
Entropy 2014, 16, 3329-3356; doi:10.3390/e16063329
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Speeding up Derivative Configuration from Product Platforms

Ruben Heradio 1,*, David Fernandez-Amoros 1, Hector Perez-Morago 1 and Antonio Adan 2

1 ETSI Informatica, Universidad Nacional de Educacion a Distancia, Juan del Rosal 16, 28040 Madrid,

Spain; E-Mails: david@lsi.uned.es (D.F.-A.); hperez@issi.uned.es (H.P.-M.)
2 Department of Electrical, Electronic and Control Engineering, Universidad de Castilla La Mancha,

Ronda de Calatrava 5, 13071 Ciudad Real, Spain; E-Mail: Antonio.Adan@uclm.es

* Author to whom correspondence should be addressed; E-Mail: rheradio@issi.uned.es;

Tel.: +34-913-988-242.

Received: 16 January 2014; in revised form: 27 May 2014; / Accepted: 9 June 2014 /

Published: 18 June 2014

Abstract: To compete in the global marketplace, manufacturers try to differentiate their

products by focusing on individual customer needs. Fulfilling this goal requires that

companies shift from mass production to mass customization. Under this approach, a generic

architecture, named product platform, is designed to support the derivation of customized

products through a configuration process that determines which components the product

comprises. When a customer configures a derivative, typically not every combination of

available components is valid. To guarantee that all dependencies and incompatibilities

among the derivative constituent components are satisfied, automated configurators are

used. Flexible product platforms provide a big number of interrelated components, and so,

the configuration of all, but trivial, derivatives involves considerable effort to select which

components the derivative should include. Our approach alleviates that effort by speeding

up the derivative configuration using a heuristic based on the information theory concept

of entropy.

Keywords: entropy-based heuristic; mass customization; product configuration; software

product line; feature model

1. Introduction

To increase variety, improve customer satisfaction, reduce lead-times, and shorten costs, many

companies have shifted from mass production to mass customization [1]. This shift of paradigm enriches

Entropy 2014, 16 3330

the mass production economies of scale with custom manufacturing flexibility by developing families

of related products instead of single products. From this perspective, designing a product family is

the process of capturing and modeling multiple product variants to satisfy different market niches. A

generic architecture, named product platform, is designed to support the creation of customized products

called derivatives.

Product platforms usually support a high quantity of derivatives. For instance, the number of

derivatives for product platforms in the automotive industry may range from 103 for the smallest Peugeot

and Nissan car models, to 1016 or 1021 for the BMW 3-Series and Mercedes C-Class, respectively [2].

To achieve that flexibility, a number of configuration options are available. For example, the Peugeot

206 and Mercedes C-Class car models have 86 and 389 customer selectable options, respectively.

Typically, not all option combinations are valid. There may be option incompatibilities (e.g.,“manual

transmissions are not compatible with V8 engines”), option dependencies (e.g., “sport cars require

manual gearbox”), etc. Configuring a valid derivative implies ensuring that all constraints between

its constituent components are satisfied. Checking by hand those constraints is infeasible for all,

but the most trivial product platforms, so derivative configuration is usually assisted by automated

configurators [3]. Some examples of commercial configurators are Configit [4], SAP Product

Configurator [5], Oracle Configurator [6], etc. In addition, many automotive companies have

their own configurators. For instance, Volvo uses KOLA, Scania uses SPECTRA, Mercedes uses

SMARAGD, etc.

Our work enriches existing configurators by reducing the number of steps required to configure a

valid derivative. It takes advantage of the fact that, due to the component composition constraints, some

decisions may be automatically derived from other decisions previously made. Therefore, the order in

which decisions are made has a strong influence on the number of decisions required to complete a

derivative. For instance, given the constraint “sport cars require manual gearbox”, a customer might

configure a sport car using two decision orderings: one requiring two steps (i.e., Step 1, select “manual

gearbox”, and Step 2, select “sport car”) or another one using just a single step (i.e., select “sport car”,

so that the decision to select “manual gearbox” is implicitly made).

As van Nimwegen et al. [7] note, customers sometimes prefer to first answer questions that are

important to them, or easy to answer, before being led through the remaining questions [7]. In this sense,

our approach respects customer preferences. Instead of imposing a fixed ordering, it suggests orderings

dynamically, reacting to the customer decisions. In particular, the process to get a derivative is performed

in successive steps. In each step, the customer gets a question ranking, selects one of the questions and

answers it. In the next step, the question ranking is readjusted to account for the customer’s answer.

The computation of the ranking is grounded on the information theory concept of entropy, which was

introduced by Shannon [8] and measures the average uncertainty of a random variable.

At the first configuration step, the uncertainty is total. With no information at all, the configurator

cannot figure out which derivative the customer desires. As the process advances, configuration options

are eliminated according to the customer decisions, and so, the information about the final configuration

increases (i.e., the set of included/excluded components grows). Consequently, the entropy decreases.

When the derivative is totally configured, there is no uncertainty, and the entropy is zero.

