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Abstract: As the early design decision-making structure, a software architecture plays a 

key role in the final software product quality and the whole project. In the software design 

and development process, an effective evaluation of the trustworthiness of a software 

architecture can help making scientific and reasonable decisions on the architecture, which 

are necessary for the construction of highly trustworthy software. In consideration of 

lacking the trustworthiness evaluation and measurement studies for software architecture, 

this paper provides one trustworthy attribute model of software architecture. Based on this 

model, the paper proposes to use the Principle of Maximum Entropy (POME) and Grey 

Decision-making Method (GDMM) as the trustworthiness evaluation method of a software 

architecture and proves the scientificity and rationality of this method, as well as verifies 

the feasibility through case analysis. 

Keywords: software architecture; trustworthiness evaluation; Principle of Maximum 

Entropy (POME); Grey Decision-making Method (GDMM) 

 

1. Introduction 

With the increasing spread and complexity of software systems, software is not always trusted and 

its behaviors and consequences sometimes do not conform to people’s expectation and even may lead 

to disasters. This kind of accident is common. In 2007, the software system of Los Angeles International 

Airport broke down, which led to 60 flights, and 20,000 passengers in total failing to land [1]. Due to the 
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whole collapse of the ambulance dispatch software system in London (UK), many patients lost their 

lives because of the resulting untimely rescues [2]. In 2005, Japan’s Tokyo Stock Exchange suffered a 

stock market lockout due to a software system failure [1]. In 2003, the Russian Alliance-TMA1 

satellite deviated 460 Km from the expected landing spot on the way back due to a design error in its 

navigation software [1]. Therefore, constructing trustworthy software has been an important trend and 

inevitable choice for modern software technology development and application. 

In the software design and development process, effective tracking and control software trustworthiness 

is an effective means of improving the overall software trustworthiness [3]. Numerous practices shows that 

70% of errors of the software development projects (especially in large-scale systems) are caused by the 

architecture and requirements. The longer the error in the system is, the more difficult it is to find and the 

more expensive the costs to solve it are [4]. Thus, the control in the early stage of software development 

can have a sound effect. One of the founders of UML, Grady Booch, a famous computer professional, 

thinks a weak software architecture is one reasons for the failure of software projects. Perry [4,5] 

considers the software architecture as the 1st most important design object in software development 

project management, while Boehm [4,6] clearly points out that if there are no architecture and rules, 

the whole project can not go on. As the first semi-product the from problem space to the solution 

space, a software architecture is an important part of the software development and project management. 

The trustworthiness of an architecture is the basis of developing a highly trustworthy software. How to 

use the analysis and evaluation of a software architecture to guarantee and improve the software 

trustworthiness and quality has been a research hotspot of software project management academic 

research and engineering practice [7]. However, is a specific software architecture really trustworthy? 

How to evaluate and measure the trustworthiness? How to select the most trustworthy architecture 

from the among the various candidates? All these issues must be solved urgently in the software 

project quality management field. 

2. Related Research 

2.1. Trustworthiness Software 

In 1985, Laprie [8] proposed the concept of dependable computing. For many years, people put 

forward various statements on the concept of the dependable software from different views. So far, 

there is still no definite definition with wide acceptation and good form. It can be called 

Trustworthiness, Credibility, Dependability, Confidence and Assurance [2]. The International Trusted 

Computing Group think that Trustworthiness refers to thye fact that the system completely complies 

with the intentions of the designers and programmers to implement a specific task [9]. The US 

National Science and Technology Council (NSTC) thinks that the high confidence of a information 

system is a predictability measurement that conforms to the set expectations [10]. This concept 

emphasizes the behavior predictability and target conformity of a software (object). 

In recent years, many countries have attached importance to the study of trustworthy software and 

proposed relevant research plans with clear targets. The US National Software Development Strategy 

(2006–2015) places the development of highly trustworthy software in the first place and put forward 

the idea of the next-generation software engineering. 
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Formalization theory and software verification technology have been paid great attention in the 

trustworthy software field. The Turing Award winners Edsger Wybe Dijkstra, Tony Hoare,  

Robin Milner, Amir Pnueli and others have all adopted various formalization methods to improve the 

trustworthiness, reliability and safety of programs in the programming field. For example, the 

axiomatization theory of sequential program put forward by Tony Hoare gave the formalization 

inference system of sequential program with partial correctness and complete correctness through  

pre- or post- assertion. 

Besides, there are also many research achievements in trustworthiness software. Suri et al. [11] 

developed a dependability-driven framework that helps conduct the integration of SW components 

onto HW resources for dependable embedded systems. Shin et al. [12] studied integration testing 

through reusing representative unit test cases for high-confidence medical software. Oza et al. [13] 

presented a detailed empirical investigation of trust in commercial software outsourcing relationships, 

and the investigation presents what vendor companies perceive about obtaining trust from client 

companies in outsourcing relationships. Babar et al. [14] study establishing and maintaining trust in 

software outsourcing relationships. Their research objective is to understand software outsourcing 

practitioners’ perceptions of the role of trust in managing client–vendor relationships and the factors 

that are critical to trust in off-shore software outsourcing relationships. Ahamed et al. [15] presented a 

flexible, manageable, and configurable software-based trust framework for the handheld devices of 

managers to access distributed information systems. 

2.2. Software Architecture 

Since the proposal of the concept of software architecture in the 1990s, there have been hundreds of  

definitions [16,17]. Garlan and Shaw [18] defined it as below: 

Software Architecture = {components, connectors, constrains) 

A component can be a group of codes (for example, the module of a program) and an independent 

program. A connector represents the interaction between components, for example, program calls, 

channels, remote procedure calls and others. A software architecture also includes some constraints. 

