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Abstract: Networks have become a popular way to concisely represent complex nonlinear
systems where the interactions and parameters are imprecisely known. One challenge is
how best to describe the associated dynamics, which can exhibit complicated behavior
sensitive to small changes in parameters. A recently developed computational approach
that we refer to as a database for dynamics provides a robust and mathematically rigorous
description of global dynamics over large ranges of parameter space. To demonstrate the
potential of this approach we consider two classical age-structured population models that
share the same network diagram and have a similar nonlinear overcompensatory term, but
nevertheless yield different patterns of qualitative behavior as a function of parameters.
Using a generalization of these models we relate the different structure of the dynamics
that are observed in the context of biologically relevant questions such as stable oscillations
in populations, bistability, and permanence.
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1. Introduction

Networks, in the form of directed graphs, have become ubiquitous as a modeling language for
complex multiscale systems. In biological models the nodes of the graph are often used to denote species
and a directed edge is used to indicate that one species directly affects another species. The usefulness
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of the network language arises in part from the fact that, in the context of multiscale systems, species
and, even more commonly, the interactions between the species are neither well defined nor understood.
As an example, consider gene regulatory/signal transduction networks. In this case, the species are
chemical compounds where the choice of which species and edges to include in a particular network
is often based on statistical analysis. Nevertheless the purpose of the model is either to provide
understanding of the experimentally observed dynamics or to provide a means of controlling the
dynamics for engineering or health purposes.

As the work of the last century has demonstrated, the invariant structures of nonlinear systems can
be extremely sensitive to arbitrarily small perturbations in the nonlinearities. For example, bifurcations
can occur on a Cantor set in parameter space [1,2], making it hopeless to try to give an explicit account
of the dynamics at every single parameter value. This suggests that the standard tools from nonlinear
dynamics may not be adequate for the task of analyzing the potential dynamics of a system described
in terms of a network. With this in mind, we have been developing a crude, but extremely robust,
finite queryable representation of the global dynamics of multiparameter nonlinear systems that we refer
to as a database for dynamics [3,4]. The philosophy of the database is that for many applications of
dynamical systems—in particular ones where there is no reason to expect that parameters can be known
with arbitrary precision—it is more meaningful to try to give an account of the dynamics valid for subsets
of parameter space on the same scale that parameters can be measured. The mathematical starting
point for the database is C. Conley’s approach to dynamics [5]. In particular, we make use of Morse
decompositions as a means of decomposing the dynamics into gradient-like parts, and the Conley index
as a means of rigorously identifying the structure of the recurrent dynamics. These ideas are discussed
in Section 2.

The goal of this paper is to provide a concrete demonstration of the potential importance of this
approach. This is done by considering a classical example from population biology: a nonoverlapping
overcompensatory two age class model. From a network perspective this is an extremely simple system

where the first age class N1 produces offspring (the self edge) and becomes the second age class N2,
and the second age class produces offspring that belong to the first age class.

To explore the dynamics generated by models of this form requires choices of the population levels
associated with the nodes and choices of the nonlinear interactions associated with the edges.
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In Section 3 we provide justification for using the following map as an analytic representation for
this network

N1
t+1 =

(
2∑
i=1

θiN
i
t

)
e−0.1(

∑2
i=1(sθi+1−s)N i

t)

N2
t+1 = 0.7N1

t

(1)

For the moment we remark that it is obtained by generalizing the models considered in [6,7] and that
that there are three parameters; 0 ≤ θi, i = 1, 2 which represent reproduction rates and 0 ≤ s ≤ 1 which
characterizes competition between age classes.

In light of our earlier comments, the purpose of exploring the dynamics is either to verify that
this is an adequate model or, having accepted the validity of this model, to understand the expected
observed behavior if parameters are changed. Several related observations are relevant at this point.
First, Equation (1) makes use of the Ricker nonlinearity [8] which is unimodal, and thus it is reasonable
to expect a period doubling cascade and the existence of infinitely many bifurcations on arbitrarily
small scales with respect to parameters. Second, except for carefully controlled laboratory settings [9],
population measurements are typically inaccurate and are subject to significant random perturbations.
Thus, from an experimental perspective detecting the occurrence of bifurcations is at best nontrivial,
which in turn calls into question whether one should attach theoretical significance to these bifurcations.
Finally, the ‘verifiability’ of the different parameters are not the same.

For the moment it is sufficient to remark that we imagine that the reproductive rates, represented by
θi, are more easily quantified than the degree or mechanisms of inter- and intra-species competition that
we are modeling by s. In Section 3 we provide a rationale for the use of s as a parameter to model
competition, but to a large extent it is based on ignorance. In light of the sensitivity of the structure of
invariant sets in unimodal maps to small perturbations in parameters, detailed analysis of these structures
seems irrelevant given the crude level of modeling employed.

With these observations in mind the goals of this paper are twofold: explain how the database
technique can provide robust, but rigorous information about important dynamical structures, and
at the same time demonstrate that intra-species competition plays a crucial role in determining the
expected observable dynamics and, perhaps more significantly, has an important impact on the relative
roles of the reproduction rates in achieving these dynamics. We provide a brief description of the
database representation of the dynamics in Section 2. The complete results of performing the database
computations on Equation (1) can be accessed at [10]. In Section 4 we use a subset of these results to
discuss three biologically relevant issues:

(1) biennial population dynamics,
(2) bistability, and
(3) permanence or persistence,

where we focus on how the choice of model, i.e., the value of s, influences the relative significance of
the reproduction rates θi.
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2. Database of Dynamics

We provide a minimal review of the database approach to dynamics and refer the reader to [3,4] for
more complete descriptions. Given a discrete-time dynamical system generated by a continuous function

f : Rn × Rm → Rn

(x, z) 7→ fz(x) := f(x, z)

we are interested in a rigorous finite representation of the dynamics on a compact subset X ⊂ Rn of
phase space over a compact set of parameter values Z ⊂ Rm.