Entropy 2014, 16 3331

As we will see, not only our approach, but also Mazo et al.’s Heuristic 3 [9] and Chen et al.’s

approach [10] require computing the probabilities of all variables in a Boolean formula. The usual way

to perform such task is calling repeatedly a logic engine, e.g., a SATsolver or a binary decision diagram

(BDD) library, one time for each variable [11]. Unfortunately, this approach has a high computational

cost and, thus, imposes long response times, hindering customer-configurator interactivity. To overcome

such a problem, this paper proposes an algorithm that computes efficiently variable probabilities using

BDDs. Since more complex logics than the propositional one, which include integer arithmetic, transitive

closure, etc., can be reduced to Boolean functions [12,13] and, thus, encoded as BDDs, our algorithm is

general enough to support most configuration model notations.

The validity of our approach has been tested on two benchmarks widely used by the configuration

and software product line communities: the Renault Megane platform provided by the car manufacturing

company Renault DVI [14] and the Electronic Shopping case study [17]. Results show that our approach

requires less configuration steps than related work, and that our BDD algorithm gets short response

times, supporting this way not only our approach but also other methods proposed in related work.

The remainder of this paper is structured as follows. Section 2 presents the running example that

we will use to motivate and illustrate our work. Section 3 summarizes related work to our approach.

Section 4 introduces the concept of entropy and describes how to compute it from a configuration model.

Later, our entropy-driven approach is described in detail. Section 5 reports the experimental validation

of our approach. Finally, Section 6 outlines the conclusions of our work.

2. Motivational Example

This section illustrates the problem our approach tackles using an example provided by [18], where

derivatives are cars with different automated driving capabilities.

To model the configurable options of a product family, a number of different notations are available.

For instance, feature diagrams (FDs) [19], decision diagrams [20], the Configit language, the SAP

Product Configurator language, the Oracle Configurator language, etc. Interestingly, most of those

notations are semantically equivalent [21,22]. In fact, automated configurators instead of processing

configuration models directly usually translate them into a propositional logic representation, such as a

logic formula in conjunctive normal form, a BDD, etc. That logic representation is then processed using

off-the-shelf tools, such as SAT solvers, BDD engines, etc. (see Section 4.1.2. for an explanation of

the configuration model to logic translation). The input to our approach is the logic representation of the

configuration model, so it is independent of the original notation used to specify the model.

To show what a configuration model looks like, please refer to Figure 1, which models our running

example as an FD (a hierarchically arranged set of features with different relations among them). This

paper follows the generic semantics for FDs given by Schobbens et al. [22]. Figure 1 includes three

kinds of hierarchical relations:

• optional, denoted by simple edges ending with an empty circle; e.g., cars may (or may not) include

an automated driving controller (ADC).

• mandatory, denoted by simple edges ending with a filled circle; e.g., if a car has an ADC, it must

include some kind of collision avoidance braking (CAB).

Entropy 2014, 16 3332

• alternative, denoted by edges connected by an arc; e.g., standard avoidance (SA) and enhanced

avoidance (EA) are the mutually exclusive options for collision avoidance braking (CAB).

Figure 1. Feature diagram (FD) for car automated driving capabilities.

To manage the complexity of modeling the similarities and differences among the derivatives of

a product family, the FD notation follows a divide and conquer strategy. Derivative variabilities

are modeled by progressively decomposing complicated and abstract features into simpler ones,

until elemental features, which are directly implemented by physical components, are reached. The

hierarchical structure of an FD graphically depicts such conceptual decomposition. From here on,

derivatives will be expressed enumerating the final components they include, i.e., using references to

the terminal nodes of the FD. For example, {PP, LRF, FRF, ¬SA, EA} expresses the configuration of a

car with components PP, LRF, FRF, EA and without SA.

The FD notation supports narrowing the configuration space by adding additional cross-tree

constraints. For instance, Figure 1 represents as “PP
requires
−−−−−→ LRF” the fact that cars with parallel parking

need to include the lateral range finder component. Thus, a car derivative with components {PP, ¬LRF,

¬FRF, SA, ¬EA} complies with the FD relations, but is not valid because it violates the constraint

“PP
requires
−−−−−→ LRF”.

For a configuration model with n options and no component interdependencies, the number of possible

configurations is 2n. Due to the feature relations and additional cross-tree constraints, the number of valid

configurations in the example is reduced from 25 = 32 to the 13 ones summarized in Table 1.

To configure a car, the decision-maker needs to answer a sequence of questions. For example, the

sequence (1) is EA in the configuration? no, (2) FRF? no, (3) LRF? yes, (4) PP? yes configures Car

11 in Table 1. Current automated configurators guarantee the derivation of valid products ensuring the

satisfaction of all model constraints. When the first question is answered, the configurator deduces that

the car being configured necessarily includes SA (otherwise, the alternative relation between EA and SA

would not hold). This way, the configurator is indirectly saving the decision-maker from answering the

irrelevant question, “is SA in the configuration?”

Entropy 2014, 16 3333

The goal of our work is to make the most of the configuration model constraints going beyond

current configurators to minimize the number of questions required to specify a derivative. To do so, our

approach tries to find an optimal question ordering that maximizes the number of decisions automatically

derived from other questions previously answered.