Creps and Simos defined it as follows [19]: 

Software Architecture = {elements, interfaces, connections, connection semantics) 

A software system is composed of a group of elements, which can be divided into processing 

elements and data elements. Each element has one interface and the connection of a group of elements 

constitutes the topology of the system. The connected semantics of elements belongs to static 

interconnection semantics (for example, the connection of data elements), describing the information 

conversion protocol of dynamic connection (for example, program call, channel, etc.). 

Rugina et al. [20] put forward a system trusted modeling framework based on Architecture Analysis 

and Design Language (AADL) and Generalized Stochastic Petri Net (GSPN) so as to guarantee the 

trustworthiness of the software. In [21] embedded system architecture trusted modeling based on the 

architectural analysis and design language and error model is studied. 

Besides, there are also many research achievements in this field. Anjos et al. [22] proposed a 

software architecture based on LabVIEW for controlling discrete event systems. The proposed 
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architecture is an adaptation of the producer-consumer design pattern. Weinreich and Buchgeher [23] 

presented a semi-formal architecture model, which is used in all activities of the architecture life cycle, 

and on a set of extensible and integrated tools supporting these activities. Kazman et al. [24] showed how 

architecture design and analysis techniques rest on a small number of foundational principles. Li et al. [25] 

aimed to collect studies on the application of knowledge-based approaches in software architecture and 

make a classification and thematic analysis on these studies. Breivold et al. [26] presented a systematic 

review of architectures for software evolvability to obtain an overview of the existing approaches in 

analyzing and improving software evolvability at an architectural level, and investigate the impacts on 

research and practice. 

2.3. Trustworthiness Evaluation 

Ding et al. [27] proposed a novel evidential reasoning based method for software trustworthiness 

evaluation under uncertain and unreliable environment conditions. Schmidt et al. [28] proposed  

not only a customisable trust evaluation model based on fuzzy logic. but also demonstrated the 

integration of post-interaction processes like business interaction reviews and credibility adjustment. 

Zarandi et al. [29] studied dependability evaluation of embedded systems, and proposed an experimental 

method to determine sensitivity to soft errors in an embedded system exploiting Altera SRAM-based 

FPGAs. An important concern for the successful deployment of a dependable system is its quality of 

service (QoS), which is significantly influenced by its architectural style. Bischofs et al. [30] proposed 

the comparative evaluation of architectural styles by simulation. 

2.4. This Paper’s Reviews 

At present, there is a lot of literature on trustworthy software as well as on software architecture. 

However, the research achievements of the software trustworthiness evaluation and measurement are 

not so abundant and the relevant theories and methods are immature [1]. The lack of trustworthy 

evaluation and measurement methods make the product have numerous defects and threaten the 

system operation when it is launched [31]. 

In [27–29] software trustworthiness evaluation and measurement are studied, while failing to study 

the software architecture. In [30] the style evaluation of a software architecture is studied, while failing 

to involve the concept of trustworthiness. In [20,21] the authors study the trusted modeling of a 

architecture while failing to involve trustworthiness evaluation and measurement. Paper [32] studies 

the service-oriented trustworthy software architecture and gives the corresponding algebraic model 

while it also fails to discuss trustworthiness evaluation and measurement. In [7] a software architecture 

quality evaluation is carried out, but it does not consider its trustworthiness. At present, the software 

architecture quality evaluation mainly includes questionnaire or checklist-based evaluations,  

scene-based evaluations, measurement-based evaluations and so on. According to the author’s 

investigation, there is no literature about research achievements on the software architecture 

trustworthiness evaluation and measurement. 
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3. Software Architecture Trustworthiness Evaluation Based on POME and GDMM 

3.1. Related Definition 

For the convenience of studying software architecture trustworthiness, this paper provides the 

definitions below on the basis of the previous studies: 

Definition 1: Trustworthiness is when an entity realizes the set target, its behaviors and consequences 

always can be expected. 

Definition 2: Trustworthy software refers to the fact that the service provided by the software system 

always conforms to people’s expectation and is still stable in case of interference. 

Definition 3: Trustworthiness of a software architecture refers the degree by which a software 

architecture conforms to people’s expectations, and supports the software life cycle and provides 

services in each stage of the life cycle. 

Definition 4: Trustworthy software architecture―if a software architecture meets people’s 

expectations, then it is a trustworthy software architecture. 

3.2. Trustworthiness Attribute of a Software Architecture 

From Definitions 3 and 4, it can be seen that the trustworthiness of a software architecture is a 

subjective feeling of its trustworthiness attribute for people, and the trustworthiness attribute can 

further describe the trustworthiness of a software architecture. One trustworthy attribute expresses an 

objective ability of the software architecture relevant to the trustworthiness. As the semi-product in the 

software process, the software architecture determines the final software product and obviously its 

trustworthiness attribute is relevant to that of the software. Also undoubtedly the quality characteristic 

of the software architecture is an important indicator of its trustworthiness attribute. The higher the 

quality is, the higher the trustworthiness is. Therefore, the trustworthiness attribute modeling of a software 

architecture is based on the software trustworthiness attribute and software architecture quality attribute. 

Avizienis et al. [33] stated the fundamental concepts and classification of trustworthy computing and 

secure computing and first proposed the conceptual framework of trustworthiness. Bo et al. [31] came up 

with a software trustworthy hierarchy model. Albin [34] raised the issue of the software architecture 

quality attributes.  