The first step in the computation of the database is a choice of discretization of X and Z. This is
done by choosing a grid on both phase space and parameter space as defined in [11]. For the purposes
of this paper we restrict ourselves to considering cubical grids, i.e., a collection of closed cubes with
nonempty interiors covering the space we are discretizing (either X or Z) such that distinct cubes may
only intersect on their boundaries. In a scientific application the lengths of the edges of the cubes can
be chosen in accordance with the scale on which reliable measurements can be made with respect to the
variables and parameters. Let X and Z denote the grids for X and Z, respectively.

For each grid element of parameter space ζ ∈ Z we construct a discretization of the dynamics. A
convenient way of representing this discretization is with a set-valued function assigning to each ξ ∈ X a
subsetFζ(ξ) ofX that reflects the underlying dynamics. We represent this set-valued function, which we
call a combinatorial multivalued map, using the notation Fζ : X −→→X . The only essential requirement
for making a rigorous statement about the dynamics using the Conley index, which we introduce shortly,
is that Fζ be an outer approximation of f over ζ . Using int(·) to indicate the interior of a set, we say Fζ
is an outer approximation if

f(ξ, ζ) ⊂ int(Fζ(ξ)) for all ξ ∈ X . (2)

The map Fζ is not uniquely determined by this requirement and will depend on the numerical
algorithms used to compute the image of f . Moreover, different outer approximations will potentially
yield different qualitative information stored in the database. Indeed, as an extreme example one can
check that the multivalued map sending every grid element ξ to all of X satisfies the conditions of
an outer approximation. Unsurprisingly, taking this as an outer approximation provides no useful
information about the dynamics. We do not want to insist on a minimal outer approximation, however,
because in general the cost of computation will be prohibitive. It is part of the power of the database
approach to dynamics that we can make rigorous statements with any outer approximation, though it
remains true that better outer approximations can give us a more refined picture of the dynamics.

Observe that a combinatorial multivalued map is equivalent to a finite directed graph with vertices X
and directed edges (ξ, ξ′) whenever ξ′ ∈ Fζ(ξ). With this in mind, we refer toFζ as a multivalued map or
a directed graph, whichever is more convenient or intuitive given the situation. From the directed graph
Fζ we identify recurrent behavior by the existence of maximal strongly connected path components,
i.e., maximal subsets of X with a directed path between any two elements in the set (or a self-edge in
the case of just a one-element set). We use the following terminology:

Definition 1. Let Fζ be a multivalued map representing an outer approximation of the dynamics of a
map f : X × Z → X over a grid element ζ ∈ Z. A Morse set is a strongly connected path component
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of Fζ . Let Pζ be an index set for the Morse sets of Fζ . Then the Morse decomposition of Fζ is the set{
Mζ(p) ⊂ X | p ∈ Pζ

}
Furthermore, Fζ induces a partial order on Pζ in the following way: p1 ≤ p2 if and only if there is a

directed path in the graph Fζ from a grid element inMζ(p2) to a grid element inMζ(p1). Any recurrent
dynamics must occur in the Morse sets, while gradient-like, transient dynamics must move down with
respect to the partial order. We represent the Morse decomposition of Fζ and its associated partial order
by the Morse graph MGζ , which is the Hasse diagram for the poset (Pζ ,≤) [12].

The computations described above are performed for all ζ ∈ Z . We want to be able to identify
whether the dynamics captured over different regions of parameter space are similar or distinct. To do
this given ζ, ζ ′ ∈ Z such that ζ ∩ ζ ′ 6= ∅ we define the clutching graph I(ζ, ζ ′) to be the bipartite graph
with vertices Pζ ∪ Pζ′ and with edges

(p, q) ∈ Pζ × Pζ′ if and only if Mζ(p) ∩Mζ′(q) 6= ∅.

If this bipartite graph induces an order preserving isomorphism between the MGζ and MGζ′ , then we
declare that MGζ and MGζ′ belong to the same continuation class. Extending this relation by transitivity
we obtain a partition of parameter space such that each equivalence class defines the set of parameter
values that belong to the same continuation class.

We made the statement that any potential recurrent dynamics must occur within the Morse sets. What
is lacking at this point is a mathematical guarantee that a given Morse set contains nontrivial recurrent
dynamics. This is done using the Conley index, an algebraic topological invariant. A detailed account
of the Conley Index is outside the scope of this paper, but we refer the interested reader to [13]. For the
purposes of this paper, it suffices to (a) explain how we represent the Conley index; (b) state some basic
theorems regarding the Conley index; and (c) explain the connection between the Conley index and the
underlying recurrent dynamics we are interested in.

We begin with a fundamental definition and result.

Definition 2. A compact set N ⊂ X is an isolating neighborhood under fz if the maximal invariant set
in N , denoted by Inv (N, fz), is contained in the interior of N , i.e.,

Inv (N, fz) ⊂ int(N).

The following result is proven in [14]. If Fζ is an outer approximation of the dynamics of a map
f : X × Z → X over a grid element ζ ∈ Z, then for every z ∈ ζ , and for every p ∈ Pζ ,Mζ(p) is an
isolating neighborhood under fz. The Conley index can be viewed as an algebraic topological invariant
for isolated invariant sets or isolating neighborhoods: if two isolating neighborhoods have the same
maximal invariant set, then they have the same Conley index. Therefore, in particular, there is a well
defined Conley index that can be associated to any Morse setMζ(p).

