. To improve the security, the selection rule is designed to relate to the plain image. The first 

value, csd1, selected from the chaotic sequence used to scramble the rows of the image is obtained  

as follows: 
1 mod[ (1,1) 100, ( ( / 2), ( / 2))] 5csd P P ceil M ceil N= × +  (8) 

where P(i, j) denotes the pixel value of the plain image at the position (i, j) and ( )ceil ⋅  indicates the 

rounded up function. 

The first value, csd2, selected from the chaotic sequence used to scramble the columns of the 

images is obtained as follows: 

2 mod[ (2,2) 100, ( ( / 4), ( / 4))] 5csd P P ceil M ceil N= × +  (9) 

Both csd1 and csd2 are used as the keys. To make the receiver able to decrypt the cipher image, 

csd1 and csd2 must be sent to the receiver. After scrambling, we get the resulting image M. 

(2) Pixel value substitution 

(A) Pseudo-random sequence pretreatment 
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The pseudo-random sequence generator produces a pseudo-random sequence Rand. The values in 

the sequence belong to the interval [0, 1]. Then the pseudo-random sequence Rand is transformed into 

a new sequence RandImage used in pixel substitution: 

Image ((1000 ( )) mod 256)Rand fix Rand i= ×  (10) 

In Equation (9), ( )fix ⋅ indicates the truncating toward zero. 

(B) Pixel value substitution process 

We also need the custom key MC used to encrypt the pixel values at the position )1,1(  in the 

scrambled image M, from which the new value generated is used in diffusion. Equation (11) shows that: 

(1) ( (1,1) Image(1) ) mod 256C M Rand MC= + +  (11) 

In Equation (11), )1,1(M is a pixel value of each sub-block after scrambling at the position (1,1). 

When 2≥i , the converting Equation (12) is as follows: 

( ) ( ( , ) Image( ) ( 1)) mod 256C i M ki kj Rand i C i= + + −  (12) 

where ),( kjkiM  is a pixel value of the image M in the i-th position after scrambling which is sorted to 

a one-dimensional array based on the order of row and line. The resulting array C is arranged into a 

matrix which is the final cipher-image. 

4.2. Decryption Algorithm 

All the keys are plugged into the proposed hyperchaotic system and the exponential chaos map to 

get the sequence Rand  used in scrambling and the sequence RandImage used in substitution. 

According to the encryption algorithm, the decryption algorithm is shown below: 

(1,1) ( (1) Image(1)) mod 256,            1

( , ) ( ( ) ( 1) Image( )) mod 256,    2

M C MC Rand i

M ki kj C i C i Rand i i

= − − =
 = − − − ≥

 (13) 

where )(iC  is a pixel value of cipher-image in the i-th position after scrambling which is sorted to a 

one-dimensional array based on the order of row and line. By taking this step, we can get the image M 

after scrambling. Next, the padding out plain image is obtained by making M and pseudo-random 

sequence Rand  used in scrambling to sort in reverse order. According to the size of the original 

image, we get rid of the redundant pixels to get the plain image. 

5. Encryption Test and Security Analysis 

The following tests are realized by MATLAB software on an Intel Core 2 Duo 2.4 GHz PC. 

5.1. Encryption Test 

The first original image as shown in Figure 7a in experiment is the well-known Lena image. The 

size of the image is 256 × 256, the grayscale is L = 256. The encryption result is displayed as Figure 7b. 

The second original image is the Jokul image, as shown in Figure 8a. Its size is 900 × 960, the 

grayscale is L = 256. The encryption result is displayed as Figure 8b. From the encryption results as 

shown in Figure 7b and Figure 8b, we cannot obtain any information about the plain-images. That is, 
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the algorithm passes the subjective test. The appraisal method of image encryption consists of a 

subjective test and an objective measuring test. Here, we use the subjective test to measure the 

encryption effect. 

Figure 7. (a) Lena image before encryption; (b) Lena image after encryption. 

 
(a) (b) 

Figure 8. (a) Jokul image before encryption; (b) Jokul image after encryption. 

 
(a) (b) 

5.2. Security Tests 

(1) Histogram analysis 

The histograms of the encrypted images are shown in Figure 9a and Figure 9b, respectively. From 

the results, we can see that the pixel distribution of the cipher-images is fairly uniform, which can 

greatly reduce the correlation between the pixel values. 

Figure 9. (a) Histogram of cipher-image of Lena; (b) Histogram of cipher-image of Jokul. 

(a) (b) 
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(2) NIST SP 800-22 Tests 

In 2003, the United States National Institute of Standards and Technology issued “Special 

Publication 800-22” (SP 800-22) for cryptographic random and pseudorandom number statistical tests. 