Based on these achievements, this paper presents a trustworthiness attribute model of software 

architecture in Figure 1, which enables the trustworthiness to be expressed. This model is a set of 

trustworthiness attributes and the defined trustworthiness attributes of a software architecture are 

constituted by its availability, simplicity, maintainability, reliability, security and performance, as well 

as their respective sub-attributes, as shown in Figure 1. 

Availability refers to the ability that a software architecture has for the explicit and implicit 

requirement functions and the correct services for follow-up software processes. In details, it includes 

function conformity, function accuracy and function completeness. 

Simplicity refers to the degrees of comprehension, learning, analysis and use of the software 

architecture, including the intelligibility and simplicity to use. 
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Maintainability refers to the ability to adjust and modify the software architecture. It 

demonstrates the simplicity to correct a defect or modify the software architecture, including the 

adaptability and modifiability. 

Reliability refers to the ability to provide continuous correct services and support in each stage of 

software process, including maturity and fault tolerance.  

Security refers to the ability to avoid thedisclosure of unauthorized information and the improper 

modification of the system. It includes confidentiality and integrity. 

Performance refers to the convenience and speed of the software architecture for the support and 

service provision in the follow-up software process, including time characteristic and resource utilization. 

Figure 1. Trustworthiness attribute model of a software architecture. 

 

3.3. Evaluation Method Based on POME and GDMM 

Due to limitations on cognition and the inherent complexity of objects, we usually can only acquire 

incomplete information during any decision evaluation, that is, a small sample and poor information 

which is only partially known. In 1982, Deng Julong, a famous Chinese scholar, published his paper 

titled “Control Problems of the Grey System” in Elsevier’s Systems & Control Letters, marking the 

birth of grey system theory which can effectively deal with uncertainty problem with poor information. 

In case of small samples and poor information, characteristic values of decision objects can be usually 

represented as grey numbers. 

Software trustworthiness evaluation is a new direction in trustworthy software studies. However, the 

trustworthiness study of a software architecture still is in the exploration stage at present. The 

trustworthiness attribute model of a software architecture shown in Figure 1 belongs to a multi-attribute 

model. Each trustworthiness attribute has both greyness and fuzziness, which make the trustworthiness 
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evaluation of the whole software architecture complex and difficult, which can be solved by inviting 

experts to make decisions. However, in consideration of the knowledge, experience, personal preference 

and other differences of each expert, there are both greyness and fuzziness when different experts 

evaluate the same specific issue, and their evaluations will vary. 

To date, grey system theory has been applied to many different areas successfully. In terms of grey 

system decisions, Dang [35] achieved some pioneering research achievements and proposed the grey 

decision problem analysis method. On the basis of [35] and the trustworthiness attribute model of a 

software architecture (shown in Figure 1), the maximum entropy principle and grey decision-making 

method are used to evaluate the trustworthiness of a software architecture, shown as below. 

Suppose X, U and D respectively represent the alternative design scheme set, trustworthiness 

attribute set and trustworthiness evaluation expert set of the software architecture. The evaluation 
expert Ddk   gives the attribute value of the scheme xi Xxi   in case of trustworthiness attribute 

Uu j  , grey fuzz number (k) (k)
ij ij(μ ,υ ) , where ],1[],,1[ njmi  . For a given expert dk, there is a 

equivalent grey fuzzy relation )(
~

kR  between the architecture design scheme set X and the 
trustworthiness attribute set U , which causes when membership degree (k) (k)

R i j ijμ (x , u ) μ  between 

any scheme ix  and trustworthiness attribute uj, there is grey level (k) (k)
R i j ijv (x , u ) υ  is noted as 

(k) (k)
ij ij(μ ,υ ) . Then the grey fuzzy relation )(

~
kR , which is determined by evaluation expert kd , can be 

expressed as follows by aid of grey fuzzy relation matrix: 

(k) (k) (k) (k) (k) (k)
11 11 12 12 1n 1n

(k) (k) (k) (k) (k) (k)~
(k) 21 21 22 22 2n 2n

(k) (k) (k) (k) (k) (k)
m1 m1 m2 m2 mn mn

(μ ,υ ) (μ ,υ ) (μ ,υ )

(μ ,υ ) (μ ,υ ) (μ ,υ )
R

(μ ,υ ) (μ ,υ ) (μ ,υ )

 
 
   
  
 





   



. ],1[ lk   (1)

Suppose the grey fuzzy weight vector of the evaluation expert is: 

~

1 1 2 2 l lλ ((λ ,π ), (λ ,π ), , (λ ,π ))   (2)

where kλ 0 , 



l

k
k

1

1 , 10  k  ( ],1[ lk  ), then the corresponding grey fuzzy relation matrix of 

expert group can be expressed as: 

11 11 12 12 1n 1n

~
21 21 22 22 2n 2n

m1 m1 m2 m2 mn mn

(μ ,υ ) (μ ,υ ) (μ ,υ )

(μ ,υ ) (μ ,υ ) (μ ,υ )
R

(μ ,υ ) (μ ,υ ) (μ ,υ )

 
 
 
 
 
 




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

 ],1[ lk   (3)

where 
l

(k)
ij k ij

k 1

μ λ μ


 , 
l

(k)
ij k ij

k 1

1
υ (π υ ) 1

l 

 
   
 
 , ],1[],,1[ njmi  . 

