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1. Thermodynamic Entropy

1.1. Mass and Energy Budget for an Open System in Non-Thermal Equilibrium

For open large systems experiencing non-thermal equilibrium it is possible to define an elemental
volume where we can assume local equilibrium. Both intensive and extensive variables can be defined
at this local domain. On the one hand, the intensive quantities such as temperature and pressure can
be defined direclty. On the other hand, it is posible to define the extensive variables by implementing
the respective densities. Therefore, the concept of elemental volumes and local equilibrium allows us to
define all thermodynamics variables as a function of space and time [1].

The mass balance for a component k in an elemental volume is given by:

dnk
dt

+∇ · Ik
Mk

−
∑
j

νj,kvj = 0. (S1)

In this equation the nk refers to number of mols of component k per unit volume, I k refers to the flux of
component in [mass/area/time], Mk is the molar mass of component k in [Mass

mol
], νj,k is the stoichiometric

coefficient for component k in the reaction j, and vj is the velocity of the reaction j. The term
∑
j

νj,kξj

is a net sink (or source) term of nk over all possible reactions where k is involved within the elemental
volume. Note, that total mass is conserved, and the sink (or source) term of a component k implies that
there is a source (or sink) in other components.

The energy balance equation for an elemental volume is given by:

de

dt
+∇ · Je = 0 (S2)

where Je is the total flux of energy in the elemental volume. We consider three main components for Je:
(i) a flux of kinetic energy Jc, (i) a flux of energy that is directly related with the internal energy of the
control volume Ju, and (ii) a flux of energy in the form of radiation.

Je = Jc + Ju + Jrad. (S3)

Under a gravitational field Jc and Ju can be expressed as:

Jc =
∑
k

1

2
Mkv

2
kIk (S4)

Ju = Jq +
∑
k

Ik
(
uk +Mkgz

)
(S5)

where Mk is mass of component k, uk is the internal energy in component k, z is the gravity, and g is
the gravity.
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1.2. Entropy Budget for Open Systems in Non Thermal Equilibrium

The entropy budget of an elemental volume is given by:

ds

dt
+∇ · Ls = σ (S6)

where Ls is the flux of entropy, and σ is the entropy production in the elemental volume. Note that
entropy is not conserved. In this document we divide σ in two:

σ = σint + σrad. (S7)

where σint refers to the production of entropy within the elemental volume associated with
transformations of different forms of energy to heat, and σrad is the production of entropy associated
with the dissipation of incoming fluxes of radiation in other forms of energy at the surface.

It can be shown that for an elemental volume experiencing a gravitational field, and receiving radiative
fluxes of energy the flux of entropy Ls is given by:

Ls =
Jq
T

+
∑
k

sk
Ik
Mk

+ Lrad (S8)

where Lrad is the flux of entropy associated with radiation fluxes, and sk is the molar entropy associated
with component k which is defined as:

sk =
uk − µk
T

(S9)

where uk is the molar internal energy in component k under the absence of a gravitational field, and
µk is the molar chemical potential associated with component k. Similarly, it can also be shown that
the entropy production σint is given by:

σint = Ju · ∇
(

1
T

)
−
∑
k

Ik
Mk
· ∇
(
µk
T

)
+
∑
j

Afj
T
vj

−
∑
k

Ik
T
· ∇(gz) + δφ

T

(S10)

In this equation the term Afj is the affinity of the reaction j, φ is the dissipation rate of kinetic energy
to heat in the elemental volume, and Ju is the energy flux in the absence of a gravitational field.

Ju = Jq +
∑
k

Ik
Mk

uk (S11)

Equations (S7) and (S10) describe the production of entropy for an elemental volume exposed to
fluxes of radiation and experiencing a gravitational field. Note that there are five terms on the right side
of Equation (S10). Each of these terms refer to a particular process, (i) heat transfer; (ii) difussion;
(iii) chemical reactions; (iv) loss of potential energy under a gravitational field; and (iv) dissipation of
kinetic energy.
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1.3. Entropy Generation

If we integrate in space over the total volume of the open system and if we define some time scale τ
we can compute the total entropy generated (Ṡgen) in the system during these spatial and time scales as:

Ṡgen =

τ∫
0

∫
V

ds

dt
dV dt+

τ∫
0

∫
V

∇ · LdV dt ≥ 0 (S12)

By applying the divergence theorem it is possible to express Ṡgen in terms of the fluxes across the control
volume boundary.