So far we have spoken of “the” Conley index, but in fact there are choices to be made. Because
there exist efficient algorithms for computing homology and induced maps on homology using the
combinatorial map Fζ [15] we make use of the homological Conley index. For the purposes of this
paper we choose to perform all of the homology computations with the coefficient ring Z3.
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There are two reasons for this choice. First, Z3 is preferable to Z2 because it allows us to distinguish
1 and −1. This distinction is important, for example, when looking at fixed points with one-dimensional
unstable manifold. If the map restricted to the unstable manifold is orientation-preserving, meaning that
points near the fixed point are mapped to the same side of the unstable manifold, this will be reflected
by a 1 on the induced map in first homology. On the other hand, an orientation-reversing map on the
unstable manifold, which appears in the presence of a period doubling bifurcation, will be reflected by a
−1 on the induced map in first homology. In the case of Z2 coefficients, however, this distinction cannot
be made.

Second, Z3 is a field. When computing homology with field coefficients, the homology groups are
vector spaces, and induced maps on homology are linear transformations. This greatly simplifies the
algebraic problem of determining the Conley index. In particular, the Conley index in this setting is
equivalent to the problem of determining the canonical form of a linear transformation away from zero
eigenvalues [4]. Over the rational numbers Q, this amounts to determining the Jordan blocks (over C)
with nonzero eigenvalues. In principle, the Jordan form over Z3 can be computed by passing to the
algebraic closure, but this is a technical complication we can avoid by instead using the rational canonical
form [16]. An equivalent way of expressing the rational canonical form is by a set of polynomials
called the invariant factors, and there is a simple transformation for producing the invariant factors that
eliminates zero eigenvalues.

In the context of this paper, we are restricting our attention to dynamics in R2 and thus the Conley
index consists of at most three nontrivial lists of polynomials. Having performed the computations for
Equation (1) we note that each list contains at most a single nontrivial polynomial and thus we denote
the Conley index of a Morse setM by

Con(M) = (φ0(x), φ1(x), φ2(x)).

We say the Conley index is trivial if φi(x) is trivial for all i = 0, 1, 2.
Table 1 provides a partial dictionary for the Conley index: the invariant set on the left gives rise to

the Conley index on the right. However, having the Conley index on the right does not imply that that
associated maximal invariant set is the invariant set on the left. For example, a degenerate fixed point
has trivial Conley index like the empty set, so one cannot conclude that the dynamics are trivial just
because the Conley index is. An even more dramatic example of this is the fact that the Conley index
of the Smale horseshoe is trivial, despite being a highly complicated invariant set. This is not meant
to imply, however, that one cannot use the Conley index to obtain understanding of the structure of the
invariant sets. For example, if the Con(Mζ) = (xT − 1, trivial, trivial), thenM consists of T distinct
components Ki, i = 1, . . . , T and fz(Ki) ⊂ Ki+1, where KT+1 = K1, for all z ∈ ζ . We refer to such a
Morse set as a stable T -cycle set.

For each ζ ∈ Z , the associated Conley-Morse graph CMGζ consists of the Morse graph MGζ along
with the Conley-index Con(Mζ(p)) attached to the node Mζ(p). A fundamental result is that if
two Morse graphs belong to the same continuation class, then they have the same Conley-Morse graphs.
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Table 1. This table provides the Conley indices for elementary invariant sets. As discussed
in the text, the converse does not hold, i.e., the presence of a Conley index on the right does
not imply the existence of the corresponding invariant set. All coefficients are mod 3.

Dictionary of Conley Indices

Invariant Set Conley Index (H0 , H1, H2)

∅ (trivial , trivial, trivial)
stable fixed point (x− 1 , trivial, trivial)
fixed point, 1-d unstable manifold, orientation preserving (trivial , x− 1, trivial)
fixed point, 1-d unstable manifold, orientation reversing (trivial , x+ 1, trivial)
fixed point, 2-d unstable manifold, orientation preserving (trivial, trivial , x− 1)
fixed point, 2-d unstable manifold, orientation reversing (trivial, trivial , x+ 1)
stable period-T orbit (xT − 1 , trivial, trivial)
period-T orbit, 1-d unstable manifold, orientation preserving (trivial , xT − 1, trivial)
period-T orbit, 1-d unstable manifold, orientation reversing (trivial , xT + 1, trivial)
period-T orbit, 2-d unstable manifold, orientation preserving (trivial, trivial , xT − 1)
period-T orbit, 2-d unstable manifold, orientation reversing (trivial, trivial , xT + 1)
stable invariant circle (x− 1 , x− 1, trivial)
invariant circle, 1-d unstable manifold (trivial, x− 1 , x− 1)

3. Plant and Fish models

As indicated in the Introduction, the focus of this paper is on the database for dynamics as a tool in
the modeling of complex systems where models cannot be completely determined from first principles.
To make our discussion concrete we have chosen to work with an archetypical example, population
biology. To keep the discussion as simple as possible we make use of discrete time models and consider
the dynamics of the age-structured population of a single species. The network diagram for this type of
system takes the form

indicating that with time each age class moves to an older age class and each age class produces
offspring which become the youngest age class. While this network provides a framework in which
to consider the problem, to understand the induced dynamics requires modeling assumptions concerning
the edges/interactions. Most of what follows in this section is classical. However, we include it as it
emphasizes the philosophy of how the database approach can be employed to identify sensitive aspects
of the modeling process.
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Let Nt+1 ∈ Rn be the population vector representing the age structure of the population at time t+ 1

where N i
t denote the population of age class i. We assume that the future population is determined by

a continuous function Nt+1 = f(Nt). The classical Leslie matrix provides a linear model [17], but fails
to explain observed complicated population dynamics, and populations levels typically become extinct
or unbounded. This suggests that a nonlinear function f may be a more appropriate choice. Certain
biological assumptions will constrain the choice of f—for example in the absence of migration and
abiogenesis, we want f(0) = 0. Furthermore, even in very simple models it is desirable to reflect
the reality that a population cannot grow without bound. This can be accomplished by insisting for
a sufficiently large population |N | that |f(N)| ≤ |N |.