Definition 5―Deviation degree [35]: suppose there is grey fuzzy number 1 1 1p (μ ,υ ) , 

2 2 2p (μ ,υ ) , then 1 2 1 2 1 2d(p , p ) μ μ υ υ     is referred to as the deviation degree of grey fuzzy 

number 1 2p , p . In group grey fuzzy relation matrix Equation (3), an element is noted as ij ij ij(μ ,υ ) r ,  
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where ],1[],,1[ njmi  . Suppose the trustworthiness attribute weight vector of the architecture  

is = ),,,( 21 nwwww  . The maximum entropy principle is used to process the weight problem. 

Similar to the principle of entropy increase in the thermodynamics statistical physics, there also is a 

corresponding and famous theorem about the information entropy—the Principle of Maximum 

Entropy (POME). Jaynes [36] points out that when inferring according to partial information, we must 

choose such a probability to allocate, which shall possess the maximum information entropy and obey 

all the known information. This is the only unbiased allocation we can realize. Jaynes thinks this is the 

only unbiased allocation and the hypothesis of other forms may all introduce some uncertain 

subjective factors, which can bring in some irrationalities of the final results. Jaynes has theoretically 

proved that the information entropy can achieve the distribution of maximum value under some 

constraint conditions (usually some given mean values of some random variables) according to the 

Maximum Information Entropy Theory when we select the distribution from all the compatible 

distributions. When the information entropy is maximum, the probability of the corresponding set of 

probability distribution is in absolute advantage. Simply, the maximum entropy criterion is meant to 

select the maximum solution of the entropy from all the possible solutions. When we regard the 

entropy as the most suitable tool to measure the uncertainty, we basically have decided to select the 

random variable distribution with maximum uncertainty under the given constraints, because when the 

entropy is maximum, the corresponding random distribution is the most random and it means the 

artificial assumption (artificially added information) is minimum. At this time, the maximum entropy 

solution among all the reliable solutions has the minimum subjective component. This makes a 

maximum estimation distribution of the uncertain issues. In this way, it is the most objective and the 

solution is the most natural and has minimum artificial deviation. The Principle of Maximum Entropy 

can be expressed as the following optimization problem: 

1

1

1

max ( ) ln

1

. . 0, [1, ]

( ) ,   [1, ]

n

n i i
i

n

i
i

i

n

i j i j j
i

S P p p

p

s t p i n

p g x E g c j m







 

 
  

     







 (4)

Theorem 1 [37]: The solution of the maximum entropy optimization model (4) satisfying the moment 

constraints can be expressed as below: 

m

j j i
j 1

i n m

j j i
i 1 j 1

exp g (x )

p

exp g (x )



 

 
 

 
 

 
 



 
 (5)

where j  is the Lagrange multiplier of the corresponding moment constraint j. 

Proof: in consideration that the definition of entropy function has contained a non-negativity 

constraint condition of discrete probability, it is not necessary to consider it when computing. 
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Therefore, the Lagrange function of this issue can be written in the form below: 
n n m n

i i 0 i i i j i j
i 1 i 1 j 1 i 1

L(P,α) p ln p (α 1) p 1 p g (x ) E[g ]
   

   
          

   
     

(6)

where 

0

1

0

α

α
α

α

 
 
 
 
  
 


, jα ( mj ,,2,1  ) represents the Lagrange multiplier of constraint j and α0 represents 

the Lagrange multiplier of constraint 



n

i
ip

1

1 . 

Entropy optimization problem (4) is convex programming, so it has a globally optimal solution, 

which can be directly solved through the stationary value condition of function L(P,α) . At the same 

time, this problem also is a divisible variable optimization problem, so it is easy to utilize the 

stationary value condition to obtain the closed-form solution in the form of a multiplier: 

m

i 0 j j i
j 1

p exp α α g (x )


 
  

 
 , ],1[ ni  (7)

where 1m  undetermined multipliers j ( j 1, 2, ,m  ) can be determined by 1m  equality 

constraints in Problem (4). 

Substitute (7) into the normalization condition in (4), we can get: 

n m

0 j j i
i 1 j 1

exp( α ) exp g (x )
 

 
   

 
   (8)

Suppose: 

n m

j j i
i 1 j 1

Z exp α g (x )
 

 
  

 
   (9)

Then it has the same function as the partition function in statistical physics. Substituting 

Equations (8) and (9) into Equation (7), we can get the maximum entropy distribution expressed with 

partition function Z: 

m

i j j i
j 1

p exp α g (x ) / Z


 
  

 
 , ],1[ ni  (10)

namely: 

m
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It is known from the principle of maximum entropy and [35], that w  should let the total 

deviation function: 
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reach the maximum. 

According to the physical significance of information entropy, when 



n

j
jj wwwH

1

ln)(  reaches 

the maximum, the random uncertainty of ),,,( 21 nwwww   is the minimum and the artificially added 

information is the least, therefore the entropy maximum is the most objective. The weight of the 

trustworthiness attribute shall be the solution of the following optimization problem: 
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Formula (12) can be solved through the Lagrange multiplier method. Generally, the rule of 

Lagrange multiplier method can be described as below. 
For the conditional extremum point of an n-ary function ),,,( 21 nxxxf   under m ( nm  ) 

constraint conditions (as follows): 
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we can multiply mf  ,,,, 21   by constants m ,,,,1 21   in order and then add them. In this way, we 

can get the following function: mmn fxxxF    221121 ),,,( . 

Then we list the necessary conditions of the extremum of ),,,( 21 nxxxF   under no constraint 

conditions as follows: 
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 (14)

With n  Equations (14) and m  Equations (13) simultaneously, we can get mn  unknown numbers 

nxxx ,,, 21   and m ,,, 21  . Among them, nxxx ,,, 21   may be the coordinates of the extremum point, 

called stationary point. 

