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Abstract: In medicine, artificial neural networks (ANN) have been extensively applied in 

many fields to model the nonlinear relationship of multivariate data. Due to the difficulty 

of selecting input variables, attribute reduction techniques were widely used to reduce data 

to get a smaller set of attributes. However, to compute reductions from heterogeneous data, 

a discretizing algorithm was often introduced in dimensionality reduction methods, which 

may cause information loss. In this study, we developed an integrated method for 

estimating the medical care costs, obtained from 798 cases, associated with myocardial 

infarction disease. The subset of attributes was selected as the input variables of ANN by 

using an entropy-based information measure, fuzzy information entropy, which can deal 

with both categorical attributes and numerical attributes without discretization. Then, we 

applied a correction for the Akaike information criterion (ܥܫܣ஼) to compare the networks. 

The results revealed that fuzzy information entropy was capable of selecting input 

variables from heterogeneous data for ANN, and the proposed procedure of this study 

provided a reasonable estimation of medical care costs, which can be adopted in other 

fields of medical science. 
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1. Introduction 

Reliable estimates of medical care costs for myocardial infarction (MI)-related patients can provide 

an alternative to cost-effectiveness evaluations of MI prevention, screening and treatment policies [1,2]. 

Besides, obtaining accurate estimates of this outcome will allow the administration to properly manage 

the available medical resources for inpatient hospitalizations. Previous works have demonstrated that 

demographic factors, percutaneous coronary intervention, coronary artery bypass graft surgery and 

length of stay were significantly associated with higher healthcare costs [3,4]. 

Artificial neural networks (ANNs) provide a rich, powerful and robust nonparametric modeling 

framework currently being used in a variety of applications in medicine, such as diagnosis, electronic 

signal analysis, medical image analysis, radiology and clinical outcome prediction. In [5], the authors 

made use of ANN analysis to assess the accuracy of real-time endoscopic ultrasound elastography in 

focal pancreatic lesions. In [6], the authors developed random forests, support vector machines and 

ANN models to diagnose acute appendicitis. Shi et al. validated the use of ANN models for predicting 

quality of life after breast cancer surgery [7]. In [8], the author developed a biomedical-based decision 

support system for the classification of heart sound signals by using principal component analysis 

(PCA) and ANN. In [9], an ANN model was developed to predict survival in patients with pancreatic 

ductal adenocarcinoma. In [10], the authors applied the ANN method to model the sample entropy. 

ANNs offer several advantages, including requiring less formal statistical training, the ability to 

implicitly detect complex nonlinear relationships between dependent and independent variables, the 

ability to detect all possible interactions between predictor variables and the availability of multiple 

training algorithms [11]. However, the “black box” nature, heavy computational burden, proneness to 

overtraining and the empirical nature of model selection are the disadvantages of ANN models. Hybrid 

methods, like ANN and genetic algorithms (GAs) [12], ANN and PCA [8], ANN and the artificial bee 

colony algorithm (ABC) [13], ANN and autoregressive integrated moving average (ARIMA)  

models [14] and ANN and rough sets [15] were developed to overcome the above problems. In this 

study, an integrated method based on fuzzy information entropy and ANN was developed to estimate 

medical care costs for admissions of MI disease. 

To handle the multidimensional data efficiently, dimensionality reduction should be performed to 

map the data to a lower dimensional space. A typical method is attribute reduction based on Pawlak’s 

rough set model, which has been successfully used in feature subset selection and attribute  

reduction [16,17]. Pawlak’s rough set model works in circumstances where only nominal attributes 

exist in an information system and is limited in dealing with numerical variable directly unless 

applying a discretizing algorithm, which may lead to some information loss [18,19]. To address this 

problem, rough-fuzzy and fuzzy-rough sets were proposed in [20] and analyzed in detail in [21], which 

were successfully used in attribute reduction. In [22,23], the authors proposed an integrated use of 

fuzzy and rough set theories to reduce the data redundancy based on the fuzzy dependency function. 
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Then, the authors introduced an information measure, fuzzy information entropy, to measure the 

discernibility power of a fuzzy equivalence relation [24]. The significance of categorical, numeric and 

fuzzy attributes can be defined in a general form with this measure. Thus, we applied fuzzy 

information entropy to compute attribute reduction in this research. 