Ṡgen =

τ∫
0

(
dST,cz
dt

)
dt+

τ∫
0

∫
Acz

L · n̂dAdt ≥ 0 (S13)

where dST,cz is the total instantaneous change of entropy in the control volume, and n̂ refers to the unit
normal vector field to Acz. Using Equation (S8) we can obtain the next expression for the Ṡgen:

Ṡgen =

τ∫
0

dST,cz +

τ∫
0

∫
Acz

(
Jq
T

+
∑
k

sk
Ik
Mk

+ Lrad

)
· n̂dAdt ≥ 0 (S14)

1.4. Calculation of Entropy at Steady State

At steady state the rate of change of entropy at the elemental volume is negligible, thus from
Equation (S6):

∇ · L = σ. (S15)

In some situations the instantaneous change of entropy at elemental volumes within the system is not
negligible (ds/dt 6= 0), but over a period of time τ the total change of entropy in the control volume
could be considered negligible:

τ∫
0

dST,cz ≈ 0 (S16)

This particular scenario is useful in the Critical Zone (CZ) where the annual change of entropy could be
considered low enough to be to be neglected. In this case the generation of entropy can be computed
based on the fluxes of entropy across the surface only:

Ṡgen =

τ∫
0

∫
Acz

L · n̂dAdt ≥ 0 (S17)

2. Derivation of σcz,int

This section shows the derivation for the internal production of entropy σ in the presence of
the Earth’s Gravitational Field for an elemental volume that experiences fluxes of mass and heat with
the environment only, radiation is neglected. This derivation is based on Kondepudi and Prigogine [1]
Chapter 15.
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The rate of change in energy e for an elemental volume where local equilibrium is assumed can be
stated as:

∂e

∂t
=
∂u

∂t
+
∂c

∂t
(S18)

where u is the internal energy and c is the kinetic energy. The rate of change of energy is also given by:

∂e

∂t
= −∇ · Je (S19)

where Je is the total flux of energy into the control volume:

Je = Jq +
∑
k

(uk + ck +Mkgz)IMk (S20)

where Jq is the heat flux, and uk is the mean molar internal energy content in component k.
Term ck = 1/2Mkv

2
k is the mean molar kinetic energy in component k where vk is the mean velocity of

component k. The balance of kinetic energy can be expressed as:

∂c

∂t
= −∇ ·

∑
k

(ckIMk)︸ ︷︷ ︸
Jc

−δφ (S21)

where IMk = Ik/Mk is the molar flux of component k, and δφ is a sink term in this equation that reflects
the dissipation of kinetic energy due to transformation to heat. We can use the previous expressions to
compute the rate of change in u in the elemental volume as:

∂u

∂t
=
∂e

∂t
− ∂c

∂t
= −∇ ·

(
Jq +

∑
k

(uk +Mkgz)IMk︸ ︷︷ ︸
Jou

)
+ δφ (S22)

where Jou is the flux related to u under the Earth’s Gravitational Field.
The Gibbs relation is given as:

Tds = du−
∑
k

µkdnk −
∑
k

Mkgzdnk. (S23)

Based on Equation (S23) the rate of change of entropy can be expressed as:

∂s

∂t
=

1

T

(
−∇ · Jou + δφ

)
+
∑
k

(
µk +Mkgz

T

)(
∂nk
∂t

)
(S24)

Note that:
∂nk
∂t

= −∇ · IMk −
∑
j

νj,kvj (S25)

where vj is the velocity of a reaction j and νj,k are the stoichiometric coefficients for component k in a
reaction j. It can be shown from Equation (S24) that:

∂s

∂t
+∇ ·

[
Jou
T
−
∑
k

(
µk +Mkgz

T

)
IMk

]
= Jou · ∇

(
1

T

)
−
∑
k

IMk · ∇
[
µk +Mkgz

T

]
+
∑
j

Afj vj

T
+ δφ

(S26)
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where Afj is the affinity of the chemical reaction j. We can define a flux Ju that does not include the
fluxes related to a gravitational field:

Jou = Jq +
∑
k

ukIMk︸ ︷︷ ︸
Ju

+
∑
k

MkIMk (S27)

also note that: ∑
k

IMk · ∇
(
Mkgz

T

)
=
∑
k

IMkMkg

T
∇z +

∑
k

IMkMkgz · ∇
(

1

T

)
(S28)

Using Equations (S27) and (S28) we can express Equation (S26) as:

∂s

∂t
+∇ ·

[
Jq
T
−
∑
k

(
sk
T

)
IMk

]
=

(
Jq +

∑
k

uk
Ik
Mk

)
· ∇
(

1

T

)
−
∑
k

Ik
Mk

· ∇
(
µk
T

)
+
∑
j

Afj vj

T
+
∑
k

Ik
T
g · ∇(z) +

δφ

T
(S29)

where sk is the molar entropy content of component k. Comparing Equation (S26) with the entropy
budget of the local control volume experiencing a flux of entropy L associated with heat and mass
fluxes only:

∂s

∂t
+∇ · L = σprod (S30)

We observe that the term to the right in Equation (S29) represents the entropy production within
the local domain.

σprod =

(
Jq +

∑
k

uk
Ik
Mk

)
· ∇ 1

T︸ ︷︷ ︸
Heat Flux

−
∑
k

Ik
Mk

· ∇µk
T︸ ︷︷ ︸

Diffusion

+
∑
i

Af
j vj

T︸ ︷︷ ︸
Chemical Reactions

−
∑
k

Ik
T
g · ∇(z)︸ ︷︷ ︸

Potential Energy Transformation

+
δφ

T︸︷︷︸
Kinetic Energy Transformation

. (S31)

3. Thermodynamic Entropy of Radiation

Radiation is an main form of heat transfer. A proper understanding and computation of the entropy
associated with radiation is needed to have a complete quantification of the entropy budget in the CZ.
In this document we show the most important equations. For more details see Wu and Liu [10].

With the introduction of the quantum hypothesis Max Planck was able to obtain an expression for
the energy (Jν), and entropy (Lν) fluxes of a blackbody radiation beam at a particular frequency ν:

Jν =
hν3

c2

(
1

exp( hν
κT
− 1)

)
, (S32)

Lν = hν2

c2

{(
1 + c2Jν

hν3

)
ln

(
1 + c2Jν

hν3

)
−
(
c2Jν
hν3

)
ln

(
1 + c2Jν

hν3

)}
. (S33)
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In these equations, c is the speed of light, h is the Planck constant, and κ is the Boltzmann constant.
The radiation entropy Lrad flux emitted from a blackbody over a surface can be obtained through
integration over the solid angle, and frequencies:

Lrad =

∞∫
o

∫
Ω

LνcosθdΩdν, (S34)

where θ is the zenith angle. It can be shown that;

Jrad = σbT
4
source, (S35)

and
Lrad = RF σbT

3
source = RF

Jrad
Tsource

. (S36)

where Tsource is the temperature of the body emitting the radiation, σb is the Stefan-Boltzmann constant
which has been obtained both experimentally and theoretically. It can be shown that [10]:

σb =
2π5κ4

15c2h3
. (S37)

Term RF in Equation (S36) is the radiation factor (usually RF > 1). Note that the RF differentiates the
formulation for the computation of entropy in radiation and heat fluxes. The value of RF for blackbody
radiation is 4/3. However non-blackbody radiation is ubiquitous on Earth. In order to quantify the energy
and entropy fluxes of non-blackbody radiation Petela [11] introduced the concept of a perfect gray body
that behaves as a blackbody but the spectral radiation energy flux is equal to the Planck function for
blackbody radiation affected by an emissivity ε. Assuming that ε is frequency independent it is possible
to show that the energy flux of non-blackbody radiation is Jrad = εσT 4. However, the same does not
hold for the entropy flux. In other words, even under the assumption that ε is frequency independent
the entropy flux of non-blackbody radiation Lrad 6= 4

3
εσbT

3. In order to compute the entropy flux of a
non-blackbody radiation we must integrate Lv(ε) over the solid angles and frequencies ν:.

