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Abstract: We propose a continuous maximum entropy method to investigate the robust
optimal portfolio selection problem for the market with transaction costs and dividends.
This robust model aims to maximize the worst-case portfolio return in the case that all
of asset returns lie within some prescribed intervals. A numerical optimal solution to
the problem is obtained by using a continuous maximum entropy method. Furthermore,
some numerical experiments indicate that the robust model in this paper can result in better
portfolio performance than a classical mean-variance model.
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1. Introduction

Since Markowitz’s pioneering work [1,2], the mean-variance framework has become the foundation
for modern finance theory. The concept of mean-variance analysis has been instrumental in many areas
such as asset allocation and risk management during the past decades. Konno et al. [3] employed
absolute deviation as a measure of risk which will lead to much less computation compared with those
of mean-variance models. Young [4] formulated a min-max portfolio problem for maximizing the
minimum return on the basis of historical returns data. Steinbach [5] provided an extensive overview
of the mean-risk framework. Wu et al. [6] discussed a robust portfolio problem for the market with or
without short sale restriction.
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Although the mean-variance framework is still widely accepted and used, there are several challenges
that are needed to be overcome. One of the major challenges is that optimal portfolios are sensitive
to the estimation errors of mean and variance. Best and Grauer [7] analyzed the effect of changes in
mean returns on the mean-variance efficient frontier and compositions of optimal portfolios. Broadie [8]
investigated the impact of errors in parameter estimates on the actual frontiers, which were obtained by
applying the true parameters to the portfolio weights derived from their estimated parameters. Both of
these studies show that different input estimates to the mean-variance model can result in large variations
in the composition of efficient portfolios.

In order to deal with the sensitivity of optimal portfolio to input data, many attempts have been made
to develop new techniques such as optimization and parameter estimation. One of the techniques is
a Bayesian approach to create stable expected returns. Black and Litterman [9] established a balance
between the expected return and investor’s risk tolerance specified by a ranking of confidence. Another
technique is the robust optimization which was first proposed by Soyster [10]. This approach is mainly
to protect the decision-maker against parameter ambiguity. Most recently, many scholars considered
the estimation errors of parameter by robust optimization. (see Goldfarb and Iyengar [11], Ceria and
Stubbs [12], Ben-tal and Nemirovski [13]).

This paper proposes a continuous maximum entropy method to investigate the robust optimal portfolio
selection problem for the market with transaction costs and dividends. Our focus will be on the following
three cases. Firstly, all of the asset expected returns lie within some specified intervals which can be
estimated by their historical return rates. This means that the errors in estimates of expected returns
are considered by investors. It should be pointed out that our model only concerns this error, which
is the major factor of estimation risk in the mean-variance framework. Secondly, we consider more
complicated market situations than those in [6], in which they did not take into account transaction
costs and dividends. As a matter of fact, it is an important issue in reality for portfolio managers to
choose investment strategies (see Mansini and Speranza [14], Best and Hlouskova [15], Lobo et al. [16],
Bertsimas and Lo [17]). Lastly, we apply a continuous maximum entropy method to solve a robust
portfolio model. The discrete maximum entropy algorithm in [6] can not be applied to the present
problem, because the objective function is not differentiable when transaction costs and dividends are
considered.

The paper proceeds as follows: In Section 2, the robust portfolio model considering the market with
transaction costs and dividends is discussed. Section 3 provides a numerical solution to the problem by
using the maximum entropy method. Section 4 presents some numerical experiments with our model.
Finally, concluding remarks and suggestions for future work are given in Section 5.

2. Problem Statement

Our focus here is to introduce the formulation of robust portfolio problem in a market with transaction
costs and dividends. Therefore, we start with some notations and assumptions.
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2.1. Notations and Assumptions

Assume that an investor allocates his initial wealth to n risky assets in a market with transaction
costs and dividends, in which transaction costs include capital income tax and basic income tax. Let tg
be the tax rate of marginal capital income. t0 is the tax rate of marginal basic income. tf represents
the commission rate of transaction. ts is the stamp tax rate of transaction. The rate of dividends on
asset i is specified by di. Let r̃i be the return rate of asset i, which is a random variable. Let ri
denote the mathematical expectation of the random variable of r̃i. σij is the covariance between the
random variables r̃i and r̃j . (σij)n×n is the matrix of asset volatilities, which can be used to measure
the portfolio risk. Let x0

i and xi be the proportion invested in asset i of initial portfolio and optimal
portfolio respectively. The expected return and risk of a portfolio are respectively given by

∑n
i=1 rixi

and
∑n

i=1

∑n
j=1 σijxixj .