With the aid of the Lagrange multiplier method, we can get the unique solution of Formula (12) 

as follows: 
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If we denote the attribute weight vector as: 

))0,(,),0,(),0,( 21

~

nwwwA   (16)

Let the weight of each known trustworthiness attribute and the corresponding point grey level 

constituting the following weight vector: 

~

1 1 2 2 n nA ((α ,υ ), (α ,υ ), , (α ,υ ))   (17)

where, jα 0 , 
n

j
j 1

α 1


 , j0 υ 1  , ],1[ nj . 

Gather the synthesized attribute value of each scheme, namely compute: 

1
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where 



n

j
ijjib

1

 , 
i

n

b j ij
j 1

1
υ (υ υ ) 1

n 

 
   
 
 , ],1[ mi . 

The ordering vector ),,,( 21 n   of 
~

B  can be defined as: 

i ii i b i bβ P((b ,υ )) b (1 )(1 υ )       (19)

where ],1[ mi , ]1,0[  represents the equilibrium coefficient. 

For Formula (19), the value of βi reflects that the larger the synthesized membership degree of 

scheme i is, the better it is; while the smaller the synthesized point grey level is, the better it is. From 

Formula (3) and Formula (15), we can get the synthesized grey fuzzy attribute value of each 

alternative software architecture design scheme, namely by computing Formula (8). According to 
Formula (19), we can get the ordering vector 1 2 nβ (β ,β , ,β )   in Formula (18). Sizing down the 

corresponding schemes according to the component sizes 1 2 nβ ,β , ,β , the scheme with the largest 

component is the optimal scheme. 

4. Case Analysis 

4.1. Case 1 

Kunming Shunning Technology Company, hereinafter referred to as KSTC, mainly engages in 

software development. KSTC contracted for a software development project SPA. To develop highly 

trustworthy software and improve software quality, the project team designed four software 

architecture design schemes X = {x1, x2 x3, x4} and the most trustworthy one should be determined for 
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the system to be developed. The project manager invited five experts D = {d1, d2, d3, d4} who were not 

the designers and did not have conflicts of interest with the project to evaluate the trustworthiness of 

these schemes. From the trustworthiness attribute model of the software architecture (shown in Figure 1), 

},',,,,{ UPUSURUMUSUAU  , where UA ,US ,UM ,UR , 'US ,UP  represent availability, simplicity, 

maintainability, reliability, security and performance, respectively, and UA = {μ1, μ2 μ3},  

μ1 = {function conformity}, μ2 = {function accuracy}, μ3 = {function completeness}, US = {μ4, μ5},  

μ4 = {intelligibility}, μ5={simplicity to use}, UM={μ6, μ7}, μ6 = {adaptability}, μ7 = {modifiability}, 

UR = {μ8, μ9}, μ8 = {maturity}, μ9 = {fault tolerance}, },{' 1110 uuUS  , μ10 = {confidentiality},  

μ11 = {integrity}, UP = {μ12, μ13}, μ12 = {time characteristic}, μ13 = {resource utilization}. According 

to the attribute indexes of the model in Figure 1, the experts gave the following evaluation data based 

on their expertise, experience and actual architectures (Tables 1–5). 

Table 1. The evaluation expert 1d  gave the grey fuzzy relation matrix. 

 x1 x2 x3 x4 

u1 (0.35,0.1) (0.7,0.2) (0.95,0.15) (0.85,0.2) 
u2 (0.75,0.3) (0.7,0.25) (0.4,0) (0.75,0) 
u3 (0.85,0.15) (0.8,0) (0.95,0) (0.6,0.3) 
u4 (0.8,0.15) (0.7,0.1) (0.5,0) (0.5,0.3) 
u5 (0.75,0.3) (0.45,0.25) (0.5,0.3) (0.75,0.15) 
u6 (0.45,0.25) (0.55,0.15) (0.3,0.2) (0.55,0.15) 
u7 (0.65,0.05) (0.9,0.25) (0.35,0.05) (0.9,0.25) 
u8 (0.8,0.3) (0.6,0.3) (0.95,0.3) (0.45,0.3) 
u9 (0.65,0.3) (0.6,0.1) (0.75,0.25) (0.65,0.1) 
u10 (0.55,0.3) (0.4,0.3) (0.9,0) (0.55,0.05) 
u11 (0.75,0) (0.4,0.1) (0.4,0.25) (0.85,0) 
u12 (0.7,0.05) (0.75,0.3) (0.4,0) (0.5,0) 
u13 (0.65,0.15) (0.8,0.25) (0.55,0.2) (0.3,0.3) 

Table 2. The evaluation expert d2 gave the grey fuzzy relation matrix. 

 x1 x2 x3 x4 

u1 (0.5,0.05) (0.3,0.25) (0.45,0) (0.55,0.2) 
u2 (0.65,0.25) (0.4,0.25) (0.9,0) (0.8,0.25) 
u3 (0.85,0.25) (0.55,0.3) (0.75,0.2) (0.45,0.05) 
u4 (0.65,0.3) (0.35,0.05) (0.85,0.3) (0.5,0.25) 
u5 (0.4,0.25) (0.85,0.3) (0.95,0.15) (0.85,0.15) 
u6 (0.8,0.25) (0.75,0.2) (0.7,0.3) (0.8,0.05) 
u7 (0.8,0.3) (0.65,0.2) (0.85,0.1) (0.3,0.15) 
u8 (0.85,0.25) (0.8,0) (0.35,0.15) (0.95,0) 
u9 (0.35,0.1) (0.3,0.1) (0.45,0) (0.45,0.2) 
u10 (0.8,0.2) (0.8,0.2) (0.8,0.3) (0.6,0.3) 
u11 (0.35,0.1) (0.9,0.2) (0.45,0) (0.5,0.05) 
u12 (0.5,0.05) (0.3,0) (0.55,0) (0.35,0.25) 
u13 (0.8,0.25) (0.3,0.3) (0.7,0) (0.5,0.1) 
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Table 3. The evaluation expert d3 gave the grey fuzzy relation matrix. 