There are many biologically plausible functions that meet these criteria [18]. A common way
to ensure that the population remains bounded is to introduce an overcrowding effect that make the
reproduction rates density-dependent in such a way that the reproduction rate grows more slowly for
larger populations, perhaps even decreasing beyond a certain point.

One particular choice of unimodal nonlinearity for discrete time models is the Ricker nonlinearity [8],
which in the simple case of only one age class N is given by

f(N) = Ner(1−N/K) (3)

where the parameters r and K represents the growth rate for small populations and carrying capacity of
the environment, respectively.

Depending on the kinds of data available to the ecologist, however, it may be more convenient to
express this same nonlinearity using different parameters. Two standard reparameterizations are

f(N) = θNe−bN (4)

(see [7]) and
f(N) = θNe−bθN (5)

(see [6]).
Although these are just reparameterizations, they offer some advantages for interpretation. The

parameter θ in each of these formulations, for example, represents the reproduction rate when the
population is small and overcrowding effects are negligible. Perhaps more importantly, the exponent
makes explicit what quantity is responsible for the overcrowding effect, whereby at sufficiently high
populations the number of offspring actually decrease. Taking b to be a constant, in Equation (4) the
exponent is proportional to the number of adults in the population, while in Equation (5) the exponent is
proportional to the reproduction rate (in the absence of overcrowding) times the population.

Both Equations (4) and (5) can be extended to the case of multiple age classes (see [6,7]) following
the approach of the Leslie matrix. This introduces parameters θi for the reproduction rate of age class i
as well as ρi, the survival rate of the proportion of age class i to age class i+1. In particular, Equation (4)
generalizes to

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b

∑k
i=1N

i
t

N i
t+1 = ρiN

i−1
t i = 2, . . . , n

(6)
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and Equation (5) generalizes to

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b

∑k
i=1 θiN

i
t

N i
t+1 = ρiN

i−1
t i = 2, . . . , n

(7)

As discussed above, each of these models can be given a different biological interpretation based on
the exponent in the equation determining N1

t+1. Because the exponent in Equation (6) is proportional to
the total population, this can be understood as representing the youngest members of the species being
overcrowded by—or competing with—the existing adult population for resources. This might model,
for example, the way that saplings compete with taller, more mature trees for sunlight. For this reason
we will refer to Equation (6) as a “plant model”.

The plant model is discussed from a more classical point of view in [7] and from our database point of
view in [3]. In particular, ([7], Figure 1) gives a picture of the bifurcation diagram along the line indicated
in Figure 1. (Note that to make this comparison requires the choice of ρ2 = 0.7.) The bifurcation
diagram of [7] shows the presence of tremendously complicated changes in dynamics on fine scales that
the database approach summarizes in a much coarser manner. In particular, the database reduces it to
a relatively small number of Conley-Morse graphs.

In Equation (7), overcrowding depends on the potential number of recruits in the absence of any
density-dependent effects. Holding the adult population constant and increasing the reproduction rate
will increase the overcrowding in this model but not in the plant model. Biologically, this can be taken
to represent the youngest members of the species being in competition with themselves. In [6] this is
taken to be a model of a striped bass population, so for that reason we will refer to Equation (7) as
a “fish model".

We want to emphasize that both the fish and plant models have been extensively studied [6–8,18,19]
and both models exhibit a similar wide range of dynamics: global stable equilibria, stable periodic
dynamics, bistability, chaotic dynamics, etc. However, as indicated above these models are based on
different assumptions concerning overcrowding. Furthermore, it is reasonable to suspect that in reality
the youngest age group experiences competition both from themselves and from the older age groups.
Thus a natural series of questions is the following:

Do the similarities observed in the dynamics of Equations (6) and (7) depend on the
reproduction parameters in the same way? If so, can we understand this similarity in terms
of the similar network structure of the two models? If not, can we understand the differences
by putting these models in a wider context of models with the same network structure?

With this in mind it is natural to consider a possible continuum of intermediate cases where the
young members of the species compete with both the adults and the offspring to different degrees. Since
we have no explicit information about how this intermediate competition is taking place and since this
competition is probably species dependent, the simplest way to realize this continuum is to take a linear
interpolation between the two exponents using a new parameter s ∈ [0, 1], i.e.,
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N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b(s

∑k
i=1 θiN

i
t+(1−s)

∑k
i=1N

i
t)

N i
t+1 = ρiN

i−1
t i = 2, . . . , k

(8)

This reduces to the plant model when s = 0 and the fish model with s = 1. In this larger framework we
can observe how the dynamics change as the nature of competition changes by varying s.

Returning to the comments of the Introduction, given this crude level of modeling a detailed
description of the dynamics on the level of invariant sets, especially given the complexity of this
dynamics, appears unnecessary and, given the mathematical difficulty of obtaining such results, even
counterproductive. In contrast, the database for global dynamics is based on dynamical information that
can be extracted from outer approximations. The results of these computations are described in Section 4.