This is one of the most extensively inspection standards by far. It is well-known that NIST SP 800-22 

tests are applied for 0-1 sequences, so the cipher-image can be regarded as a binary data stream file. 

Thus the cipher-image is tested as 0-1 sequences. The test results of the cipher-image of Lena are 

shown in Table 2. 

Table 2. NIST test results. 

Test Item P-Value Result 

Frequency Test 0.1455 Pass 

Frequency Test within a Block (m = 12,000) 0.2095 Pass 

Runs Test 0.4811 Pass 

Test for the Longest Run of Ones in a Block  

(M = 10,000，N = 100) 

0.3943 Pass 

Binary Matrix Rank Test 0.8510 Pass 

Discrete Fourier Transform Test 0.7120 Pass 

Non-overlapping Template Matching Test (m = 8) 0.4064 Pass 

Overlapping Template Matching Test  

(m = 8, M = 65,536) 

0.0459 Pass 

Maurer’s Test (L = 6，Q = 640，K = 86,741) 0.8468 Pass 

Linear Complexity Test (N = 256) 0.9018 Pass 

Serial Test 0.2110, 0.8431 Pass 

Approximate Entropy Test (m = 8) 0.8184 Pass 

Cumulative Sums Test (Positive) 1.5922 Pass 

Cumulative Sums Test (Reverse) 1.5936 Pass 

Random Excursions Test 0.3757, 0.8900, 0.5554, 0.0838, 0.1223, 

0.5888, 0.8276, 0.7656 

Pass 

Random Excursions Variant Test 0.3819, 0.4292, 0.5932, 0.6232, 0.7172, 

0.9851, 0.8424, 0.3047, 0.2560, 0.2773, 

0.2786, 0.2600, 0.1978, 0.3740, 0.6551, 

0.8911, 0.8483, 0.7193 

Pass 

As can be seen from Table 2, the cipher-text sequence can pass all the tests. It can be said that the 

cipher-text sequence is a pseudo-random sequence. The randomness of the cipher-image is good. 

(3) Key space analysis 

The key space for a good encryption scheme should be big enough to resist brute-force attacks. 

From Figures 3–7, the point sequence in each dimension will eventually return to a safe range and this 

range is the suggested range of initial value. The range of the sequence {xn} is about [−10, 10], the 

range of the sequence {yn} is about [−6, 6], the range of the sequence {zn} is about [4, 20], the range of 

the sequence {wn} is about [0, 8]. We assume the key spaces of the four variables are K1, K2, K3 and 

K4, respectively. Then the total key space of this hyperchaotic system is K1* K2* K3* K4. In addition, 

there are other two key parameters, namely, csd1 and csd2 used in scrambling, the custom key MC and 



Entropy 2015, 17 192 

 

 

the parameter index in the exponential chaos map. The custom key MC is a positive integer. The 

parameter index is greater than 1, so the key space of the proposed scheme is big enough to resist the 

brute-force attacks. 

(4) Differential attack analysis 

The attacker may seek to observe variations of the ciphertext in the tiny variations of the plaintext 

to find the correlation between the plaintext and the ciphertext. If a tiny change in the original image 

can lead to a great change in the cipher image, then the algorithm can effectively resist these 

differential attacks. Generally, the Number of Pixels Change Rate (NPCR) and the Unified Average 

Changing Intensity (UACI) can be used to describe the ability to resist the differential attack. Their 

definitions are as follows: 

%100
),(

, ×
×

=

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jiD
NPCR ji , (14) 

1 2
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100%
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where W and H are the width and height of the image, respectively. C1(i, j) and C2(i, j) are the 

corresponding pixels of two images. If C1(i, j) = C2(i, j), then D(i, j) = 0, otherwise D(i, j) = 1. The 

ideal values of NPCR and UACI are 99.61% and 33.46%, respectively. 

A pixel is selected randomly from the original image. The corresponding ciphertexts of this new 

plain image and the original image can be obtained by the proposed algorithm, respectively. In this 

way, 500 tests are implemented and the corresponding values of NPCR and UACI can be obtained. 

Thus we can get the average values of NPCR and UACI. The results are shown in Table 3. 

Table 3. NPCR and UACI values. 

Image NPCR UACI 

Lena 99.49% 33.32% 

Jokul 99.44% 33.28% 

From Table 3, we can see that the values of NPCR and UACI are close to the ideal values. It means 

that one bit difference of the plain image can diffuse to the whole cipher image, and we can conclude 

that the algorithm can resist differential attacks. 