Table 1. Valid derivatives for Figure 1. SA, standard avoidance; EA, enhanced avoidance.

Valid Derivatives

1 ¬PP, ¬LRF, ¬FRF, ¬SA, ¬EA

2 ¬PP, ¬LRF, FRF, ¬SA, ¬EA

3 ¬PP, LRF, ¬FRF, ¬SA, ¬EA

4 ¬PP, LRF, FRF, ¬SA, ¬EA

5 ¬PP, ¬LRF, ¬FRF, SA, ¬EA

6 ¬PP, LRF, ¬FRF, SA, ¬EA

7 ¬PP, ¬LRF, FRF, ¬SA, EA

8 ¬PP, LRF, FRF, ¬SA, EA

9 ¬PP, ¬LRF, FRF, SA, ¬EA

10 ¬PP, LRF, FRF, SA, ¬EA

11 PP, LRF, ¬FRF, SA, ¬EA

12 PP, LRF, FRF, ¬SA, EA

13 PP, LRF, FRF, SA, ¬EA

A straightforward approach to get such optimal question ordering is computing for each valid product

all possible orderings and, thus, finding the ordering with less questions on average for every product.

Table 2 sums up the needed computations. For instance, the next-to-last column summarizes the number

of questions needed for derivative {PP, LRF, FRF, SA, ¬EA}. Ordering PP ≺ LRF ≺ FRF ≺ SA ≺ EA

needs three questions, LRF ≺ PP ≺ FRF ≺ SA ≺ EA needs four, and so on. Afterwards, the average

number of questions for each ordering is computed. Using this approach in the previous example,

ordering PP ≺ LRF ≺ FRF ≺ SA ≺ EA would be selected as an optimal one. As a result, the question

sequence for Derivative 11 in Table 1 would be shortened to (1) is PP in the configuration? yes, (2)

FRF? no, (3) SA? yes, removing the need for answering “if LRF is in the configuration”.

Unfortunately, this approach requires m · n! computations, where n is the number of components of

the configuration model and m is a number ≤ 2n. Therefore, it is extremely expensive in computational

terms and does not scale, except for the most trivial configuration models. To overcome the scalability

limitations of the former approach, this paper proposes a heuristic solution grounded on the information

theory concept of entropy.

Table 2. Brute force approach to compute the optimal ordering on average.

orderings (n!) derivatives (≤ 2n) average number

{¬PP, ¬LRF, ¬FRF, ¬SA, ¬EA} {¬PP, ¬LRF, FRF, ¬SA, ¬EA} . . . {PP, LRF, FRF, SA, ¬EA} of questions

PP ≺ LRF ≺ FRF ≺ SA ≺ EA 4 4 . . . 3 (4+4+. . .+3)/13

LRF ≺ PP ≺ FRF ≺ SA ≺ EA 4 4 . . . 4 (4+4+. . .+4)/13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LRF ≺ FRF ≺ SA ≺ EA ≺ PP 4 4 . . . 4 (4+4+. . .+4)/13

Entropy 2014, 16 3334

3. Related Work

Research on automated configurators is mainly focused on consistency checking and

optimization [3,23]. For example, reasoning engines, such as BDD libraries, SAT solvers and logic-truth

maintenance systems, have been used to detect invalid derivatives (i.e., those which violate some

option dependency or incompatibility) [24–26], to provide explanations for configuration flaws [27,28],

to optimize configurations (i.e., to find configurations whose cost is less or equal than a given

one) [29–31], etc.

Despite the importance of the interactive question ordering problem that our work tackles, which was

pointed out by Steinberg more than thirty years ago [32], there is little research on it. A recent approach

that specifically deals with this problem is provided by Chen et al. [10], who propose to minimize the

number of configuration steps by sorting the components according to their probability of being included

in a derivative. Such a probability is computed by Equation (1).

Pr(c) =
Number of valid derivatives that include c

Total number of valid derivatives
(1)

In their original paper and with a fully equivalent meaning, Chen et al. [10] use the term selectivity

instead of probability. As our approach follows an entropy driven heuristic and the information theory

concept of entropy is defined in terms of probability (see Section 4.1.1.), we have preferred to use

probability throughout this paper.

In addition to Chen et al.’s approach, Mazo et al. [9] proposes the following heuristics for ordering

configuration questions:

Heuristic 1: Components with the smallest domain first. Choose first the component with the

smallest domain. The domain of a component is the set of possible values that the component can

take according to its domain definition and the constraints in which the component is involved.

Heuristic 2: The most constrained components first. Choose the component that participates in the

largest number of constraints.

Heuristic 3: Components appearing in most products first. This heuristic is exactly the same as

Chen et al’s approach.