 x1 x2 x3 x4 
u1 (0.7,0.05) (0.8,0.1) (0.65,0.3) (0.35,0.3) 
u2 (0.75,0) (0.85,0.15) (0.35,0.05) (0.95,0.25) 
u3 (0.75,0.1) (0.85,0.2) (0.65,0.15) (0.55,0.15) 
u4 (0.75,0.05) (0.95,0.05) (0.4,0) (0.65,0.25) 
u5 (0.3,0.2) (0.5,0.15) (0.45,0.15) (0.5,0.25) 
u6 (0.5,0.2) (0.75,0.2) (0.8,0.25) (0.9,0.3) 
u7 (0.4,0.3) (0.35,0.2) (0.65,0.15) (0.95,0.1) 
u8 (0.65,0.1) (0.75,0) (0.5,0.15) (0.65,0.2) 
u9 (0.5,0.25) (0.45,0.05) (0.9,0.3) (0.45,0.25) 
u10 (0.3,0.15) (0.55,0.15) (0.95,0.25) (0.9,0.15) 
u11 (0.8,0) (0.3,0.05) (0.95,0.05) (0.7,0.2) 
u12 (0.4,0.3) (0.85,0.05) (0.8,0.15) (0.3,0.2) 
u13 (0.65,0.1) (0.8,0.1) (0.5,0) (0.65,0.1) 

Table 4. The evaluation expert d4 gave the grey fuzzy relation matrix. 

 x1 x2 x3 x4 
u1 (0.4,0.3) (0.8,0.15) (0.35,0.3) (0.9,0.2) 
u2 (0.9,0.3) (0.4,0.05) (0.7,0.2) (0.55,0.2) 
u3 (0.8,0.05) (0.8,0) (0.75,0.05) (0.65,0.2) 
u4 (0.35,0.2) (0.45,0.05) (0.6,0.05) (0.6,0) 
u5 (0.95,0.05) (0.45,0.3) (0.8,0.15) (0.85,0.2) 
u6 (0.85,0.1) (0.5,0.15) (0.95,0) (0.35,0.05) 
u7 (0.5,0.25) (0.75,0.1) (0.75,0.05) (0.8,0.25) 
u8 (0.6,0) (0.5,0.05) (0.3,0.05) (0.75,0.15) 
u9 (0.9,0) (0.45,0.1) (0.85,0.1) (0.6,0.3) 
u10 (0.45,0.3) (0.65,0.3) (0.5,0.1) (0.9,0.05) 
u11 (0.45,0.1) (0.6,0.2) (0.8,0.2) (0.55,0.15) 
u12 (0.55,0.2) (0.95,0.15) (0.7,0.2) (0.65,0.25) 
u13 (0.65,0.15) (0.85,0.2) (0.9,0) (0.9,0.1) 

Table 5. The evaluation expert d5 gave the grey fuzzy relation matrix. 

 x1 x2 x3 x4 
u1 (0.85,0.1) (0.4,0.15) (0.4,0.05) (0.7,0.15) 
u2 (0.9,0.05) (0.95,0.05) (0.35,0) (0.3,0.1) 
u3 (0.65,0.15) (0.55,0.15) (0.8,0.2) (0.75,0) 
u4 (0.8,0.3) (0.8,0.05) (0.65,0.2) (0.95,0.2) 
u5 (0.6,0) (0.8,0.25) (0.7,0.25) (0.6,0.2) 
u6 (0.85,0.3) (0.6,0.25) (0.75,0.05) (0.6,0) 
u7 (0.95,0.1) (0.35,0.15) (0.8,0.2) (0.55,0.2) 
u8 (0.55,0.3) (0.75,0.1) (0.35,0.15) (0.75,0) 
u9 (0.3,0) (0.4,0.2) (0.85,0.15) (0.45,0.25) 
u10 (0.85,0.1) (0.5,0.15) (0.55,0.2) (0.55,0.15) 
u11 (0.65,0.3) (0.8,0.2) (0.3,0) (0.65,0.05) 
u12 (0.6,0.2) (0.9,0.3) (0.35,0.05) (0.3,0.25) 
u13 (0.95,0.15) (0.65,0.1) (0.75,0.3) (0.45,0.3) 
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If the evaluation value of each evaluation expert is equally important, namely, λ1 = λ2 = λ3 = λ4 = λ5. 

The grey values respectively are π1 = 0.2, π2 = 0.1, π3 = 0.3, π4 = 0.5, π5 = 0.2, then 

 (0.2,0.2),(0.2,0.1),(0.2,0.3),(0.2,0.5),(0.2,0.2)  . According to Formula (3), we can get the grey 

fuzzy relation matrix of group evaluation expert, shown as Table 6. 