In this study, a method was introduced to estimate the medical care costs, obtained from 798 

cases of MI-related patients. Then, the data set was mapped to a lower dimensional space using fuzzy 

information entropy, being applied as an attribute reduction technique. Therefore, the problem of 

overtraining and heavy computational burden of ANNs could be avoided by eliminating superfluous 

input attributes. The result showed that the proposed method was efficient in estimating medical care 

costs and could be adopted in various medical applications. 

2. Materials and Methods 

Figure 1 shows the procedure proposed in this research. It consists of five parts: (1) raw data 

obtainment; (2) data preprocessing, including classification and normalization; (3) dimensionality reduction 

via fuzzy information entropy; (4) estimating medical costs through an ANN; and (5) comparing  

the results. 

Figure 1. The procedure of the proposed method. 

 

2.1. Raw Data 

For this study, we obtained 798 cases of inpatients with myocardial infarction (ICD-10 code I21, 

International Classification of Diseases, 10th revision) from three comprehensive hospitals in Wuhan, 

China. The raw data contain the demographic factors of patients (age in years, gender), characteristics 

of patients (history of diabetes, blood pressure, history of smoking, cholesterol, physically active or not, 

obesity, history of angina, history of MI), medical treatment process (prescribed nitroglycerin, taking 

anti-clotting drugs, electrocardiogram result, creatine phosphate kinase blood result, troponin T blood 

result, taking clot-dissolving drugs, time of hospitalization, hemorrhaging, magnesium, digitalis, beta 

blockers, surgical treatment, surgical complications and length of stay) and the medical care costs for 

each patient. 
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2.2. Fuzzy Information Entropy 

2.2.1. Fuzzy Rough Set Model 

The equivalence relations are introduced in Pawlak’s rough set-based methodology to partition the 

universe and generate mutually exclusive equivalence classes as elemental concepts for categorical 

variables. In [22], the authors suggested that the fuzzy equivalence relation should be generated for 

numeric and fuzzy attributes, instead of crisp equivalence relations.  

The heterogeneous data can be depicted as an information system ܵ ൌ ሺܷ, ,ܥ ሻܦ  and ܤ	 ⊆ ܥ , 
where	ܷ ൌ ሼݔଵ, ,ଶݔ … , ሺܴሻܯ	denoted by a relation matrix ,ܤ	௡ሽ, and ܴ is a binary relation onݔ ൌ ሺݎ௜௝ሻ, 
where ݎ௜௝ ∈ ሾ0,1ሿ is the relation of ݔ௜ and	ݔ௝. 

Given that ܷ  and ܴ  represent a non-empty finite set and a binary fuzzy relation on this set, 

for	∀ݔ, ,ݕ ݖ ∈ ܷ, ܴ satisfies: 

(1) Reflectivity: ܴሺݔ, ሻݔ ൌ 1; 

(2) Symmetry: ܴሺݔ, ሻݕ ൌ ܴሺݕ,  ;ሻݔ
(3) Transitivity: ݉݅݊௬ሺܴሺݔ, ,ሻݕ ܴሺݕ, ሻሻݖ ൑ ܴሺݔ,  ሻݖ

Definition 1. For	∀ݔ௜ ∈ ܷ, the fuzzy equivalence class generated by ݔ௜ and ܴ is defined as: 

ሾݔ௜ሿோ ൌ
௜ଵݎ
ଵݔ
൅
௜ଶݎ
ଶݔ
൅ ⋯൅

௜௡ݎ
௡ݔ

 (1)

Definition 2. Given a fuzzy information system, 	ܵ ൌ ሼܷ, ܥ ∪ ,ܦ ܸ, ݂ሽ , where ܥ  is the set of 

condition attributes and ܦ is the decision attribute. For ܤ ⊆ ܥ ሻܦ஻ሺߛ	 , ൌ |ܱܲܵ஻ሺܦሻ| |ܷ|⁄  represents 

the dependency of ܤ on ܦ, where ܱܲܵ஻ሺܦሻ is a lower approximation of the decision and also called a 

positive region of the decision. 