Next, we give the following assumptions:

Assumption 1. The covariance matrix (σij)n×n is strictly positively definite.

Assumption 2. The expected return for asset i is unknown-but-bounded. Instead of defining a box
from an uncertain set, we consider that the expected return ri is located in a known interval. That is,
ri ∈ (ai, bi), where ai > 0, bi > 0. They can be obtained by simulating from a probability model for
future returns.

Assumption 3. The market considered in this paper includes transaction costs and dividends. The
transaction cost is the V type function of the volume of transaction. The capital income tax contains the
commission c1(x) and stamp tax c2(x). They are given by

c1(x) =
n∑
i=1

tf |xi − x0
i |, c2(x) =

n∑
i=1

ts|xi − x0
i |.

To make things easier, it is useful to define the following concepts. The net return is the total returns
of expected return and dividends after paying the basic income tax and capital income tax. The pre-tax
profit represents the total returns of expected return and dividends excluding the commission and stamp
tax. The after-tax profit is the value of pre-tax profit after paying the capital income tax.

2.2. Robust Model

On the basis of the above notations and assumptions, we are now ready to formulate the robust
portfolio model in the market with transaction costs and dividends.

Generally speaking, the stamp tax can be eliminated as a pre-tax expense in the period. However, the
commission can not be ruled out since it is considered as investment cost. Therefore, the total pre-tax
profit of a portfolio can be expressed by

n∑
i=1

(ri + di)xi − c1(x)− c2(x).
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Hence, the after-tax profit of a portfolio can be obtained by the following expression:
n∑
i=1

(1− tg)[(ri + di)xi − c2(x)]− c1(x).

Substituting expressions c1(x) and c2(x) into the above expression, it yields
n∑
i=1

[(1− tg)ri + (1− t0)di]xi −
n∑
i=1

[(1− tg)ts + tf ]|xi − x0
i |.

Define
Ri = (1− tg)ri + (1− t0)di

and
k = (1− tg)ts + tf .

Then the after-tax profit of a portfolio can be expressed as:
n∑
i=1

Rixi − k
n∑
i=1

|xi − x0
i |.

It is obvious that Ri represents the rate of net return on risky asset i. Moreover, the parameter k can be
explained by the cost of market transaction. Hence, the variance of a portfolio can be formulated as:

(1− tg)2

n∑
i=1

n∑
j=1

σijxixj.

Based on the mean-variance framework, in our model we attempt to maximize the minimization over
expected returns subject to the constraint that all of the asset expected returns lie within some specified
intervals. Therefore, it can be formulated by the following min-max problem:

max
x

min
R

n∑
i=1

Rixi −
n∑
i=1

k|xi − x0
i | − ω(1− tg)2

n∑
i=1

n∑
j=1

σijxixj (1)

s.t.
n∑
i=1

xi = 1, xi ≥ 0,

Ri ∈ (a′i, b
′
i), i = 1, 2, · · · , n.

where the parameter ω ∈ [0,+∞) characterizes the investor’s risk aversion, a′i = (1− tg)ai + (1− t0)di,
b′i = (1− tg)bi + (1− t0)di.

3. Optimal Strategy

In this section, we are devoted to finding the optimal solution to Problem (1). This problem is a
standard min-max problem with linear constraints, which may be solved by using the maximum entropy
method. It should be pointed out that the objective function including transaction costs and dividends
is not differentiable, and the discrete maximum entropy algorithm in [6] can not be applied directly to
the present problem. This paper proposes a continuous maximum entropy method to solve the problem.
Next, we give a quick review of this method.
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3.1. Maximum Entropy Method

We first consider the following min-max optimal problem:

min
x∈Ω

max
y∈Ω′

f(x, y), (2)

where x ∈ Ω ⊆ Rn, y ∈ Ω′ = [0, N1]× [0, N2]× · · · [0, Nm] ⊂ Rm.
We define

z = max
y
f(x, y), (3)

g(x, y, z) = f(x, y)− z. (4)

Obviously, Problem (2) is equivalent to the following optimization problem:

min z (5)

s.t. g(x, y, z) ≤ 0.