Heuristic 4: Automatic completion when there is no choice. This heuristic “provides a mechanism

to automatically complete the configuration of variables where only one value of their domain

is possible [...] it also works when a variable has several values on its domain but only one is

valid”. In ascending order of computational cost and descending order of constraint propagation

capacity, Mazo et al. [9] summarize three approaches to implement Heuristic 4 when the

configuration model is encoded as a predicate logic formula: (i) forward-checking; (ii) partial

look-ahead; and (iii) full look-ahead (i.e., whereas forward-checking is the fastest algorithm, but

produces the most limited form of constraint propagation during search, full look-ahead is the most

expensive approach, but gets the best results). In our paper, configuration models are encoded

as propositional logic formulas, where a full constraint propagation is computationally feasible.

In particular, a configuration model will be encoded as a BDD ψ. To completely propagate a

customer decision d, the BDD ψ ∧ d will be computed. Fortunately, this computation only takes

linear time on the size of the BDD. That is, the complexity of computing mixing two BDDs

Entropy 2014, 16 3335

ψ1 and ψ2 using the apply algorithm proposed by Bryant [33] is O(|ψ1||ψ2|), so the complexity

of ψ ∧ d is O(|ψ||d|) = O(|ψ| · 1) = O(|ψ|). Instead of considering Heuristic 4 apart, we will

use it as a complement to the remaining heuristics by running constraint propagation after every

configuration step.

Heuristic 5: Components required by the latest configured component first. Choose the component

that has the largest number of constraints with the past-configured components.

Heuristic 6: Components that split the problem space in two first. Set first the components

that divide the problem space into two parts of approximately the same size. Unfortunately,

Mazo et al. [9] do not provide a way to implement this heuristic, which takes into account all

model constraints. In particular, Mazo et al. propose a simplification by just using the tree structure

of an FD, or the variation points of an orthogonal variability model [34], but not processing the

cross-tree constraints.

As will be discussed in Section 4.3, our approach may be thought of as an implementation of Heuristic

6 that, in addition, takes into account all configuration model constraints. In Section 5, it will be shown

that our approach provides better outcomes than Heuristics 1, 2, 3 (i.e., Chen’s approach [10]) and 5.

4. Entropy-Based Approach to Sort Configuration Questions

This section presents our heuristic to minimize the number of steps required to configure a derivative

from a configuration model. Section 4.1.1. introduces the theoretical background of our approach. As

we will see, our heuristic, as other ones summarized in Section 3, requires computing the component

probabilities. Section 4.1.2. discusses the scalability limitations of the approach commonly used to

compute those probabilities. To overcome such limitations, in Section 4.2, we propose an algorithm that

provides an efficient probability computation. Finally, Section 4.3 describes our heuristic.

4.1. Preliminaries

4.1.1. Information Theory

The following definitions were originally introduced by Shannon [8]. Let us start with the concept

of entropy.

Definition 1 Let X be a discrete random variable with alphabet X and probability mass function

Pr(x) = Pr{X = x}, x ∈ X; the entropy H of X is defined by Equation (2):

H(X) = −
∑

x∈X

Pr(x)
(

log2Pr(x)
)

(2)

Let us present the concept of conditional entropy, which is the entropy of a random variable

conditional on the knowledge of another random variable.

Definition 2 Let X and Y be two discrete random variables. The conditional entropy H(X|Y) of X given

Y is defined by Equation (3):

H(X|Y) =
∑

y∈Y

Pr(y)H(X|Y = y) (3)

Entropy 2014, 16 3336

Finally, let us introduce the concept of mutual information, also called information gain, which

represents the reduction in a variable uncertainty due to another random variable.

Definition 3 Consider two random variables Xand Ywith a joint probability mass function Pr(x, y) and

marginal probability mass functions Pr(x) and Pr(y). The mutual information I(X; Y) is defined by

Equation (4) as the relative entropy between the joint distribution and the product distribution Pr(x)Pr(y):

I(X; Y) =
∑

x,y

Pr(x, y)log2

Pr(x, y)

Pr(x)Pr(y)
(4)

Entropy and mutual information satisfy the following properties that will be used throughout

this paper:

(1) H(X) ≥ 0

(2) H(X) ≤ log2#X, with equality if and only if X is distributed uniformly over X (in this paper, the

number of elements of a set S is denoted as #S)

(3) I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = I(Y; X)

4.1.2. Straightforward Approach to Compute Component Probabilities

A widespread approach to support the automated management of configuration models is translating

them to propositional logic formulas [3,25], which are processed using off-the-self tools, such as SAT

solvers [35] or BDD engines [33]. Table 3 summarizes the translations needed to encode our running

example into propositional logic. A more detailed explanation of how to translate feature models into

logic may be found in [36]. Equation (5) is the equivalent logic formula to Figure 1.