(5) Key sensitivity analysis 

A secure encryption scheme should be sensitive to the key. Very tiny differences between the initial 

values will lead to the completely different cipher-images. In this test, the chaotic sequences of the 

proposed system are obtained by the fourth-order Runge-Kutta algorithm with step size 0.01. The 

results are shown in Figure 10. Figure 10(a) and Figure 10(b) show the cipher images C1 and C2 with 

the keys K1 [0.8, 0.3, 10.1, 4.5] and K2 [0.8 + 0.00000000001, 0.3, 10.1, 4.5], respectively. Figure 10c 

shows the decrypted result of C1 with the right key K1. Figure 10d shows the decrypted result of C1 

with the wrong key K2. In spite of tiny difference between K1 and K2, C1 cannot be decrypted correctly. 
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Figure 10. (a) Cipher image C1 with K1; (b) Cipher image C2 with K2; (c) Decrypted result 

of C1 with K1; (d) Decrypted result of C1 with K2. 

(a) (b) (c) (d) 

To evaluate the key sensitivity further, we test the values of NPCR and UACI between C1 and C2, 

respectively. As an example, Table 4 shows the test results of the image “Lena”. 

Table 4. NPCR and UACI values. 

Image NPCR UACI 

Lena 99.37% 33.45% 

Based on the above analysis, it can be concluded that the proposed encryption scheme is sensitive 

to the key. 

(6) Information entropy analysis 

Image information entropy can measure the distribution of image gray values. The more uniform 

the gray value distribution is, the bigger the information entropy is. The less information of the 

original image can be obtained from the gray value distribution of the cipher-image by the attacker, the 

higher security the encryption algorithm has. Image information entropy is defined as: 

256

1

logi i
i

H p p
=

= − , (17) 

where pi is the probability of the gray value. 

The ideal value of the cipher information entropy is 8. The information entropy of the cipher-image 

for Lena generated by the proposed algorithm is 7.9893. The information entropy of the cipher-image 

for Jokul generated by the proposed algorithm is 7.9920. They are both close to the ideal value, so to 

the ciphertext attackers, the cipherimage pixels are statistically independent of each other, so it is 

difficult to decrypt the cipertext. 

5.3. Analysis of Chaotic Maps with Others 

The maximum Lyapunov exponent of Rabinovich system is 0.1459, while the maximum Lyapunov 

exponent of the new hyperchaotic Rabinovich system is 1.090046. The bigger the Lyapunov exponent 

is, the faster the trajectories separate and the wider the corresponding separatrix of the chaotic region 

is, so the dynamic behaviors of the new system are better than that of the original system. 

The typical one-dimensional chaotic system is the Logistic map, it is: 
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)1(1 kkk xxx −=+ μ , (18) 

where 3.569 ≤ μ ≤ 4.0, xk ∈ (0, 1). 

In addition, we choose Cube map as a reference, it is: 

3
1 kkk xxx −=+ λ , (19) 

where 2.59 ≤ λ ≤ 3.0, xk ∈ [−2, 2]. 

In our design, the total number of target points of chaotic map is 256 × 256. The following 

experiment is processed on computer with 2.7 GHz CPU, 2 GB memory with Windows XP operation 

system. We generate 256 × 256 points sequences using the proposed hyperchaotic system, the Logistic 

map and the cube map, respectively. The run times are shown in Table 5. 

Table 5. Comparison of chaotic sequence generation speed. 

Chaos map Generate sequence time (s) 

Proposed hyperchaotic map 0.3419 

Logistic map 3.1559 

Cube map 3.1520 

Table 5 shows that the speed of the proposed map is faster than several low-dimensional chaotic 

systems. Appling the chaotic sequence generated by the proposed system to encrypt images is more 

efficient. 

6. Conclusions 

In this paper, we construct a new four-dimensional hyperchaotic system by adding a nonlinear term 

to the Rabinovich system. Then we analyze the basic dynamic characteristics of the proposed system. 

The chaotic sequences of the proposed system are generated by the Runge-Kutta method. These 

sequences are put into the exponential chaos map to generate the key sequence. A selection rule related 

to the plain image is designed to select the different sub-segment from the key sequence. The key 

sequence is associated with the plaintext to scramble and diffuse the pixels of the plain image. The 

security analysis, including histogram, randomness, information entropy and key sensitive, shows that 

the proposed system has good security and complexity. Moreover, the key space is big enough to resist 

the brute-force attack. The comparison with several low-dimensional chaotic systems shows that the 

system has more efficiency. 
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