According to the results by Huang and Shen [18], and its references such as Shannon [19], Skilling
and Gull [20], Everett [21], Brooks and Geoffrion [22], Gould [23] and Greenberg and Pierskalla [24],
Problem (5) is equivalent to the following problem:

min z

s.t.
∫ N1

0

· · ·
∫ Nm

0

λ(y)dy1 · · · dym = 1,∫ N1

0

· · ·
∫ Nm

0

λ(y)g(x, y, z)dy1 · · · dym = 0, (6)

−
∫ N1

0

· · ·
∫ Nm

0

λ(y) lnλ(y)dy1 · · · dym ≥ 0,

where λ(y) represents the probability density function of the y. The last constraint is the famous
maximum entropy condition. In the following, we will provide the optimal probability density function
λ∗(y) of y according to the maximum entropy constraint.

Then, the Lagrange function of Problem (6) can be expressed by

L =z + α

∫ N1

0

· · ·
∫ Nm

0

λ(y)g(x, y, z)dy1 · · · dym + µ

(∫ N1

0

· · ·
∫ Nm

0

λ(y)dy1 · · · dym − 1

)
− 1

ρ

∫ N1

0

· · ·
∫ Nm

0

λ(y) lnλ(y)dy1 · · · dym,

where α, µ, ρ > 0 are all the Lagrange multipliers.
Denote

T (x, λ(y)) = αλ(y)g(x, y, z) + µ(λ(y)− 1

M
)− 1

ρ
λ(y) lnλ(y),

where M = Πm
i=1Ni .

According to variational principle, it yields

∂T (x, λ(y))

∂λ(y)
= 0. (7)
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Since g(x, y, z) is unrelated to λ(y), it follows from (7) that

αg(x, y, z) + µ− 1

ρ
[lnλ∗(y) + 1] = 0.

It is known from (6) that ∫ N1

0

· · ·
∫ Nm

0

λ∗(y)dy1 · · · dym = 1. (8)

Thus, it has the following system of equations:{
αg(x, y, z) + µ− 1

ρ
[lnλ∗(y) + 1] = 0,∫ N1

0
· · ·
∫ Nm

0
λ∗(y)dy1 · · · dym = 1.

(9)

From the first equation of (9), we have

λ∗(y) = exp{αρg(x, y, z)} exp{ρµ+ 1}. (10)

Substituting (10) into the second equation of (9), we get∫ N1

0

· · ·
∫ Nm

0

exp{αρg(x, y, z)} exp{ρµ+ 1}dy1 · · · dym = 1.

Since exp{ρµ+ 1} is a constant, it follows that

exp{ρµ+ 1} =
1∫ N1

0
· · ·
∫ Nm

0
exp{αρg(x, y, z)}dy1 · · · dym

. (11)

Hence, in view of (11) and (10), we obtain that

λ∗(y) =
exp{αρg(x, y, z)}∫ N1

0
· · ·
∫ Nm

0
exp{αρg(x, y, z)}dy1 · · · dym

. (12)

Substituting (12) into the original Lagrange function, we get

L = z +
1

ρ
ln

∫ N1

0

· · ·
∫ Nm

0

exp{αρg(x, y, z)}dy1 · · · dym.

It follows from (3) and (4) that

L = z(1− α) +
1

ρ
ln

∫ N1

0

· · ·
∫ Nm

0

exp{αρg(x, y, z)}dy1 · · · dym

= z(1− α) + α
1

αρ
ln

∫ N1

0

· · ·
∫ Nm

0

exp{αρg(x, y, z)}dy1 · · · dym.

Define

Fp(x) :=
1

p
ln

∫ N1

0

· · ·
∫ Nm

0

exp{pg(x, y, z)}dy1 · · · dym.

Obviously, Fp(x) is a multi-dimensional continuous maximum entropy function. We can derive that

L = z(1− α) + αFp(x),
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where p = αρ.
Define

F (x) = max
y∈Ω′

f(x, y).