C ⊸ ADC
is translated to
==========⇒ (¬ADC ∨C)∧

ADC� CAB
is translated to
==========⇒ (¬ADC ∨ CAB) ∧ (¬CAB ∨ ADC)∧

CAB

SA EA

is translated to
==========⇒ (¬SA ∨ CAB) ∧ (¬EA ∨ CAB) ∧ (¬CAB ∨ SA ∨ EA) ∧ (¬SA ∨ ¬EA)∧

ADC ⊸ PP
is translated to
==========⇒ (¬PP ∨ ADC)∧

C � S
is translated to
==========⇒ (¬S ∨ C) ∧ (¬C ∨ S)∧ (5)

S ⊸ LRF
is translated to
==========⇒ (¬LRF ∨ S)∧

S ⊸ FRF
is translated to
==========⇒ (¬FRF ∨ S)∧

PP
requires
−−−−−−→ LRF

is translated to
==========⇒ (¬PP ∨ FRF)

Once a configuration model is encoded into a logic formula ψ:

• the total number n1 of valid derivatives is equivalent to the number of satisfying assignments of ψ

(i.e., those that evaluate ψ to be true).

• the number n2 of valid derivatives that include component c is equivalent to the number of

satisfying assignments of ψ ∧ c.

Entropy 2014, 16 3337

Table 3. Equivalence between configuration models and propositional logic formulas.

Type of Feature model Translation to

relationship representation propositional logic

mandatory A� B (¬A ∨ B) ∧ (¬B ∨ A)

optional A ⊸ B ¬B ∨ A

alternative A

B1 B2 . . . Bn

∧n
i=1(¬Bi ∨ A) ∧ (¬A

∨n
i=1 Bi)

∧

i< j(¬Bi ∨ ¬B j)

requires A
requires
−−−−−→ B ¬A ∨ B

Since the probability of a component is n2

n1
and the computation of the number of satisfying

assignments of a Boolean formula is supported by most BDD engines and SAT solvers (in particular,

#SAT counters are a type of SAT solver specifically oriented to compute such a number), a

straightforward approach to compute the component probabilities is calling repeatedly a logic engine

using ψ ∧ ci as the input [11]. Unfortunately, this approach has a high computational cost and

does not scale for all, but trivial configuration models. While the SAT problem is known to be

NP-complete [37], it is widely believed that the #SAT problem is even harder [35]. If n is the number

of components, computing the component probabilities requires calling a #SAT solver n times, which

is extremely time-consuming. Similarly, computing the number of satisfying assignments with a BDD

has computational complexity O(m) [33], where m is the number of nodes of the BDD. Hence, the

complexity of computing the component probabilities by calling repeatedly the BDD engine is O(n ·m),

which is excessively time-consuming for most configuration models.

For instance, it is well known by the car manufacturing community that the first issue of car

configurators is performance [38]. Thus, as soon as customers make a configuration choice, they want

to find out what the consequences of the choice are. From a marketing perspective, it is unpleasant for

customers to wait for several seconds to know whether their requirements are correct or not in terms of

configuration. As it will be shown experimentally in Section 5, computing the component probabilities

by calling repeatedly a BDD may force the costumer to wait for more than 600 seconds for just a single

configuration step!

To overcome the aforementioned scalability limitations, in the following section, we propose a BDD

algorithm that computes component probabilities in almost linear time to m.

4.2. Efficient Computation of the Probabilities of the Variables of a Boolean Formula from a BDD

BDDs are a way of representing Boolean functions. They are rooted, directed, acyclic graphs, which

consist of several decision nodes and terminal nodes [33]. There are two types of terminal nodes, called

0-terminal and 1-terminal. Each decision node vi is labeled by a Boolean variable xk and has two child

nodes called low and high (which are usually depicted by dashed and solid lines, respectively). The edge

from node vi to a low (or high) child represents an assignment of vi to 0 (resp. 1). Such a BDD is called

Entropy 2014, 16 3338

ordered if different variables appear in the same order on all paths from the root. A BDD is said to be

reduced if the following two rules have been applied to its graph: (i) isomorphic subgraphs are merged;

and (ii) nodes whose two children are isomorphic are eliminated.

In popular usage, the term BDD almost always refers to a reduced ordered binary decision

diagram [12]. In this paper, we will follow that convention, as well. Let us use formula ψ ≡

(x1 ∧ x2) ∨ (x3 ∧ x4) as a running example for this subsection. Table 4 is the truth table for ψ. Figure 2 is

its BDD representation using the variable ordering x1 ≺ x2 ≺ x3 ≺ x4. Note that a logic formula may be

encoded with different BDDs according to the variable ordering used to synthesize the BDD. Obviously,

our algorithm produces the same results for equivalent BDDs (i.e., BDDs that encode the same formula).

Table 4. Truth table for ψ ≡ (x1 ∧ x2) ∨ (x3 ∧ x4).

x1 x2 x3 x4 ψ

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Figure 2. The binary decision diagram (BDD) for ψ according to the variable ordering

x1 ≺ x2 ≺ x3 ≺ x4.

Entropy 2014, 16 3339

The remainder of this subsection is structured as follows. Firstly, some definitions required to

understand our algorithm are given. Next, the data structures that the algorithm uses are described

from a theoretical perspective. Then, the algorithm is presented. Finally, the algorithm computational

cost is discussed.

4.2.1. Definitions

Definition 4 The satisfying set of a Boolean formula ψ(x1, ..., xn), denoted S ψ, is defined by Equation (6).