Lrad =

∞∫
o

∫
Ω

Lν(ε)cosθdΩdν. (S38)

However, this integration is challenging as Lν(ε) is non-linear. Landsberg and Tonge [12] developed
an approximate solution of Equation (S38) by considering a diluted blackbody radiation with a dilution
factor δ, which can be considered analogous to the emissivity ε. This approximation has shown good
results except for low values of ε. A more recent approximation developed by Wright et al. [13] using
a similar approach as Landsberg and Tonge [12] was able to overcome this problem, and has shown
good accuracy in the solution of Equation (S38). Both Landsberg and Tonge [12] and Wright et al. [13]
formulations have been very helpful to quantify the fluxes of entropy of radiation in processes related
to the CZ.
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4. Description of Optimum Principles

4.1. Minimum Work (or Energy) Rate Expenditure

An initial optimum hypothesis based on minimum work was suggested by Murray [22,23] for
physiological systems. In this case work was related with a cost of operation that could be associated
with system maintenance. In the CZ a first approach related with work was performed by Leopold
and Langbein [24] that proposed the principle of least work for streams. According to Leopold
and Langbein [24] this principle is compatible with the principle of minimum entropy production.
Although the study by Leopold and Langbein [24] was criticized for its lack of formalism in the
application of thermodynamic concepts, it established the foundation of a new paradigm to analyze
the geomorphological evolution of the CZ. Different principles based on minimum work, energy, or
power were postulated to understand the landscape evolution. These principles were able to capture the
patterns observed in meanders, the formation or riffles and pools, and the formation of self-similar river
networks [25]. There has been a long debate about the validity of these principles and their application
in fluvial geomorphology. Today, the debate still continues and the validation with experimental
information and models is not definitive.

The connection between these minimum principles with other principles associated with
thermodynamic entropy that have been applied in the CZ is still unclear. An interesting analogy was
performed by Molnar and Ramirez [26] with the implementation of the Gyarmati principle to analyze the
flow in open channels. The Gyamarti principle proposed the maximization of a function Gy defined as:

Gy =

(∫
V

(σ − ψ)dV

)
(S39)

where σ is the local entropy production and ψ is the local dissipation potential rate. Note that functionGy

involves a space integration of the entropy production and therefore this principle is not equivalent with
the maximum entropy production principle (MEPP) because MEPP is a local based principle. Molnar
and Ramirez [26] were able to show and equivalence between the Gyarmati principle and the minimum
energy dissipation rate principle under some special conditions of river flow.

4.2. Minimum Entropy Production Principle, MinENT

The minimum entropy production principle MinENT was postulated by Prigogine [27]. According
to Prigogine [27] systems in the linear non-equilibrium regime reach a steady state (dS

dt
= 0) at which

the entropy production from the system (
∫
V

σdV) is constant and attains a minimum value [1]. Note

that the objective function in this principle refers to the total production of entropy that involves a space
integration of the local entropy production σ. This principle can be applied only for the linear regime
and provides information only at the stationary state. In recent years this principle has been criticized
mainly because it does not provide sufficient further insight about the system beyond to what is already
known from balances of mass, momentum, and energy [28,29].
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4.3. Maximum Power Output Principle, MPOP

The maximum power output principle MPOP was initially proposed by Odum and Pinkerton [30].
They suggested that systems tend to maximize the power output. As explained in Odum and
Pinkerton [30], the power output in this principle refers to the definition of power implemented in
thermodynamics which is the rate of energy transfer by work, or useful energy. According to this
principle, systems tend to use useful available energy, become more efficient, and therefore maximize
the power output. According to this hypothesis in order to maximize power there has to be a trade
off between the efficiency (useful work produced) and rate. Processes with high efficiency occurs very
slow, while fast processes end up producing less useful work and destroying free energy in the form of
heat. The maximun power output would occur at an intermediate point between these two conditions.
Hall [31] introduces interesting examples in biochemistry, economy, car engines, and coal burning where
this principle occurs. From a human perspective this principle would be a condition that any ideal system
would pursue. For instance, the goal of human made systems is usually to maximize work per unit of
time. Although this principle is very logical, the main question is whether nature is designed with this
objective? Additionally, the computation of actual power for a system such as the CZ is challenging
and could become arbitrary at some point. Power output is a quantity that is difficult to quantify as it
goes beyond the second law of thermodynamics [32]. Concepts such as exergy provides a limit about
the potential work that can be extracted instead of the actual work that is performed by the system.
Some approaches have used a similar formulation as exergy to calculate the limits of maximum work
that can be extracted from a flux of exergy for different processes of the CZ [33,34].