Our main objective is to prove the convergence of L. If we can prove Fp(x) converges to F (x), then we
can get the convergence of the function L. That means L converges to z(1− α) + αF (x). We find that
the value of α does not affect the convergence of L.

Without loss of generality, we set α = 1, then

L = Fp(x) =
1

p
ln

∫ N1

0

· · ·
∫ Nm

0

exp{pg(x, y, z)}dy1 · · · dym.

Theorem 4. For any m > 1 and p > 1, we have |Fp(x)− F (x)| ≤
∣∣∣ lnMp ∣∣∣. Moreover, if p→ +∞, then

Fp(x) → F (x). Where Fp(x) = 1
p

ln
∫ N1

0
· · ·
∫ Nm

0
exp{pf(x, y)}dy1 · · · dym, F (x) = maxy∈Ω′ f(x, y),

M =
∏m

i=1 Ni.

Proof. For any x ∈ Ω

|Fp(x)− F (x)| = |Fp(x)−max
y∈Ω′

f(x, y)|

=

∣∣∣∣1p ln

∫ N1

0

· · ·
∫ Nm

0

exp{pf(x, y)}dy1 · · · dym − ln(exp{F (x)})
∣∣∣∣

=

∣∣∣∣∣1p ln

∫ N1

0
· · ·
∫ Nm

0
exp{pf(x, y)}dy1 · · · dym
exp{pF (x)}

∣∣∣∣∣
=

∣∣∣∣1p ln

∫ N1

0

· · ·
∫ Nm

0

exp{p(f(x, y)− F (x))}dy1 · · · dym
∣∣∣∣ .

Since
f(x, y)− F (x) = f(x, y)−max

y∈Ω′
f(x, y) ≤ 0, p > 1,

then we obtain
p(f(x, y)− F (x)) ≤ 0.

Moreover, we can deduce that
exp{p(f(x, y)− F (x))} ≤ 1.

Hence, we arrive at

|Fp(x)− F (x)| ≤
∣∣∣∣1p ln

∫ N1

0

· · ·
∫ Nm

0

dy1 · · · dym
∣∣∣∣ ≤ ∣∣∣∣ lnMp

∣∣∣∣ .
Thus, Fp(x)→ F (x), when p→ +∞.
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3.2. Optimal Solution

Based on the discussion of subsection 3.1, now we aim to determine the solution of Problem (1).
Since

max
x∈Ω

min
y∈Ω′

f(x, y) = (−min
x∈Ω

)(−max
y∈Ω′

){f(x, y)} = min
x∈Ω

max
y∈Ω′

f(x, y),

then Problem (1) can be reformulated as follows:

min
x

max
R

n∑
i=1

(R′i + a′i)xi −
n∑
i=1

k|xi − x0
i | − ω(1− tg)2

n∑
i=1

n∑
j=1

σijxixj (13)

s.t.
n∑
i=1

xi = 1, xi ≥ 0,

R′i ∈ [0, b′i − a′i], i = 1, 2, · · · , n.

where R′i = Ri − a′i.
It can be seen that minx∈Ω Fp(x) is an approximation of Problem (13).
Let

h(x,R′) = exp

{
p

(
−

n∑
i=1

(R′i + a′i)xi +
n∑
i=1

k|xi − x0
i |+ ω(1− tg)2

n∑
i=1

n∑
j=1

σijxixj

)}
.

According to Theorem 4, Problem (13) can be approximated by the following constrained optimization
problem:

min
x

{
−1

p
ln

∫ b′1−a′1

0

· · ·
∫ b′n−a′n

0

h(x,R′)dR′1 · · · dR′n

}
(14)

s.t.
n∑
i=1

xi = 1, xi ≥ 0.

For the sake of convenience, denote

T1 =
n∑
i=1

n∑
j=1

ω(1− tg)2σijxixj, (15)

T2 =
n∑
i=1

k|xi − x0
i |. (16)

Therefore, Problem (14) can be re-written as

min
x

{
−1

p
ln

∫ b′1−a′1

0

· · ·
∫ b′n−a′n

0

exp{p(
n∑
i=1

(R′i + a′i)xi)− T1 − T2}dR′1 · · · dR′n

}

= min
x

{
−1

p
ln

∫ b′1−a′1

0

· · ·
∫ b′n−a′n

0

exp{p(
n∑
i=1

(R′i + a′i)xi)}dR′1 · · · dR′n + T1 + T2

}
. (17)
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Substituting both (15) and (16) into (17), Problem (14) can be reformulated as follows:

min
x

{
−1

p

(
ln

1

x1 · · ·xnpn
+

n∑
i=1

ln(epb
′
ixi − epa′ixi)

)
+

n∑
i=1

k|xi − x0
i |+

n∑
i=1

n∑
j=1

ω(1− tg)2σijxixj

}
(18)

s.t.
n∑
i=1

xi = 1, xi ≥ 0.