S ψ =
{

(x1, ..., xn)|ψ(x1, ..., xn) = true
}

(6)

Definition 5 The satisfying set of the variable xi of a Boolean formula ψ(x1, ..., xi−1, xi, xi+1, ..., xn),

denoted S ψ|xi=true
, is defined by Equation (7).

S ψ|xi=true
=
{

(x1, ..., xi−1, true, xi+1, ..., xn)|ψ(x1, ..., xi−1, true, xi+1, ..., xn) = true
}

(7)

For instance, according to Table 4, #S ψ = 7 since there are seven rows where ψ evaluates as true

(throughout this paper, 0/1 and false/true are used interchangeably), and #S ψ|x4
= 5, because x4 = 1 in

five of the seven rows where ψ = 1.

Definition 6 The satisfying probability of a Boolean formula ψ(x1, ..., xn), denoted Pr(ψ), is defined by

Equation (8).

Pr(ψ) =
#S ψ

2n
(8)

Definition 7 The satisfying marginal probability of a variable xi in a Boolean formula

ψ(x1, ..., xi−1, xi, xi+1, ..., xn), denoted MPr(ψ|xi=true), is defined by Equation (9).

MPr(ψ|xi=true) =
#S ψ|xi=true

2n
(9)

Definition 8 The satisfying probability of a variable xi in a Boolean formula

ψ(x1, ..., xi−1, xi, xi+1, ..., xn), denoted Pr(ψ|xi=true), is defined by Equation (10).

Pr(ψ|xi=true) =
#S ψ|xi=true

#S ψ

(10)

For instance, looking at Table 4, it is easy to see that Pr(ψ) = 7
24 , MPr(ψ|x4=true) =

5
24 , and Pr(ψ|x4=true) =

5
7
. For convenience, in the remainder of the paper, we denote Pr(ψ|xi=true) and MPr(ψ|xi=true) as Pr(xi) and

MPr(xi), respectively.

4.2.2. Data Structures

Let us represent a BDD that has m nodes and encodes a Boolean formula with n variables by using

the following data structures:

Entropy 2014, 16 3340

• The variable ordering used to synthesize the BDD is represented by an array declared as follows:

var_ordering: array[0..n-1] of string

• Each node is represented by a record declared as follows:

type node = record

index: 0..n

low, high: node

mark: Boolean

end

where:

(1) index is the index of the variables in the ordering. The terminal nodes of the BDD (i.e., 0

and 1) have index n.

(2) low and high are the low and high node successors

(3) mark is used to mark which nodes have been visited during a traversal of the graph. As we

will see, our algorithm is called at the top level with the root node as the argument and with

the mark fields of the nodes being either all true or all false. It then systematically visits

every node in the graph by recursively visiting the subgraphs rooted by the two children, low

and high. As it visits a node, it complements the value of the mark field, so that it can later

determine whether a child has already been visited by comparing the two marks.

• The BDD is represented by an array declared as follows:

bdd: array[0..m] of node

The terminal nodes of the BDD, 0 and 1, are stored at Positions 0 and 1 of the bdd array,

respectively.

For instance, Tables 5 and 6 represent the content of bdd and var orderingfor the BDD in

Figure 2, respectively.

Table 5. Content of the bdd array for Figure 2.

position index low high mark

0 4 nil nil false

1 4 nil nil false

2 3 0 1 false

3 2 0 2 false

4 1 3 1 false

5 0 3 4 false

Entropy 2014, 16 3341

Table 6. Content of the var orderingarray for Figure 2.

position content

0 “x1”

1 “x2”

2 “x3”

3 “x4”

4.2.3. Algorithm

Pr(xi) is computed jointly by Algorithms 1, 2 and 3. Figure 3 summarizes the computations for the

BDD in Figure 2. Let us examine how our approach proceeds:

Algorithm 1 computes Pr(xi) as Pr(xi) =
MPr(xi)

Pr(ψ)
by calling the auxiliary Algorithms 2 and 3.

Algorithm 2 computes Pr(ψ).

A nice mental picture to understand Algorithm 2 is thinking about pouring one liter of water from

the BDD root to the terminal nodes. One liter goes through the root, then half a liter goes through

the low branch and half a liter through the high branch. This procedure advances, until the water

reaches the leaves. Hence, MPr(xi) is the amount of water that Node 1 has.

According to Tables 5 and 6, the root node has label v5, and it is in Position 5 of the bdd array. In

Figure 2, through node v5 goes one liter (i.e., formula sat prob[5] = 1). Half of it goes to v3 and

the other half to v4. Whereas, through v4 passes 1
2

liters, through v3 goes the 1
2

liters that come

from v5 and half of the water that comes from v4 (i.e., formula sat prob[3] = 1
2
+

1
2

2
= 3

4
).

Algorithm 3 computes MPr(xi).