What should be noted at this point is that these results are based on the dynamics that can be extracted
from the computed outer approximations Fζ . Assume that g is an alternative model to Equation (8) that
is, for example, based on more information about the form of competition. Furthermore, assume that Fζ
is an outer approximation for g, i.e.,

g(ξ, ζ) ⊂ int(Fζ(ξ)) (9)

(see Equation (2)), then the database information provided by the computations based on f are valid for g.
The obvious question is, how plausible is the assumption of Equation (9)? Since the computations

we perform are based on rather crude grids in both phase and parameter space, and since we are using
interval arithmetic to approximate the dynamics, we claim that this is not an unrealistic assumption. In
particular, the computations could be performed at a lower resolution to gain further confidence in this
assumption (see [10]).

4. Computational Results

In this section, we provide the results of the database of dynamics computations. Details about the
algorithms we use are given in [4]. For the full database computation on the three parameters θ1, θ2,
and s the reader is referred to [10]. This is a large data set. Thus, for the sake of clarity, we restrict our
discussion to the following computations: the plant model Equation (6), the fish model Equation (7),
and the mixed model Equation (8) at values of s = 0.01, 0.02, 0.05, and 0.1. Again, the full output of
these computations can be found at [10]. We limit our discussion to the effect of the choice of s on three
typical biologically relevant questions.

We begin by discussing and justifying our choice of phase space X and parameter space Z. We then
describe the database results for s = 0 (plant model) and s = 1 (fish model). This information is used
to formally state the three questions of interest. We then discuss these questions based on the above
mentioned computations of intermediate values of s.

Following [3,7] we restrict our computations to Equation (1) that is obtained from Equation (8) by
restricting to two age classes and setting ρ1 = 0.7. The parameter b is a scale parameter that has no effect
on the dynamics, so we follow [3] and set b = 0.1. Even in this simplified setting the difference between
the dynamics of the plant and fish models is apparent.
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To perform the database computations we must restrict our parameter space to a compact set.
Conceptually this is not a problem since there always exists an upper bound on the rate of reproduction,
however appropriate values for this upper bound is a modeling question that is problem specific. Lacking
this information, we have chosen to work with

Z = {(θ1, θ2) ∈ [0, 50]× [0, 50]}

for various values of s ∈ [0, 1], since this range of reproduction rates provides a diverse set of dynamics.
Similarly, the database computations require that we choose a compact phase space X . We note that

Equation (1) has a global compact attractor and hence there exists a compact forward invariant region in
[0,∞)2 that contains all the relevant dynamics. Explicit bounds on regions of this form this form depend
on s and can be determined by bounding the number of new recruits:

N1
t+1 =

(
k∑
i=1

θiN
i
t

)
e−b(s

∑k
i=1 θiN

i
t+(1−s)

∑k
i=1N

i
t).

The maximum of this function over the first quadrant is 10θ
e(1+(θ−1)s) , where θ = max{θ1, θ2}. This is a

nondecreasing function of θ for all s ∈ [0, 1], so to determine a the maximum value for all choices of
θ1, θ2 we set θ = 50. This gives an upper bound on the value of N1

t+1 that also roughly corresponds to
the scale of the dynamics. From this we can bound N2

t+2 = 0.7N1
t+1.

To allow for numerical error when computing the outer approximation, we round these values up
when determining the size of phase space. For s = 0, for example, we take X = [0, 200] × [0, 140],
while for s = 1 we take X = [0, 5.0]× [0, 3.5].

As we have emphasized, the scale at which X and Z are discretized into grids is an important
consideration that will very much depend on the problem at hand. The precision with which the
parameters can be measured, for example, gives one natural and meaningful choice of grid size. Because
we are working with an abstract mathematical model in this paper, we have chosen the scale of our
grids in phase and parameter space to best illustrate, given our computational resources, the change in
dynamics between the plant and fish models. To this end, for each value of s we subdivide Z into a
128 × 128 parameter grid Z . Similarly in phase space: for each value of s we use an adaptive grid
described in [3,4] that is equivalent to a 4096 × 4096 grid X on X . We further allow for additional
subdivisions of Morse sets with trivial Conley index into smaller grid elements, to attempt to rule out
numerical artifacts.

For each parameter grid element ζ ∈ Z , we must ensure the graph Fζ on X is an outer approximation
for the dynamics as described in Section 2. This can be accomplished with a variety of numerical
techniques. We make use of the most straightforward approach, interval arithmetic. Details concerning
the theory and implementation of interval arithmetic can be found in [20]. For our purposes it is
sufficient to note that given a real valued function r(a1, . . . , ak) : Rk → R and any assignment of
intervals [ai, ai] ⊂ R to the variable ai, i = 1, . . . , k, interval arithmetic returns an interval [B,B] such
that r(α1, . . . , αk) ∈ [B,B] as long as αi ∈ [ai, ai] for all i.

In order to compute the image Fζ(ξ) of a grid element ξ ∈ X , we represent each parameter and
phase variable as an interval using the intervals defining ζ and ξ, and then use interval arithmetic [20] to
compute the image of the map. Note that the image is a rectangle in X . In general this rectangle will not
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correspond precisely to a union of grid elements. Therefore, to ensure Fζ is an outer approximation we
cover this rectangle by grid elements. For any grid element ξ′ ∈ X that intersects this rectangle we add
the edge ξ → ξ′ to Fζ .

Turning to the discussion of the results of the database computations, we once again remind the reader
that we are focusing on particular results. The full computations can be found at [10].

A description of eleven important Conley-Morse graphs, that arise in the computations mentioned
above, is presented in Table 2. Each circle corresponds to a Morse set, and the directed edges between
Morse sets indicate the partial order on the Morse sets as described in Section 2. Inside each circle are
the polynomials constituting the Conley index for each Morse set computed with Z3 coefficients.