Obviously, Problem (18) is a non-smooth optimization problem. So the derivative of the objective
function does not exist at some point. Thus, a derivative-free method is needed to solve this problem. In
this paper, we adopt the widely used simplex search method (Lagarias et al. [25]), which is available in
Matlab by the subroutine ‘fmincon’.

4. Computational Results

In order to test the performance of robust mean-variance model, we consider a real portfolio which
selects six stocks of historical data from Shanghai Stock Exchange. Original data of six stocks from each
week’s closing prices from January in 2009 to May in 2014. As a result, the covariance matrix of six
stocks is as follows:

0.004335 0.001100 0.000703 0.001547 0.001095 0.000804

0.001100 0.004665 0.001177 0.000987 0.001318 0.000617

0.000703 0.001177 0.005983 0.000816 0.000599 0.000939

0.001547 0.000987 0.000816 0.003932 0.000865 0.001323

0.001095 0.001318 0.000599 0.000865 0.005597 0.000324

0.000804 0.000617 0.000939 0.001323 0.000324 0.002040


The week’s expected returns and their estimated intervals are listed in Tables 1 and 2.

Table 1. The week’s expected returns of six stocks.

Code 000581 002041 600362 600252 600406 600021
Mean 0.00785 0.005028 0.005744 0.001903 0.001422 0.00222

Table 2. The estimated intervals of week’s expected returns.

Code 000581 002041 600362 600252 600406 600021
Range (0.0061, 0.0109) (0.0038, 0.0076) (0.0040, 0.0088) (0.0005, 0.0052) (0.0004, 0.0040) (0.0011, 0.0052)
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4.1. Comparison with a Classical Mean-Variance Model

The classical mean-variance model under the same market situation of this paper can be formulated
as follows:

max
x

n∑
i=1

Rixi −
n∑
i=1

k|xi − x0
i | − ω(1− tg)2

n∑
i=1

n∑
j=1

σijxixj (19)

s.t.
n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , n.

where the notations of mathematical symbols are the same as this paper.
Now, we provide the market performances for the classical mean-variance model and the robust

one. Let’s assign the following parameters: p = 30000, tg = 0.3, ts = 0.00002, tf = 0.00007. For
simplification, we set x0

i = 0.
By using the subroutine “fmincon”in Matlab, we obtain the optimal strategies, efficient points and

efficient frontier of classical mean-variance model in the following Table 3 and Figure 1 respectively.

Table 3. The optimal strategies and efficient points corresponding to risk aversion ω.

ω x∗ ( V ar(x∗), E(x∗))
20 (0.1726, 0.1344, 0.1083, 0.0347, 0.1173, 0.4327) (0.0006631, 0.002608)
35 (0.1507, 0.1297, 0.1011, 0.0426, 0.1274, 0.4485) (0.0006581, 0.002487)
50 (0.1415, 0.1273, 0.0968, 0.0441, 0.1320, 0.4583) (0.0006567, 0.002433)
65 (0.1363, 0.1257, 0.0941, 0.0443, 0.1341, 0.4655) (0.0006561, 0.002401)
80 (0.1332, 0.1243, 0.0931, 0.0474, 0.1364, 0.4656) (0.0006559, 0.002382)
100 (0.1308, 0.1238, 0.0926, 0.0488, 0.1374, 0.4666) (0.0006557, 0.002370)

Figure 1. The efficient frontier to classical mean-variance model.
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By using the maximum entropy method and subroutine ‘fmincon’ in Matlab, we obtain the optimal
strategies, efficient points and efficient frontier of robust mean-variance model in the following Table 4
and Figure 2 respectively.

Table 4. The optimal strategies and efficient points corresponding to risk aversion ω.