Definition 3. For ∀ܾ ∈ ܤ , ܾ  is superfluous in ܤ  on ܦ  if 	ߛ஻ି௕ሺܦሻ ൌ ሻܦ஻ሺߛ	 ; otherwise ܾ  is 

indispensable. If ∀ܾ ∈  :satisfies ܤ if ܥ is a reduct of ܤ .is indispensable ܤ ,is indispensable ܤ

ሻܦ஻ሺߛ (1) ൌ  ;ሻܦ஼ሺߛ
ሻܦ஻ି௕ሺߛ (2) ൏ ܾ∀ ሻ, forܦ஻ሺߛ ∈  ܤ

2.2.2. Entropy-Based Information Measure 

The fuzzy equivalence class ሾݔ௜ሿோ has been defined in Definition 1. Then, the pertinent points of the 

fuzzy information entropy are introduced as follows. 

Definition 4. The cardinality of ሾݔ௜ሿோ is defined as: 

|ሾݔ௜ሿோ| ൌ෍ݎ௜௝

௡

௝ୀଵ

 (2)

for ∀ݔ௜ ∈ ܷ and ݎ௜௝ ൑ 1, |ሾݔ௜ሿோ| ൑ ݊. 

Definition 5. The information quantity of the fuzzy equivalence relation is introduced as: 

ሺܴሻܪ ൌ െ෍
1
݊
ଶ݃݋݈

|ሾݔ௜ሿோ|
݊

௡

௜ୀଵ

 (3)
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when the relation ܴ  is a crisp equivalence relation, this information quantity is defined as  

Shannon’s entropy [24].  

Definition 6. Given a fuzzy decision system S ൌ ሼܷ, ܥ ∪ ,ܦ ܸ, ݂ሽ, ܤଵ, ܤଶ are two subsets of ܥ and 
the fuzzy equivalence classes on ܤଵ and ܤଶ are ሾݔ௜ሿ஻భ and ሾݔ௜ሿ஻మ; the joint entropy and the conditional 

entropy are defined as: 

ଵܤሺܪ ∪ ଶሻܤ ൌ ൫ܴ஻భܪ ∩ ܴ஻మ൯ ൌ െ෍݈݃݋ଶ
|ሾݔ௜ሿ஻భ ∩ ሾݔ௜ሿ஻మ|

݊

௡

௜ୀଵ

 (4)

ଵሻܤ|ଶܤሺܪ ൌ െ෍݈݃݋ଶ
|ሾݔ௜ሿ஻భ ∩ ሾݔ௜ሿ஻మ|

|ሾݔ௜ሿ஻భ|

௡

௜ୀଵ

 (5)

Definition 7. Given a fuzzy decision system S ൌ ሼܷ, ܥ ∪ ,ܦ ܸ, ݂ሽ, ܤ ⊆ ܾ∀ ,ܥ ∈  is superfluous ܾ ,ܤ

if ܪሺܤሻ ൌ ܤሺܪ െ ܾሻ; and ܤ is independent if ܪሺܤሻ ൐ ܤሺܪ െ ܾሻ. ܤ is a reduct if ܪሺܤሻ ൌ  .ሻܥሺܪ

2.3. Artificial Neural Network (ANN) 

An ANN is composed of a number of interconnected neurons (referred to as “nodes”, “processing 

units” or “processing elements”), organized hierarchically in layers. In an ANN, knowledge about the 

problem is modeled by using learning algorithms and saved in weighted connections. The  

feed-forward neural network of multi-layer perception (MLP) with an error back-propagation  

(BP)-type of learning algorithm is the most popular ANN model used in estimation and regression 

problems. An MLP consists of an input layer, hidden layers and an output layer, each of which is 

composed of a set of neurons. The MLP with the back-propagation algorithm is trained using a dataset 

of associated input and target values, and the network is updated by rearranging the weights of neurons 

in every epoch upon calculating the error in the network’s output, until the performance of the network 

is satisfactory. 