The MPOP was reformulated by Odum [35] in terms of maximizing emergy. According with
Odum [35] more power output could be stated in terms of a maximization of emergy. The principle
was restated again by Odum [36] in terms of maximization of empower, and was proposed by Odum
as the fourth law of energetics. There is no decisive evidence of the maximum power principle [37].
However, its supporters argue it is challenging to test this principle and it could take some time similarly
as it has taken with previous ecological hypotheses including Darwin’s natural selection [31]. However,
there is some indirect evidence that nature choose intermediate states in efficiency and rate, at which
power attains a maximum. One example of intermediate states is the leaf area index of deciduous forest
which is maintained at an intermediate state where it produces a maximum power.

4.4. Maximum Entropy Production Principle MEPP

Open systems in a state that is far away from equilibrium experience a continuous production of
entropy sustained by a constant incoming flux of energy with low thermodynamic entropy from the
environment. This production of entropy allows these systems to maintain the structure and organization,
and increase the amount of information. Therefore, it is likely that if there is an optimum function
pursued by open systems as they move away from equilibrium, it will be associated with thermodynamic
entropy. However, the question is whether these systems maximize thermodynamic entropy? On the one
hand some authors suggest that open systems optimize rather than maximize entropy production [38].
On the other hand some authors support the maximum entropy principle (MEPP) that suggest there is
a maximization at a local scale in these systems as the move away from equilibrium.
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The MEPP was initially proposed by Ziegler [39,40]. According to this principle when
thermodynamic forces (F T

i ) are preset, the fluxes are such that maximize the entropy production density
at the local scale σ(JTi ) [28]. This principle seems a promising fundamental alternative that determines
the behavior of open systems in far from equilibratebrium conditions. There are some experimental
examples that support this hypothesis (See Manuscript). The optimization problem to find JTj can be
stated as:

maximize: σ(JTi )

subject to: σ(JTi ) =
∑
i

F T
i J

T
i .

(S40)

and can be solved with the next lagrangian function [29]:

La = σ(Jk)− λ
(
σ(JTk )−

∑
i

F T
i J

T
i

)
(S41)

where λ is a Lagrange multiplier. The thermodynamic fluxes JTk that maximize σ can therefore be
determined by ∂La

∂JTj
= 0. As Martyushev [29] pointed the relationship between thermodynamic forces

and fluxes may be both linear and nonlinear. This feature makes this principle very powerful. In addition,
the principle holds for non-stationary state conditions, and it is possible to derivate MinENT from
Equations (S40) and (S41) by implementing appropriate conditions [29].

Note that the objective function and the principle itself is conceptualized at a local domain. The
entropy production from the total system by integration of the local entropy production may not be
maximum. According to Martyushev [29] previous studies have erroneously refuted the principle
by performing calculations of entropy production over the entire system through spatial integrations.
However, several studies have also provided support for the principle from computations of total
entropy over the entire system. Therefore, implementations linking this principle with the total entropy
production from a system that is computed from a space integration of the local entropy production is not
appropriate. In particular, it is important to keep in mind the local formulation of MEPP in the CZ where
most of the applications are performed over large control volumes. However, the local formulation can
be very useful to infer general properties of the system at local scales and then use these properties to
analyze the system at larger scales.

Production of entropy involving larger spatial and time scales are more linked with the Entropy
Generation Maximum Principle (EGMa) proposed by Lucia [41]. This principle deals with the
generation of entropy and represent an interesting alternative that is more feasible to be tested.