In particular, let us examine how it computes MPr(x2). In the truth Table 4, ψ evaluates as true

when x2 is true five times:

(1) In four of them, x1 is true. When the call get marginal prob(4, ...) is made, Lines 10–23

compute the marginal probability of x2 for the explicit path v5 → v4. The probabilities due

to the low and high branches of vi are stored into the prob low and prob high variables,

respectively. As bdd[4].low , 0, a recursive call is made to compute the total probability

due to the low descendants of v4 (i.e., get marginal prob(3, ...)). As a result:

total prob[3] = prob lowv3
+ prob highv3

= 0 +
3

16
=

3

16

Notice that prob lowx2
is not simply equal to total prob[3], because total prob[3] depends

also on the probability that comes from the link v5 99K v3. To get just the probability due to

the link v4 99K v3, prob low has to be adjusted using the formula sat prob array as:

prob low =
total prob[3] ·

formula sat prob[4]

2

formula sat prob[3]
=

3
16
·

1
2

2

3
4

=
1

16

Entropy 2014, 16 3342

Since bdd[4].high = 1, prob high is directly computed as:

prob high =
formula sat prob[4]

2
=

1
2

2
=

1

4

Finally:

prob[bdd[4].index] = prob high =
1

4

(2) In one of them, x1 is false. The two following implicit paths have been removed from

the reduced BDD, (i) v5 99K v4 99K v3; and (ii) v5 99K v4 → v3. Nevertheless, path

v5 99K v4 → v3 should be considered to compute the marginal probability of x2. Lines

24–31 account for that kind of implicit path, adjusting the marginal probability with the

variables omitted in the paths. For instance, when the algorithm is called for v5, the marginal

probability of x2 is updated with half the prob low of v5.

To sum up:

MPr(x2) = MPr(v5 99K v4 → v3)+MPr(v5 → v4) =
prob lowv5

2
+prob[bdd[4].index] =

1
8

2
+

1

4
=

5

16

Algorithm 1: get prob

1 Input bdd and var ordering arrays

2 Output an array which stores Pr(xi) in position i

3 var formula sat prob, total prob: array[0..length(bdd)-1] of float;

4 prob: array[0..length(var ordering)-1] of float; i: int;

5 begin

6 for
(

i=0; i < length(bdd); i++
)

do

7 total prob[i] = 0.0

8 for
(

i=0; i < length(var ordering); i++
)

do

9 prob[i] = 0.0

10 formula sat prob = get formula sat prob(bdd)

11 get marginal prob(length(bdd)-1, total prob, formula sat prob, prob, bdd, var ordering)

12 for
(

i=0; i < length(var ordering); i++
)

do

13 prob[i] =
prob[i]

formula sat prob[1]

14 return prob

Algorithm 2: get formula sat prob

1 Input bdd array

2 Output an array which in position 1 stores Pr(ψ)

3 var formula sat prob: array[0..length(bdd)-1] of float; i: int

4 begin

5 for
(

i=0; i < length(bdd)-1; i++
)

do

6 formula sat prob[i] = 0.0 // non-root nodes prob is initialized to 0

7 formula sat prob[i] = 1.0 // root node prob is 1

8 i=length(bdd)-1

9 while i > 1 do // for all non-terminal nodes

10 formula sat prob[bdd[i].low] +=
formula sat prob[i]

2.0

11 formula sat prob[bdd[i].high] +=
formula sat prob[i]

2.0

12 i -= 1

13 return formula sat prob

Entropy 2014, 16 3343

Algorithm 3: get marginal prob

1 Input v: 0..length(bdd)-1; total prob, formula sat prob: array[0..length(bdd)-1] of float;

2 prob: array[0..length(var ordering)-1] of float; bdd and var ordering arrays

3 Output prob is passed by reference and, at the end of the algorithm execution,

4 it stores MPr(xi) in position i

5 var prob low, prob high: float; i: int

6 begin

7 prob low = 0.0

8 prob high = 0.0

9 bdd[v].mark = not bdd[v].mark

// explicit path recursive traversal

10 if bdd[v].low == 1 then

11 prob low =
formula sat prob[v]

2.0

12 else if bdd[v].low , 0 then

13 if bdd[v].mark , bdd[bdd[v].low].mark then

14 get marginal prob(bdd[v].low, total prob, formula sat prob, prob, bdd, var ordering)

15 prob low =
total prob[bdd[v].low]·

formula sat prob[v]
2.0

formula sat prob[bdd[v].low]

16 if bdd[v].high == 1 then

17 prob high =
formula sat prob[v]

2.0

18 else if bdd[v].high , 0 then

19 if bdd[v].mark , bdd[bdd[v].high].mark then

20 get marginal prob(bdd[v].high, total prob, formula sat prob, prob, bdd, var ordering)

21 prob high =
total prob[bdd[v].high]·

formula sat prob[v]
2.0

formula sat prob[bdd[v].high]

22 total prob[v] = prob low + prob high

23 prob[bdd[v].index] += prob high

// implicit path iterative traversal

24 i = bdd[v].index + 1

25 while i<bdd[bdd[v].low].index do

26 prob[i] +=
prob low

2.0

27 i +=1

28 i = bdd[v].index + 1

29 while i<bdd[bdd[v].high].index do

30 prob[i] +=
prob high

2.0

31 i +=1

Figure 3. Probability computation for BDD 2.