The number of neurons in the input layer depends on the result of the dimensionality reduction 

based on the fuzzy information entropy, and the problems of overtraining and heavy computational 

burden could be avoided with the lower number of input variables. For the neurons in the hidden and 

output layer, their inputs are processed by multiplying each input by a corresponding weight and 

summing the products and then transmitting this sum to the output by using a nonlinear transfer 

function. In each epoch, the weights among the neurons of the network are adjusted based on the errors 

between the actual outputs and the target outputs. When the training is complete, the network should 

be able to provide an accurate estimation for a given input. 

A three-layered MLP feed-forward neural network with the back-propagation learning algorithm 

was applied in our study. For this research, there is only one neuron in the output layer representing 

medical care costs; thus, the most critical problem is defining the size of the input layer, which is 

directly related to the network’s performance. The entropy-based information measure for the fuzzy 

equivalence relation can analyze the significance of various factors to remove the superfluous 

attributes from the heterogeneous data. Therefore, the combined method presented in this paper can 

overcome the disadvantages of ANNs in estimating medical costs. 
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2.4. Model Selection and Comparison Methods 

2.4.1. Akaike Information Criterion (AIC) 

Information-based criteria, such as the Akaike information criterion (AIC), which are measures of 

the relative quality of an estimated statistical model, are widely used as the model selection approach. 

The underlying idea of the information-based criteria is to identify an optimal trade-off between an 

unbiased approximation of the model and the complexity of the model. In [25,26], the authors use AIC 

in the neural network model selection to determine the optimal parameters of the ANN model. In this 

study, the comparison of ANN models is conducted using AIC. In the general sense, by using the 

likelihood ܮ, the AIC is calculated as: 

ܥܫܣ ൌ െ2 lnሺܮሻ ൅ 2݇ (6)

or using residual sum of squares (RSS): 

ܥܫܣ ൌ ܰ lnሺܴܵܵ ܰ⁄ ሻ ൅ 2݇ (7)

where ݇ denotes the total number of estimable parameters in the model and ܰ is the sample size. For a 

small sample size, when ܰ ݇⁄  is less than 40, a correction for AIC (ܥܫܣ஼ ) is recommended in [27]  

as follows. 

஼ܥܫܣ ൌ ݈ܰ݊ሺܴܵܵ ܰ⁄ ሻ ൅ 2݇ ൅ 2݇ሺ݇ ൅ 1ሻ/ሺܰ െ ݇ െ 1ሻ (8)

The model exhibiting the smallest AIC value is selected as the best fit model in this study. 

2.4.2. Evaluation of Performance 

We use two different criteria to evaluate the performance of the integrated method based on fuzzy 

information entropy and ANNs: root mean square error (RMSE) and the mean absolute percentage 

error (MAPE). The first criterion is calculated by: 

ܧܵܯܴ ൌ ඩ
1
݊
෍ሺܥ௜ െ ௜ܶሻଶ
௡

௜ୀଵ

 (9)

where ܥ௜ and ௜ܶ denote the calculated and target value of the medical costs, respectively, and n is the 

number of training data. The reason for applying the training error in the criteria is that it is directly 

related to the ANN’s memorization ability. The second criterion is MAPE, defined as: 