Table 6. The grey fuzzy relation matrix of group evaluation expert. 

 x1 x2 x3 x4 

u1 (0.59,0.32) (0.68,0.41) (0.67,0.47) (0.49,0.52) 

u2 (0.73,0.37) (0.73,0.45) (0.47,0.29) (0.88,0.46) 

u3 (0.79,0.4) (0.78,0.44) (0.73,0.39) (0.54,0.42) 

u4 (0.74,0.38) (0.78,0.32) (0.51,0.32) (0.59,0.52) 

u5 (0.41,0.49) (0.56,0.46) (0.56,0.44) (0.62,0.47) 

u6 (0.55,0.48) (0.71,0.45) (0.68,0.51) (0.81,0.48) 

u7 (0.53,0.51) (0.52,0.47) (0.63,0.38) (0.81,0.4) 

u8 (0.72,0.43) (0.73,0.32) (0.56,0.44) (0.67,0.44) 

u9 (0.5,0.49) (0.45,0.33) (0.78,0.49) (0.49,0.47) 

u10 (0.45,0.45) (0.57,0.45) (0.91,0.47) (0.77,0.42) 

u11 (0.7,0.28) (0.44,0.35) (0.74,0.34) (0.69,0.39) 

u12 (0.48,0.46) (0.72,0.35) (0.67,0.35) (0.35,0.43) 

u13 (0.68,0.4) (0.7,0.43) (0.55,0.3) (0.55,0.4) 

According to Formula (15), we can get: 
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From Formula (18) and Formula (16), we can get: 

 )448.0,647.0(),399.0,655.0(),402.0,647.0(),420.0,597.0(
~

R  

According to Formula (19), we compute the ordering vector of each architecture alternative design 

scheme and we can get that: 
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Namely, 3 2 4 1β β β β   . Thus 1423 xxxx   

 

1

2
1 2 3 4

3

4

β 0.59230044564019

β 0.63354782516312
β β ,β ,β ,β

β 0.64048605906836

β 0.62173614118806


    
 

 

The trustworthiness of the third scheme is the best and that of the first one is the poorest. The 

design schemes x1, x2 x3, x4, adopt layers architecture, implicit invocation architecture, blackboard 

architecture and control loop architecture, respectively. The blackboard architecture can construct 

models for cooperating tasks. It can express the synergism as well as solve the uncertainty in a flexible 

mode. The implicit invocation architecture suits a complicated project owing its abundant planning 

function. The control loop architecture is not suitable for a complex system, but for a simple one. The 

main drawback to the layers architecture is that the frame will be damaged when detailed refinement 

requires a greater level. Therefore, the project decision maker selected x3 architecture. The software 

system based on the architecture was successfully developed and has been used by company H for two 

years in good conditions, showing that the evaluation method is scientific and reasonable. 

4.2. Case 2 

Another software project SPB of KSTC has three software architecture design alternative schemes  

X = {x1, x2 x3, x4} and four evaluation experts D = {d1, d2, d3, d4} to try to evaluate the trustworthiness 

of each software architecture design scheme. The operation procedure is the same with case 1. The 

expert evaluation results are shown from Tables 7–10. 

Table 7. The evaluation expert 1d  gave the grey fuzzy relation matrix. 

 x1 x2 x3 

u1 (0.85,0.15) (0.9,0.25) (0.45,0.25) 
u2 (0.65,0) (0.55,0.2) (0.5,0.2) 
u3 (0.55,0.25) (0.4,0.05) (0.9,0.3) 
u4 (0.75,0.2) (0.65,0.1) (0.55,0) 
u5 (0.8,0.1) (0.5,0) (0.9,0.05) 
u6 (0.35,0.25) (0.95,0.1) (0.75,0) 
u7 (0.55,0.25) (0.85,0.25) (0.45,0.3) 
u8 (0.7,0.2) (0.4,0.3) (0.95,0) 
u9 (0.95,0.05) (0.4,0.05) (0.35,0) 
u10 (0.7,0.1) (0.5,0.05) (0.75,0.05) 
u11 (0.9,0.1) (0.6,0.25) (0.4,0.05) 
u12 (0.6,0.15) (0.6,0.2) (0.55,0.1) 
u13 (0.55,0.2) (0.55,0.2) (0.7,0.15) 
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Table 8. The evaluation expert d2 gave the grey fuzzy relation matrix. 

 x1 x2 x3 
u1 (0.85,0.1) (0.5,0.25) (0.9,0.2) 
u2 (0.9,0.05) (0.95,0.25) (0.45,0.05) 
u3 (0.65,0.2) (0.35,0.05) (0.95,0.05) 
u4 (0.85,0.05) (0.75,0.05) (0.5,0) 
u5 (0.75,0.25) (0.65,0.1) (0.45,0) 
u6 (0.75,0.3) (0.45,0.2) (0.35,0.15) 
u7 (0.5,0.15) (0.75,0.1) (0.7,0.25) 
u8 (0.7,0.3) (0.9,0.05) (0.55,0) 
u9 (0.35,0.1) (0.45,0.15) (0.45,0) 
u10 (0.85,0.15) (0.3,0.25) (0.55,0.25) 
u11 (0.85,0.15) (0.65,0.3) (0.3,0.25) 
u12 (0.85,0) (0.65,0.3) (0.7,0.2) 
u13 (0.65,0.1) (0.5,0.05) (0.7,0.15) 

Table 9. The evaluation expert d3 gave the grey fuzzy relation matrix. 