Table 2. Table of Conley-Morse graphs corresponding to each color

dark gray

gray blue maroon

teal pink red

green purple orange yellow
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To obtain intuition about the dynamics associated with each Conley index we refer the reader to
Table 1 and the discussion at the end of Section 2. Observe that there is a Morse set in the pink
Conley-Morse graph with Conley index x2 + x + 1 in dimension 1. This index does not appear in
Table 1 so is worth an additional comment. The clutching graph stored in the database allows us to
recognize this Morse set arises as the result of a Morse set with Conley index x − 1 in dimension 2
merging with a Morse set with Conley index x3 − 1 in dimension 1. Thus we take as our representative
dynamics an unstable fixed point with 2 unstable directions connecting to an unstable period 3 orbit with
1 unstable direction.

As indicated in Table 1, the Conley index of the empty set is trivial. However, as was discussed
in Section 2 nontrivial invariant sets can also have trivial Conley index. In particular, for most of the
parameter values being considered in this paper the origin is an unstable fixed point for Equation (1).
However, because we are restricting the phase space to a compact subset of [0,∞)2, the Conley index of
the origin is always trivial. This is explicitly seen in all the Conley-Morse graphs of Table 2 except for
the Conley-Morse graph labeled gray and dark gray.

This has interesting implications, however, for the gray and dark gray Conley-Morse graphs. Namely,
in these graphs our choice of outer approximation must not isolate the origin. In the case of the dark
gray Conley-Morse graph, the fact that there is only one node implies that the computed isolating
neighborhood for the globally stable dynamics in the interior of [0,∞) also contains the origin.
Reviewing the full database results for the gray Conley-Morse graph leads to the same conclusion.
Since in this biological system the origin plays the special role of extinction, this strongly suggests
that for these parameter values stochastic perturbations can easily lead to extinction. We return to
this discussion below.

Having established interpretations for the individual Conley-Morse graphs, we now turn to how they
are related. Figure 1 displays a picture of parameter space output by the database for the plant model
s = 0. Each color region indicates a subset of phase space with the same Conley-Morse graph. We
hasten to add that this image represents a simplification of the continuation classes defined in Section 3.
In particular, in Figure 1 the classification is based on purely on the Conley-Morse graph, ignoring
the clutching graph information. This simplification is done for visual clarity; to see the complete
continuation classes the reader is urged to download the database files and software from [10].

The major color regions in Figure 1 correspond to the labeling of Conley-Morse graphs in Table 2.
Small changes in shading represent the presence of additional Morse sets with trivial Conley index
in the Conley-Morse graph. As we have discussed, a trivial Conley index does not necessarily mean
the invariant set of the underlying continuous dynamics is empty. Moreover, given our philosophy of
working with the graph Fζ as a discrete representation of the dynamics on the parameter grid element ζ ,
we do not want to completely disregard the presence of Morse sets with trivial Conley index, since they
can indicate recurrent behavior that is observed at the level of discretization chosen. There are two
important mechanisms that lead to trivial Conley indices in these computations. The first is the presence
of slow dynamics that numerically manifests itself as a kind of recurrent behavior. It should be noted
that what is meant by “slow” will depend on the level of discretization. The second is the presence of
invariant dynamics, the structure of which cannot be identified at the given level of resolution. In either
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case the existence of a recurrent set with trivial Conley index is an indicator of a region in phase space
to which additional attention may wish to be drawn.

Figure 1. Picture of parameter space for database computation with s = 0, i.e., the
plant model. As in all subsequent figures, the x-axis corresponds to θ1 (young age class
reproduction rate) and the y-axis θ2 (old age class reproduction rate). The bold diagonal line
corresponds to the bifurcation diagram in ([7], Figure 1). See Table 2 for the Conley-Morse
graphs corresponding to each color.
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Figure 2 shows the same picture as Figure 1 except for the fish model s = 1. From the image alone
we can see the answer to our question from Section 3: that despite sharing many of the same dynamics,
the way that those dynamics are situated in parameter space is quite different between the plant and fish
models. Thus, our objective now is to understand what connection, if any, there is between the similar
dynamics as we vary the competition parameter s that interpolates between the two models.

To do the comparison we have chosen to focus on three distinct dynamical phenomena that have
biological interest.

(1) Biennial Population Dynamics. The teal and green Conley-Morse graphs exhibited in Table 2 indicate
the presence of stable 2-cycle sets and stable 4-cycle sets, respectively. Referring to Figure 1 for the plant
model, the teal region is in the upper-left corner corresponding to small θ1 and large θ2. Thus we can
observe robust biennial behavior in the presence of a small amount of reproductive capacity by the
younger age cohort.

In the corresponding figure for the fish model, Figure 2, the teal stable 2-cycle region is larger, but
it is oriented along the θ1 axis. Hence the dependence on stable biennial dynamics on the rates of
reproduction appear to be opposite. An interesting question is if there is any connection between these
two regions that can be observed in the intermediate models. In other words, as s is varied is there a
choice of reproductive rates that preserves stable biennial population dynamics?
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Figure 2. Picture of parameter space for database computation with s = 1, i.e., the fish
model. This is an image of the subset [9, 50] × [0, 50] of the full parameter space. The
black regions along with the region θ1 ≤ 9 were not computed due to memory constraints.
See Table 2 for the Conley-Morse graphs corresponding to each color.
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We remark that choosing a particular parameter value and examining the associated stable 2-cycle
Morse sets in phase space shows that this biennial behavior corresponds to alternating high-low
populations between the two age cohorts. Of course, the actual values, i.e., location in phase space,
is parameter dependent and thus not directly accessible from the database.