ܧܲܣܯ ൌ
100%
݊

෍ฬ
௜ܥ െ ௜ܶ

௜ܶ
ฬ

௡

௜ୀଵ

 (10)

where n, C୧ and T୧ are defined as in (9). The second criterion is the average percentage of the absolute 

values of relative error, which can be used directly for experimental data without data normalization. 
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3. Experimental Results 

3.1. Data Preprocessing 

For this study, the data preprocessing consists of two parts: (1) classification of categorical 

variables; and (2) data normalization for numerical data. Categorical variables should be converted to 

quantitative data through the use of classification based on the categories of each variable, and then, 

they can be used as input variables of an ANN (Table 1). The classification of categorical variables is 

demonstrated in Table 1.  

Table 1. Classification of 21 categorical variables used in the analysis.  

Variables Classification 

Gender Male; female 
History of diabetes No; Yes 
Blood pressure Hypotension; normal; hypertension 
Smoker No; Yes 
Cholesterol Normal; high 
Physically active No; Yes 
Obesity No; Yes 
History of angina No; Yes 
History of MI No; Yes 
Prescribed nitroglycerin No; Yes 
Anti-clotting drugs None; aspirin; heparin; warfarin 
EKGa result No ST elevation; ST elevation 
CPKb blood result Normal CPK; high CPK 
Troponin T blood result Normal troponin T; high troponin T 
Clot-dissolving drugs None; streptokinase; reteplase; alteplase 
Hemorrhaging No; Yes 
Magnesium No; Yes 
Digitalis No; Yes 
Beta blockers No; Yes 
Surgical treatment None; PTCAc; CABGd 
Surgical complications No surgery performed; No; Yes 

a EKG (electrocardiogram); b CPK (creatine phosphokinase); c PTCA (percutaneous 

 transluminal coronary angioplasty); d CAPG (coronary artery bypass grafting) 

The numerical variables include age in years, time to hospital, length of stay and medical treatment 

costs. Before computing attribute reduction based on fuzzy information entropy, numerical variables 

should be normalized into [0, 1]. Given a numerical variable	ܺ, the formula of min-max normalization 

is given as: 

ܺᇱ ൌ
ܺ െ݉݅݊ ሺܺሻ

ሺܺሻݔܽ݉ െ݉݅݊ ሺܺሻ
 (11)

where ܺᇱ is the normalized value of ܺ ranging from zero to one, and ݉ܽݔሺܺሻ and ݉݅݊ሺܺሻ represent 

the maximum and minimum value of ܺ, respectively. Table 2 demonstrates the descriptive statistics of 

four numerical variables.  
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Table 2. Statistical properties of four numerical variables. 

Variables Max Min Mean Median SD 

Age in years  87 45 61.75 61.00 8.835 
Medical visits (times) 10 1 2.97 3.00 1.432 
Length of stay (day) 11 1 3.54 4.00 2.656 
Medical treatment costs (103 CNY) 61.80 1.71 19.92 25.77 17.164 

3.2. Dimension Reduction via Fuzzy Information Entropy 

A three-layered MLP feed-forward ANN structure has been made use in this work. However, one of 

the problems related to ANN modeling is that sample data usually contains superfluous, irrelevant, and 

noisy input variables, which may obstruct knowledge acquisition and affect the network’s 

generalization ability. Therefore, due to the multiple input variables, the choice of ANN input variables 

could overcome these drawbacks.  

Definition 8. Given ܵ ൌ ሼܷ, ܥ ∪ ,ܦ ܸ, ݂ሽ  represents a fuzzy information system, for ܤ	 ⊆ ܥ ,  

∀ܾ ∈  :is defined as ܦ relative to ܤ the significance of attribute ܾ in ,ܤ

,ሺܾܩܫܵ ,ܤ ሻܦ ൌ ܤ|ܦሺܪ െ ܾሻ െ ሻ (12)ܤ|ܦሺܪ

The fuzzy information entropy is introduced in Section 2.2. The greater the entropy value is, the 

stronger the discernibility is and the more significant the attribute is. If the significance equals zero, 

then we consider that the attribute ܾ is superfluous; otherwise, ܾ is indispensable. The aim of attribute 

selection is to search a subset of attributes that has the same approximating power as the original data 

and that does not have any redundant attribute. We apply a forward search algorithm, which has been 

discussed in detail in [24]. 