 x1 x2 x3 
u1 (0.85,0) (0.6,0) (0.7,0.05) 
u2 (0.85,0.1) (0.5,0.3) (0.65,0.1) 
u3 (0.8,0.1) (0.35,0.05) (0.75,0.15) 
u4 (0.5,0.3) (0.65,0.1) (0.4,0.3) 
u5 (0.85,0.05) (0.55,0.25) (0.5,0) 
u6 (0.9,0.1) (0.7,0.25) (0.4,0.05) 
u7 (0.6,0.3) (0.65,0.25) (0.95,0.3) 
u8 (0.3,0.3) (0.5,0.2) (0.8,0.25) 
u9 (0.7,0.15) (0.7,0.1) (0.8,0.3) 
u10 (0.5,0.15) (0.9,0.3) (0.9,0.15) 
u11 (0.7,0.15) (0.85,0) (0.45,0.2) 
u12 (0.65,0) (0.65,0.25) (0.4,0.15) 
u13 (0.65,0.3) (0.6,0) (0.7,0.2) 

Table 10. The evaluation expert d4 gave the grey fuzzy relation matrix. 

 x1 x2 x3 
u1 (0.85,0.15) (0.45,0) (0.65,0.25) 
u2 (0.45,0) (0.85,0.2) (0.6,0.15) 
u3 (0.6,0.05) (0.9,0.05) (0.7,0) 
u4 (0.6,0.15) (0.45,0.05) (0.6,0.05) 
u5 (0.3,0.2) (0.7,0.2) (0.5,0.15) 
u6 (0.45,0) (0.5,0) (0.7,0.25) 
u7 (0.55,0.3) (0.65,0.1) (0.3,0.2) 
u8 (0.6,0.1) (0.45,0) (0.3,0.2) 
u9 (0.75,0.1) (0.3,0) (0.55,0.05) 
u10 (0.9,0.25) (0.9,0.05) (0.55,0.3) 
u11 (0.95,0.25) (0.75,0.2) (0.5,0.3) 
u12 (0.8,0.15) (0.65,0.05) (0.55,0.3) 
u13 (0.9,0.05) (0.85,0) (0.6,0.05) 
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If the evaluation value of each evaluation expert is equally important, namely, λ1 = λ2 = λ3 = λ4.  

The grey values respectively are π1 = 0.1, π2 = 0.2, π3 = 0.25, π4 = 0.2, then 

 )2.0,25.0(),25.0,25.0(),2.0,25.0(),1.0,25.0( . According to Formula (3), we can get the grey fuzzy 

relation matrix of group evaluation expert, shown as Table 11. 

Table 11. The grey fuzzy relation matrix of group evaluation expert. 

 x1 x2 x3 

u1 (0.85,0.29) (0.61,0.31) (0.68,0.38) 

u2 (0.71,0.23) (0.71,0.43) (0.55,0.31) 

u3 (0.65,0.34) (0.5,0.24) (0.83,0.31) 

u4 (0.68,0.36) (0.63,0.26) (0.51,0.28) 

u5 (0.68,0.34) (0.6,0.33) (0.59,0.24) 

u6 (0.61,0.35) (0.65,0.33) (0.55,0.3) 

u7 (0.55,0.44) (0.73,0.36) (0.6,0.45) 

u8 (0.58,0.41) (0.56,0.33) (0.65,0.3) 

u9 (0.69,0.29) (0.46,0.26) (0.54,0.28) 

u10 (0.74,0.35) (0.65,0.35) (0.69,0.38) 

u11 (0.85,0.35) (0.71,0.38) (0.41,0.39) 

u12 (0.73,0.26) (0.64,0.39) (0.55,0.38) 

u13 (0.69,0.35) (0.63,0.25) (0.68,0.33) 

According to Formula (15), we can get: 
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From Formula (18) and Formula (16), we can get: 

 31)(0.593,0.3,23)(0.625,0.3,5)(0.71,0.33
~

R  

According to Formula (19), we compute the ordering vector of each architecture alternative design 

scheme and we can get that: 
Namely, 1 2 3β β β  . Thus 321 xxx  . The trus 
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1 2 3 2

3

β 0.69815045257821

β β ,β ,β β 0.63912854998425

β 0.61391998735905


  
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tworthiness of the first scheme is the best in the three software architecture alternative design 

schemes. Therefore, the project decision maker selected architecture 1x . The software system based on 

that architecture was successfully developed and has been used by company P for a year in good 

condition, showing once again that the evaluation method is scientific and reasonable. 

5. Discussion and Conclusions 

To effectively trace and control the software trustworthiness in the design and development process 

is an efficient method. As the early design decision, a software architecture plays a key role for the 

software product quality and the success of the whole project. It is inevitable that an architecture with 

a low trustworthiness will lead to an untrustworthy software. Therefore, the evaluation and 

measurement of a software architecture trustworthiness can provide a basis for making decisions about 

a scientific and reasonable architecture and is necessary for the construction of highly trustworthy 

software. In view of the lack of studies on the evaluation and measurement of software architecture 

trustworthiness, this paper provides a trustworthiness attribute model of software architecture. Based 

on this model, the paper put forward one trustworthiness evaluation method of software architecture 

based on POME and GDMN. 

The third section demonstrates the scientific soundness and reasonability of this method 

theoretically, while the fourth section validates the feasibility and effectiveness of the method through 

case analyses. In Case 1 mentioned in the fourth section, four alternative architecture design schemes 

were designed for project SPA and evaluated by five experts and eventually the third one was applied 

to the software system development. In Case 2, three alternative architecture design schemes were 

designed for project SPB and evaluated by four experts and eventually the first one was applied to the 

software system development. The two software systems have been put into use for over one year by 

now and remain operating in good condition without any major problems or breakdowns. Thus it can 

be seen that the decision making is scientific and reasonable and the evaluation method put forward in 

this paper is effective. 
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