(2) Bistability. Bistability is easily detected in the Conley-Morse graphs; it occurs if there is more than
one minimal node in the Conley-Morse graph. Thus, the red, orange, and yellow Conley-Morse graphs
imply the existence of bistable dynamics. The dynamics within attractor can be identified via the Conley
index. Thus, the red Conley-Morse graph indicates that one attractor is a stable 3-cycle set while the
other attractor is a 1-cycle set. Referring to Figure 1 for the plant model, the red region is vertically
oriented, so that it is sensitive to small changes in θ1 but robust to changes in θ2. In the fish model,
Figure 2, this is reversed, and the bistable region is much more sensitive to changes in θ2 compared to
θ1. As in the case of the biennial population dynamics, there is the question of whether these dynamics
are related by the intermediate models.

Observe that in the fish model the teal region and the red region intersect in the region that is colored
orange. As the orange Conley-Morse graph indicates this region exhibits characteristics of both the teal
and the red regions—bistability where one attractor is a stable 3-cycle set and the a stable 2-cycle set.
These dynamics are not detected by the database computations in the plant model.

(3) Lack of Permanence. We are using a continuous deterministic model of discrete populations, which
is suspect for small population levels for at least two reasons: (i) the model can predict population levels
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below a single unit; and (ii) when the origin is unstable the model does not allow a positive population
to become extinct, a phenomenon that one would expect to occur due to stochastic perturbations.
The concepts of permanence [21] and persistence [22], which in our setting is equivalent to the attractor
of the positive orthant begin bounded away from the origin, were introduced to address this concern.
An advantage of the database approach is that it allows one to incorporate these ideas.

Suppose that the phase space grid is chosen at a scale to address concerns (i) and (ii). For example,
suppose that the grid element containing the origin is large enough to both contain all points in phase
space smaller than a single unit of population and all points that random perturbations might take to
extinction within one time step. Then the fact that the database computations use an outer approximation
guarantees that every Morse set not containing the origin is bounded away from the origin, and that
any such Morse sets which are stable can be said to exhibit permanence. In this direction the database
provides a proof of this fact.

On the other hand, if the origin is not isolated by its own Morse set—for example, if the only attractor
contains the origin—then it suggests that at these scales permanence is not achieved. This could be an
artifact due to the choice of a poor outer approximation that prevents the database from separating stable
dynamics away from the origin. However, if this is an important modeling issue, then it can be resolved,
at a computational cost, by using a better outer approximation to determine the multivalued map. And
in every case the database indicates all regions of parameter space with possible lack of permanence.

As is discussed above, the origin is not isolated in the gray and dark gray Conley-Morse graphs. We
focus on the gray Conley-Morse graph where the minimal Morse set has the Conley index associated
with a stable invariant circle (see Table 1). In fact, the dynamics on the associated Morse set includes
both the origin and large oscillations in the population. It is reasonable to expect due to stochastic
fluctuations or population levels smaller than a single unit that extinction will occur.

As indicated in Figure 1 for the plant model the gray Conley-Morse graph occurs for large θ1,
i.e., if the first age class produces large numbers of seeds then extinction is expected. It is interesting
to note that biennials typically produce no seeds the first year. Furthermore, for θ1 sufficiently large,
this phenomenon is essentially independent of θ2. Figure 2 shows that for the fish model again this
dependency is reversed. Sufficiently high θ2 given a moderate θ1 means extinction, and these dynamics
are relatively insensitive to θ1.

We are interested in understanding how these phenomena (biennial population dynamics, bistability
and lack of permanence) depend upon the type of intra-species competition. Thus we perform the
database computations using Equation (1) at the parameter values s = 0.01, 0.02, 0.05, and 0.10.
To explain the nonuniform choice of s it should be noted that while s is taken to be a linear interpolation
parameter between the exponents of the plant and fish models, it does not follow that the dynamics
changes in a uniform manner. In fact, because for θi > 1 the exponent in the fish model is larger than
that of the plant model, the dynamics at s = 0.1 already begin to strongly resemble the dynamics of
the fish model at s = 1.

Figures 3–6 identify regions of parameter space with the Conley-Morse graphs of Table 2 for the
values s = 0.01, 0.02, 0.05, and 0.10, respectively. Looked at in sequence this gives a picture of how
the dynamics over parameter space can be expected to change in response to a change in the nature of
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competition. In particular, we revisit the contrasts observed between the dynamics of the plant and fish
models to see how these phenomena behave over the transition.

Figure 3. Picture of parameter space for database computation with s = 0.01. See Table 2
for the Conley-Morse graphs corresponding to each color.
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Figure 4. Picture of parameter space for database computation with s = 0.02. See Table 2
for the Conley-Morse graphs corresponding to each color.
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Figure 5. Picture of parameter space for database computation with s = 0.05. See Table 2
for the Conley-Morse graphs corresponding to each color.
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Figure 6. Picture of parameter space for database computation with s = 0.1. See Table 2
for the Conley-Morse graphs corresponding to each color.
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(1) Mixed Competition and Biennial Population Dynamics. The teal Conley-Morse graph ( Table 2)
which indicates the existence of a stable 2-cycle and occupies most of the upper left corner of parameter
space for the plant model (Figure 1) is already much less robust by s = 0.01 (Figure 3) and absent by
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s = 0.02 (Figure 4). It reappears at s = 0.05 (Figure 5) for large values of θ1 and moderate values
of θ2. We can see that this 2-cycle region moves closer to the origin as s increases from 0.05 to 1

(Figures 5 and 6).
From this, we observe that the stable 2-cycle dynamics of the plant model do not appear to continue to

the stable 2-cycle dynamics of the fish model. In other words, if the nature of competition changes within
a biennial population from plant-like to fish-like, then there is a point at which the biennial dynamics
will be lost, regardless of what happens to reproduction rates.