Table 3. Increment of the entropy and the significance of each attribute. 

,࢏࢈ሺࡳࡵࡿ ሻ࢏࡮|ࡰሺࡴ ࢏࢚ࢉ࢛ࢊࢋࡾ ࢏ ,࢏࡮  ሻࡰ
1	 ଵܤ ൌ{Length of stay} 1.4379 1.4379 

2	 ଶܤ ൌ ଵܤ ∪{Surgical treatment} 1.5734 0.1355 

3	 ଷܤ ൌ ଶܤ ∪{Age in years} 1.6572 0.0838 

ସܤ 4 ൌ ଷܤ ∪{Surgical complications} 1.6682 0.011 

ହܤ 5 ൌ ସܤ ∪{Time to hospital} 1.6768 0.0086 

଺ܤ 6 ൌ ହܤ ∪{Clot-dissolving drugs} 1.6786 0.0018 

଻ܤ 7 ൌ ଺ܤ ∪{Taking anti-clotting drugs} 1.6813 0.0027 

଼ܤ 8 ൌ ଻ܤ ∪{Magnesium} 1.6824 0.0011 

The parameter ߝ) ߝ ൌ 0.001) is a tiny positive real number that controls the convergence. Attribute 

reduction starts with an empty set of attributes, and in each iteration, one attribute is added into this 

empty set to produce the maximal increment of fuzzy information entropy; the process stops when the 

increment of entropy is less than ε in one round by adding any attribute into this subset. Then, the 

superfluous attributes were eliminated, and eight key attributes were selected as the input variables of 

the ANN. Let ܤ௜ ൌ ሼܾଵ, ܾଶ, … , ܾ௜ሽ  be a reduct, where ܾ௜	ሺ݅ ൌ 1,2, … ,8ሻ  denotes the eight selected 

attributes, respectively; the maximal increment of entropy is fulfilled during this process, and the 
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significance of the selected attribute is summarized in Table 3. The subset of attributes	଼ܤ provides the 

maximal entropy as 1.6824, which is the result of reduction. 

3.3. Estimation Using the Artificial Neural Network 

Two scenarios are simulated and compared in this step, namely estimation of the medical costs 

using the ANN only ( ଵܶ) and using the proposed method ( ଶܶ). Table 4 demonstrates the structure and 

training parameters, which consists of the number of neurons in the layers, initial learning rate, 

\momentum constant value and activation functions used in different layers. 

The stopping criteria in Table 4 determine when to stop training the neural network. Criterion 1 

defines the maximum number of minutes for the algorithm to run; Criterion 2 depicts the maximum 

number of epochs allowed, and the training stops if the maximum number of epochs is exceeded; 

Criterion 3 describes an threshold value in the training error, and the training discontinues if the 

relative change in the training error is less than the threshold value compared to the previous epoch. In 

each epoch, whether training is proceeding or not is based on the stopping criteria, which is checked in 

the given order. In this study, 496 samples were selected as the training set to update the weights of the 

network; 153 samples were selected as the validation set to prevent the overtraining; and 149 samples 

were selected as the test set to measure the performance of the network. The results of network with 

the best estimation performance of the two scenarios are described in Table 5. For each network, the 

training process has been replicated 20 times to acquire stable performance with random initially 

values of weight and bias. 

Table 4. ANN architecture and training parameters. 