4.5. Principle of Maximum Exergy Storage, PMES

This principle was originally proposed by Jørgensen and Mejer [42–44] and has been analyzed in
latter publications [45,46]. A continuous flux of exergy is responsible for driving a system towards
a state that is far from thermodynamic equilibrium. Therefore, it is very likely that exergy is an important
variable that controls the evolution of open systems in a state that is far from equilibrium. According to
this hypothesis the most probable path that a system exposed to exergy fluxes will take as it moves far and
far from equilibirum is that in which it maximizes the storage of exergy. In the case of ecological systems
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eco-exergy is used instead of exergy. This principle has been tested on several ecological systems [47–49]
and seems a good goal that guide the development of ecosystems. Analysis of exergy storage captures
the 24 properties of ecosystem maturity proposed by Odum [50] as indicators of maturity [51]. Although
the goal of this principle is related to a “storage” of exergy, this may result in similar patterns as those
obtained if maximum power is maximized, since maximization of exergy storage could enhance the
generation of power [52]. However, exergy only poses a maximum limit on the availability of useful
energy. Therefore, maximization of exergy storage will provide only an alternative where the system
becomes effective in maximizing the storage of potential useful energy that can be used to perform
work. It does not assure that the system is maximizing the work that is produced because exergy could
be destroyed in different ways including some where no work is produced. Therefore, PMES and MPOP
are different hypotheses and it needs to be proven that both leads to the same patterns in all conditions.

4.6. Principle of Maximum Exergy Dissipation, PMED

This principle was originally proposed by Schneider and Kay [53,54] and implies that as open
thermodynamic systems are moved away from equilibrium due to external fluxes of exergy, these systems
will respond by organizing themselves and degrading exergy as much as possible. In addition, as the
systems are moved further away from equilibrium they will enhance more the organization patterns and
become more effective to degrade exergy. Degradation of exergy is connected with generation of entropy.
Therefore, this principle is similar with a maximum generation of entropy (EGMa) Lucia [41]. Similarly
to PMES a main motivation in the conceptualization of this principle is the connection of exergy with
useful energy and work. However, as mentioned above exergy only poses a limit on the availability of
useful energy to perform work. Therefore, dissipation of exergy not necessarily means maximization of
work per unit time.

4.7. Principle of Maximum Energy Flow

In his seminal paper Contribution to the Energetics of Evolution, Alfred Lotka suggested that natural
selection and therefore evolution tends to maximize the energy flux through the system in accordance
with the constraints that are imposed. This paper represented an important contribution to the energetics
of ecology and even today, the implications of this study are still under consideration. There have been
some attempts to connect Lotka’s principle with others that are more recent. However, as explained
below this connection could be analyzed from different angles that may be adjusted accordingly with
different principles.

Lotka states that the units of the objective that he proposed to maximize are power. Therefore, it has
been suggested that this principle is connected with the MPOP. However, it can be arguable what exactly
Lotka meant when he used the word energy. It seemed that energy as used in his paper refers to a form of
useful energy to perform work and therefore could be associated with exergy. Also, according to Lotka if
other things are equal the energy flux will be proportional to the mass in the system. This mass is referred
in his paper as organic matter and therefore his objective of energy flux will result similar to maximizing
eco-exergy storage as proposed in PMES [37]. However, there are some constraints on mass production
based on available resources. According to Lotka under such constraints there will be a maximum power
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from the turnover of available organic matter. In this case the turnover of organic matter (eco-exergy)
could be associated with exergy dissipation by the system as suggested by the PMED.

4.8. Principle of Maximum Entropy POME

This principle was initially proposed by Jaynes [55,56]. According to this principle when making
inferences from data that is incomplete the probability distribution that should be selected is the one
that satisfies the maximum information entropy subject to given constraints. This principle is motivated
on the fact that distributions with higher entropy are more probable. The optimization problem can be
stated as [14]:

maximize: H(X)

subject to:
b∫
a

f(x)dx = 1

b∫
a

gr(x)f(x)dx = gr(x)

(S42)

where the first constraint results from the definition of a probability densify function, and the other
constraints are given by particular properties of the system under consideration and are defined in terms
of moments. According with Singh and Rajagopal [14,57] this maximization problem can be solved
with Lagrange multipliers with the next lagrangian function

La = −
b∫
a

f(x)Ln(f(x))dx− (λ0 − 1)

(
b∫
a

f(x)dx− C0

)
−

n∑
r=1

λr

(
b∫
a

f(x)gr(x)dx− Cr
)
.