(2) Mixed Competition and Bistability. The red, orange, and yellow Conley-Morse graphs indicate the
existence of bistable dynamics. These colors are present in Figures 3–6, which suggests that bistability
persists under continuous changes in s. The ecological interpretation is that bistable dynamics is robust
to changes in the type of competition experienced by the young members of the species.

Although bistability is present in each slice of parameter space, the shape of the bistable region
changes with s. For s < 0.05 the region is more extended in the θ2 direction, although by s = 0.02 the
tail that extends primarily in the θ2 direction is very narrow. By s = 0.05 things look quite different—the
bistable region is much larger and extends much further along the θ1 direction than the θ2 direction.
For s = 0.1 and s = 1 this orientation is preserved and the bistable region narrows further in the θ2
direction.

(3) Mixed Competition and Lack of Permanence. While in the plant and fish models a lack of permanence
(represented by the gray regions) could be reasonably described in terms of thresholds—large θ1 in the
plant model and a combination of large θ2 and moderate θ1 in the fish model—in the intermediate models
this no longer holds. In the case of s = 0.01, for example, large values of θ1 do not exhibit permanence
if θ2 is sufficiently large or small, but do exhibit permanence for moderate values of θ2. And even this
non-montone behavior is not described by a threshold: looking at the upper right corner when s = 0.01

or 0.02, there is a tradeoff between θ1 and θ2 that determines whether there is permanence, given by the
slope of the boundary.

5. Conclusions

Typically, network diagrams are used to model complex systems in settings in which there is limited
understanding of the specific mechanisms associated with the interactions. The standard expectation is
that different modeling assumptions concerning these mechanisms will lead to different dynamics, and,
in fact, for many models the structure of invariant sets are extremely sensitive to small perturbations.
However, in the context of limited information it seems reasonable to expect that one is only interested
in those dynamic structures that are robust with respect to models and/or parameters. In addition, for
many applications the precision with which measurements can be taken also limits the dynamics that
are observable. The database approach to dynamical systems gives us a rigorous way to investigate
qualitative dynamics that are robust to these limitations of precision and/or modeling.

There are other approaches to modeling dynamical systems that aim to reflect this inherent
uncertainty. As is alluded to in our discussion on permanence, the inclusion of stochastics into a model
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is a fairly common technique. How our approach compares with a stochastic dynamical system depends
on the kind of noise that is being modeled.

In the case where it is important to include unbounded noise, any rigorous statement hoping to
summarize the dynamics needs to allow for low probability events that, for example, can move
systems between different basins of attractions. Invariant measures provide a means by which one
can hope to describe such systems. At the moment we know of no method for relating the structure
of the Conley-Morse graphs to invariant measure. Nevertheless, if we believe that the system that
we are exploring has an underlying deterministic model for which the coarse features can be captured
analytically, then database computations that indicate multiple basins of attraction over a set of parameter
values might suggest that the associate invariant measure is not unimodal.

If the model incorporates bounded noise (in either phase or parameter space), then the database
approach can be used to make rigorous statements. Observe that if the noise in the dynamical
system is bounded, then this can be incorporated into the outer approximation when the dynamics is
combinatorialized. Thus, if we take our model to be a deterministic map along with bounded noise,
the database can be used to prove that there can be no trajectory between two basins of attraction of
the deterministic system even in the presence of noise.

Finally, there is another interpretation of the database that is broader than merely investigating the
underlying deterministic dynamics, but that also does not fit neatly into any stochastic model. We might
call this the “ruler” interpretation. Suppose we have instruments capable of measuring either the state
or parameters of a system with a certain precision, e.g., with a ruler we might be confident we can
measure to the nearest millimeter. The database computation we perform is still valid even if the act of
measurement disrupts the system, as long as the disruption does not alter the measured value. In other
words, the computation we perform is valid even if the ruler changes the length of what we measure,
just so long as it changes in a way that rounds to the same value. This is distinct from typical stochastic
models of noise for a couple reasons. First and most importantly, there need be no assumption about
the distribution of the perturbations introduced. Second, the types of noise permitted depend on the grid
chosen—intuitively, points near the center of a grid element can be moved in any direction, whereas
points near the boundary can only be moved very small distances in the direction of that boundary,
but much larger distances away from the boundary.

This kind of investigation can have potentially important implications for the practice of modeling.
To the extent that the qualitative dynamics is preserved over parameter space, we can conclude that
the particular choice of model is less important than the general structure given by the network diagram.
On the other hand, to the extent that we see important changes in the structure of dynamics over
parameter space we can say that it is important to supplement the network diagram with further modeling
assumptions, even though the dynamics of interest may be very coarse.

In the example of overcompensatory age-structured population models, we see that two classical
approaches using the same form of nonlinearity can exhibit similar dynamics while having those
dynamics situated quite differently in parameter space. The two different models already have
different a priori justifications in terms of the biological understanding of competition. The database
computations confirm that even looking at the dynamics on a coarse level we can distinguish between
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the models, despite the fact they arise from the same network diagram, use the same nonlinearity and
locally exhibit the same dynamic structures.

By embedding these models into a larger model that incorporates an additional parameter s

representing intraspecies competition, we indicate how the database can be used to investigate
empirically the relative importance and impact of the structure of competition. It should be emphasized
that the parameter s is really an ordinal parameter—it is hard to assign any significance to particular
values beyond their ordering and it is not clear how it could even be measured. However, the database
can be used to organize/characterize the changes in the qualitative dynamics corresponding to different
levels of competition. In principle, the associated database information could suggest experimental tests
to determine positions along this scale.
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