ANN architecture 

The number of layers 3 

The number of neurons in the layers 

Input: 24 ( ଵܶ)/8 ( ଶܶ) 

Hidden: ≤10 

Output: 1 

The initial weights and bias The Nguyen–Widow method 

Activation functions 
Hidden: Hyperbolic tangent 

Output: Identity 

ANN parameters 

Learning algorithm Back-propagation 

Optimization algorithm Gradient descent 

Initial learning rate 0.4 

Momentum 0.9 

Stopping criteria 

Maximum training time 10 min 

Maximum training epochs 1000 

Minimum relative change in training error 0.0001 
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Table 5. Results of the selected networks. RSS, residual sum of squares. 

Scenario H.U. ࡯࡯ࡵ࡭ ࡿࡿࡾ ࡺ ࢑ ⁄࢔  RMSE MAPE 

 ૚ 9 235 496 1,593.81 2.97 1.79 17.46%ࢀ
 ૛ 8 81 496 586.42 0.56 1.09 6.57%ࢀ

* H.U. denotes the number of neurons in the hidden layer; k denotes the total number of estimable parameters. 

Table 5 contains comparison between the chosen networks of scenario ଵܶ and	 ଶܶ selected by	ܥܫܣ஼. 

From Table 5, a network with nine hidden neurons was selected in ଵܶ, while the chosen network in ଶܶ 

has eight hidden units. The results of ܥܫܣ஼  reveal that the network complexity is simplified by 

eliminating the superfluous input attributes via fuzzy information entropy, which will prevents the 

problem of overtraining and the heavy computational burden of ANN. At the same time, the results of 

  .show that the proposed method provides a better estimation performance ܧܲܣܯ and ܧܵܯܴ

Figure 2 displays two scatterplots of estimated value on the ݕ-axis by observed medical costs on the 

ݔ -axis for all training samples based on the two selected networks, which demonstrates that the 

selected network of ଶܶ has a relatively good ability of estimating medical cost than the chosen network 

of 	 ଵܶ . The results indicate that the reduct can capture the content in the original dataset while 

maintaining good approximating ability.  

Figure 2. Estimated-by-observed charts for medical cost. 
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4. Conclusions 

In this paper, we introduced an integrated method to address the overtraining and heavy 

computational burden of ANN modeling, and the proposed approach provides a relatively good 

approximating ability of estimating medical costs related to myocardial infarction. The results showed 

that attribute reduction based on fuzzy information entropy can be applied for selecting the input 

variables of an ANN. 

The choice of input variables is a fundamental and crucial consideration in identifying the optimal 

functional form of statistical models [28]. However, ANN is a typical data-driven statistical modeling 

approach, and there is no prior assumption made regarding the structure of the model. Selecting input 

variables is complicated by the fact that the data is multidimensional and heterogeneous and there is 

interdependence between available input variables and redundant variables with little predictive power, 

which results in the usage of dimensionality reduction techniques, often accompanied by discretizing 

algorithms. Shannon’s entropy has been widely used as an information measure in machine learning. 

In this research, we applied fuzzy information entropy, which is a generalization of Shannon’s entropy, 

to deal with both categorical attributes and numerical variables simultaneously and to measure the 

fuzzy equivalence relation. 

In this study, the results of comparison indicate that ܥܫܣ஼  can be used in model selection and  

multi-model inference of ANN for a small sample size. The problem of model selection is 

considerably important for acquiring a higher level of performance in an ANN. In the field of ecology, 

AIC is widely used to compare and rank multiple statistical models and to estimate which of them best 

approximates the “true” process underlying the biological phenomenon under study [29], and it has 

been applied to select the optimal structure of a neural network in many works. 

Although the proposed approach generates a reasonable result in estimating the medical costs 

related to myocardial infarction, further work should address more detailed individual-level data 

collection, such as income level, education level, behavioral factors, residential environment, 

socioeconomic factors, neighborhood characteristics, etc. Moreover, the subjective factors of patients 

should be considered in further research. One major contribution of our work is to introduce an 

integrated method to model the nonlinear relationship in issues involving multivariate data and to 

overcome the disadvantages of ANN modeling, which can be applied in other fields of medical science. 
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