ω x∗ (V ar(x∗), E(x∗))
20 (0.1762, 0.1335, 0.1047, 0.0184, 0.1191, 0.4481) (0.0006635, 0.003011)
35 (0.1501, 0.1293, 0.0988, 0.0370, 0.1284, 0.4564) (0.0006579, 0.002864)
50 (0.1423, 0.1262, 0.0958, 0.0409, 0.1316, 0.4632) (0.0006567, 0.002816)
65 (0.1369, 0.1247, 0.0934, 0.0422, 0.1338, 0.4690) (0.0006562, 0.002785)
80 (0.1330, 0.1238, 0.0915, 0.0443, 0.1350, 0.4724) (0.0006559, 0.002762)
100 (0.1312, 0.1231, 0.0926, 0.0477, 0.1371, 0.4683) (0.0006557, 0.002752)

Figure 2. The efficient frontier to robust mean-variance model.
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Next, we put the efficient frontiers of the robust mean-variance model and classical mean-variance
model in the same coordinate plane.

Figure 3 shows the efficient frontiers to the robust model and classical mean-variance one. It indicates
that the classical mean-variance efficient frontier lies far below the robust one. An immediate finding is
that the investor selecting the mean-variance strategy must take more risk than one selecting the robust
strategy under the same conditions of portfolio return. In other words, under the same conditions of
portfolio risk, an investor selecting the mean-variance strategy has less return than one selecting the
robust strategy. This means that the optimal portfolio in the mean-variance framework is not a good
portfolio. More importantly, this robust portfolio strategy will help investors avoid excessive losses
when unexpected events happen.



Entropy 2014, 16 3412

Figure 3. The efficient frontiers to the robust and classical mean-variance model.
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4.2. Comparison without Transaction Costs

The robust mean-variance model without transaction costs can be expressed as follows:

max
x

min
r

n∑
i=1

rixi − ω
n∑
i=1

n∑
j=1

σijxixj (20)

s.t.
n∑
i=1

xi = 1, xi ≥ 0,

ri ∈ (ai, bi), i = 1, 2, · · · , n.

where the notations of mathematical symbols are the same as this paper.
By using the maximum entropy method and subroutine “fmincon” in Matlab, we obtain the optimal

strategies, efficient points and efficient frontier of robust mean-variance model without transaction costs
in the following Table 5 and Figure 4 respectively.

Table 5. The optimal strategies and efficient points corresponding to risk aversion ω.

ω x∗ (V ar(x∗), E(x∗))
20 (0.1580, 0.1299, 0.1006, 0.0308, 0.1255, 0.4551) (0.001345, 0.004979)
35 (0.1410, 0.1257, 0.0943, 0.0397, 0.1315, 0.4678) (0.001340, 0.004839)
50 (0.1355, 0.1238, 0.0940, 0.0459, 0.1352, 0.4656) (0.001339, 0.004794)
65 (0.1313, 0.1243, 0.0924, 0.0485, 0.1358, 0.4677) (0.001338, 0.004764)
80 (0.1301, 0.1235, 0.0924, 0.0486, 0.1372, 0.4682) (0.001338, 0.004753)

100 (0.1283, 0.1231, 0.0920, 0.0494, 0.1381, 0.4691) (0.001337, 0.004740)
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Figure 4. The efficient frontier to robust mean-variance model without transaction costs.
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Comparing Table 4 with Table 5, we find that transaction costs play as a penalty factor for portfolio
revision. Furthermore, it tells us that the impact of transaction costs can not be ignored in the real world
when portfolio managers choose investment strategy.

5. Conclusions

This paper provides a maximum entropy method to investigate the robust optimal portfolio selection
problem for the market with transaction costs and dividends. For avoiding the sensitivity of optimal
portfolio to input data such as expected return and variance, we restrict the asset expected return to lie
within a specified interval. By maximizing the minimization over expected returns, we naturally establish
our robust portfolio model. We find that this problem can be solved by using a continuous maximum
entropy method. The numerical experiments indicate that the robust portfolio model is achieved at
relatively good performance than the classical mean-variance ones. In addition, we consider the market
with transaction costs and dividends, which is an important concern for investors. The research on
multi-period robust models and other risk measures instead of variance under this market circumstance
is left for future work.
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