(S43)

In this equation, λr refers to the lagrange multiplier that is used for constraint r. The function f(x)

that satisfies the maximum H(X) can then be obtained from ∂La
∂f

= 0. This principle has been
widely used in hydrology to infer the probabilistic distribution of different variables. However, it has
not been used as a predictive principle that guides the evolution of open systems that are far from
equilibrium. Dewar [58,59] tried to link this principle with MEPP but his approach has been criticized
by Bruers [29,60].

4.9. Principle of Maximum Ascendency

Ascendency is defined for networks as the product of total system throughout and average mutual
information (As = IT ). Ascendency has been correlated with the 24 properties proposed by [50] as
indicators of maturity. Based on this evidence Ulanowicz [61,62] proposed a principle that will help to
understand ecosystem development. According to this principle, in the absence of major perturbations,
ecosystems will exhibit a tendency to increase in ascendency [63]. This principle is particularly
important because it is directly associated with the network organization of the ecosystem which is a
major property that in some cases is underestimated. In addition, this is the only optimum principle from
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all those described in this study where a concept directly linked with information entropy is included to
conceptualize the development of ecosystems.

5. Multi-Objective Optimization

A multi-objective optimization problem can be stated as [64]:

maximize: ς (x)

subject to: gi(x) ≤ 0

hi(x) ≤ 0

(S44)

where ς (x) = (ς1(x), ς2(x), ς3(x), ..., ςn(x), ) is a vector of optimum functions defined over a
n-dimensional decision variable vector x = (x1, x2, x3, ..., xn), and gi(x), hj(x), i = {1, ..,m} j =

{1, .., p}, represents all the constraints that must be fulfilled. The solution of this optimization problem
is a Pareto front, that represents a trade off between all the objective functions that are considered. It
represents the optimum points that are attained for an objective in such a way that it can not be optimized
more without degrading some other objective values.

List of Symbols

Symbol Description

SW Shortwave
LW Longwave
LE Latent heat
HH Sensible eat
I Flux of mass
J Flux of energy
L Flux of entropy
Lrad Flux of entropy in the form of radiation
S Thermodynamic entropy
W Work as defined in thermodynamics
G Free Energy
H Information (Shannon) entropy
T Temperature
g Gravitational field
Vcz Control Volume to delineate the Critical Zone
Acz Surface area of the control volume in Vcz
MT,cz Total Mass in the CZ defined by Vcz
ET,cz Total Energy in the CZ defined by Vcz
ST,cz Total Entropy in the CZ defined by Vcz
Eex,cz Total Exergy in the CZ defined by Vcz
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Symbol Description

mcz Local mass in Critical Zone
ecz Energy of an elemental volume within the Critical Zone
scz Entropy of an elemental volume within Critical Zone
Mk Molar mass in component k
σcz Entropy production by the control volume Vcz
σcz,rad Local entropy production associated with a transformation of radiation

σcz,int
Local entropy production associated with the production of entropy from
internal processes within the Vcz.

Ṡgen,cz Entropy generated by the CZ

Ṡgen,cz,rad
Entropy generated by the CZ associated with instantaneous transformation of
radiation at the surface

Ṡgen,cz,int Entropy generated by the CZ associated with internal processes within the CZ.
Γgen,cz Destruction of exergy by the CZ

Γgen,cz,rad
Destruction of exergy by the CZ associated with instantaneous transformation of
radiation at the surface

Γgen,cz,int Destruction of exergy by the CZ associated with with internal processes within the CZ.
τ Time scale associated with a particular process used to compute Ṡgen,cz.
µk Chemical potential in component k
nk Mole number per unit volume of component k
sk Molar entropy in component k
uk Internal energy in component k
ck Average kinetic energy associated with component k
hk Enthalpy associated with component k
Afi Affinity of a chemical reaction
vi Velocity of a chemical reaction
νj,k Stoichiometric coefficients of component k in reaction j
δφ Amount of kinetic energy transformed to heat
RF Radiation factor for computation of thermodynamic entropy of radiation
IPPT Mass flux associated with precipitation
IET Mass flux associated with evapotrasnpiration
IELV Mass flux associated with physical denudation
IGEO Mass flux associated with chemical denudation
JSW Energy flux associated with shortwave radiation
JLW Energy flux associated with longwave radiation
JQ,LE Energy flux associated with latent heat
JQ,H Energy flux associated with sensible heat
JELV Energy flux associated with physical denudation
JGEO Energy flux associated with chemical denudation
JQ,G Ground heat flux
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Symbol Description

JQ,atm Flux associated with the heat absorbed by the atmospheric part of the critical zone.
Jbio Energy flux associated with living systems in CZ.
Jpho Energy flux associated with SW taken during photosynthesis.

JQ,resp
Energy flux within the CZ associated with heat fluxes from respiration and dissipation
of work of biological systems.

JQ,H2O

Energy flux within the CZ associated with heat fluxes from dissipation of kinetic
and potential energy of water.

JH2O Net energy flux associated with water fluxes.
LSW Entropy flux associated with SW radiation
LLW Entropy flux associated with LW radiation
LQ,LE Entropy flux associated with LE heat
LQ,H Entropy flux associated with HH heat
LELV Entropy flux associated with physical denudation
LGEO Entropy flux associated with chemical denudation
LQ,G Ground heat flux

LQ,atm
Entropy flux associated with heat absorbed by the atmospheric part of
the critical zone.

Lbio Entropy flux associated with living systems in CZ.
Lpho Entropy flux associated with SW taken during photosynthesis.

LQ,resp
Entropy flux associated with heat fluxes from respiration and dissipation of
work of biological systems.

LQ,H2O

Entropy flux associated with heat fluxes from dissipation of kinetic and potential
energy of water.

LH2O Net entropy flux associated with water fluxes.
Rn Net radiation
LG Entropy flux related to the ground heat flux
LSW Entropy flux related to shortwave radiation flux
ssolar Solar constant of first order
esolar Solar constant of second order
σevap Solar evaporation
Ṡgen,atm Entropy generated by a control volume in the atmosphere defined by Vatm
ρwater Water density
RHa Relative humidity of air at temperature Ta
RHs Relative humidity of air at saturartion at Ta
Rv Gas constant for water vapor
g Earth’s Gravity
R Gas constant

Fs
Variable that includes the free energy of the entire soil after scaling up
from minerals.
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Symbol Description

Ss
Variable that includes the thermodynamic entropy of the entire soil after
scaling up from minerals.

∆F Change in the free energy of the entire soil.
∆Ss Change in the thermodynamic entropy of the entire soil.
Eex,CMInet Net Exergy flux through the Critical Zone. It does not include exergy destruction
µi,o Chemical potential of a given component (or mineral) at a given reference.
Ecx Ecoexergy.
Escx Specific Ecoexergy.
ci Concentration of component i.
Q̇perc Rate of heat produced through percolation
Q̇surf Rate of heat produced through surface water flow
Ts Soil temperature
Tsurf Temperature surface water
Tsource Temperature of body emitting radiation
To Temperature of hypothetical environment that surrounds the CZ
σsoil per Entropy production associated with the percolation of water in soils.
ζstr Discharge
f(x) Probabilistic density function of random variable X
p(xi) Probability of occurrence of event xi
p(xi, yj) Probability of occurrence of event xi and yj
H(X) Information (Shannon) Entropy of a random variable X
H(X, Y ) Join information entropy of random variables X and Y
I(X, Y ) Mutual Information of variables X and Y
DKL(p||q) Kullback − Leibler divergence between distribution p and q
Φn Non symmetric overhead in ecological networks
Φs Symmetric overhead in ecological networks
CMI Conditional Mutual Information
DIT Directional information transfer
TE Transfer Entropy
F Total system throughput
F (i, j) Quantum flux leaving compartment i and entering compartment j
F (i) Quantum flux leaving compartment i
F (j) Quantum flux entering compartment j
B Total system mass
Bi Mass in system compartment i
Bj Mass in system compartment j
D Dependency
Rel Relevance
Red Redundancy
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Symbol Description

Ω Number of possible arrangements of the microstates
JT Thermodynamic flux
F T Thermodynamic force
λ Lagrange multipliers
La Lagrangian functions
σb Stefan-Boltzmann Constant
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