Entropy 2014, 16 3344

4.2.4. Computational Cost

Let m be the number of nodes of the BDD and n the number of variables of the Boolean formula.

Algorithm 2 requires traversing all of the nodes, so its computational complexity is O(m). Algorithm 3

also traverses all of the BDD nodes. In addition, to account for the implicit paths removed from the

reduced BDD, the variables omitted on the edges that come from each node need to be traversed (which

is done by Lines 24–31). Table 7 summarizes those traversals for Figure 2. For instance, when v4 is

recursively traversed, the variables x3 and x4 need to be iteratively traversed, because the edge v4 → 1

omits them (i.e., the variable encoded by node v4, x2, jumps directly to one, omitting the intermediate

variables x3 and x4 in the ordering x1 ≺ x2 ≺ x3 ≺ x4). Table 7 helps with noticing the savings our

algorithm provides compared to the straightforward approach described in Section 4.1.2., which requires

traversing all nodes for all variables (which in computational cost terms is equivalent to traversing all

variables for every node). Therefore, Algorithm 3 does not traverse m · n elements, but m · n′, where

n′ is strictly less than n. Otherwise, if n′ = n, all nodes in the BDD should go directly to zero or one,

jumping over all of the variables. Nevertheless, as BDDs are organized in hierarchical levels according

to the variable ordering, this is impossible (i.e., the nodes that encode a variable with position k in the

ordering can only jump over the variables with positions k + 1 . . . n).

It follows that Algorithm 1 has computational complexity O(m · n′). As will be shown in Section 5, in

practice, n′ is usually much smaller than n, and thus, variable probabilities can be efficiently computed.

Table 7. Variables iteratively traversed for BBD in Figure 2.

node arcs omitted varsthat are traversed

v5

v5 99K v3 x2

v5 → v4 none

v4

v4 99K v3 none

v4 → 1 x3, x4

v3

v3 99K 0 x4

v3 → v2 none

v5

v5 99K 0 none

v5 → 1 none

4.3. Entropy-Driven Configuration

Let us return to the original problem this paper tackles. Given a set of questions Q, our goal is to sort

it in such a way that the user has to answer as few questions as possible to complete the configuration. To

find the optimal order of Q, we propose to rank each question, q, according to its expected information

gain, i.e., measuring how much uncertainty can be reduced on average when the engineer answers it.

Such an information gain is modeled as the mutual information I(C; q), where C is the set of all valid

configurations (i.e., the ones that satisfy all asset interdependencies).

Entropy 2014, 16 3345

When a configuration is completed, the entropy of every question q is zero. Since q has been

answered, H(q|C) = 0. Thus, it follows that I(C; q) = H(q), as Equation (11) demonstrates (see

Property 3 in Subsection 4.1.1.).

I(C; q) = H(q) − H(q|C) = H(q) (11)

When we ask “is component c in the configuration?”, the entropy of the question H(q) is computed

by Equation (12), where Pr(c) is the probability that c is included in the configuration.

H(q) = −Pr(c)log2Pr(c) − Pr(¬c)log2Pr(¬c)

= −Pr(c)log2Pr(c) −
(

1 − Pr(c)
)

log2

(

1 − Pr(c)
)

(12)

Our approach to guide the configuration of a derivative may be thought of as a binary search for the

user-desired configuration (remember Heuristic 6 in Section 3). To successively divide the search space

into subspaces of approximately the same size (i.e., where the pursued configuration is approximately

of the same probability), the user answers the question that provides more information about the

configuration (i.e., the question with the highest entropy). Thus, the configuration process advances

iteratively, by performing the following activities, until the entropy of all components becomes zero:

(1) Computing the component probabilities from the input configuration model. As the

process advances, the configuration space gets narrower and, consequently, the component

probabilities change.

(2) Computing the entropy value for each question.

(3) Sorting the questions in descending order of entropy.

(4) Asking the user to answer a question with entropy greater than zero. Note than when a question

has zero entropy, it is because it has been answered in a previous step directly or indirectly (i.e.,

because of the question interdependencies).

(5) Updating the set of answers and the configuration model (e.g., if the customer answers a question

q negatively, the Boolean formula ψ that encodes the configuration model is updated to ψ ∧ ¬ f).

Entropy may also be used to measure how hard it is to configure a given model. From the “point

of view” of an automated configurator, when the configuration process starts, the derivative desired by

the customer is any c in C with the same probability. Therefore, the configuration model uncertainty is

calculated by Equation (13) (see Property 2 in Section 4.1.1.).

H(C) = log2#C (13)

4.3.1. Example

Coming back to the running example introduced in Section 2, let us see how our approach works.

Figure 4 sums up the steps required to configure the derivative {PP, LRF, ¬FRF, SA, ¬EA} using the

entropy heuristic. In the first step, EA is the component with the highest entropy. Therefor, the system

asks the user if SA is included in the derivative. Once the user answers affirmatively, the probabilities of

the components are recomputed and, so, the entropies (e.g., the inclusion of SA implies the exclusion of

EA, so Pr(EA)=0 and thus H(EA)=0).

Entropy 2014, 16 3346

Figure 4. Configuring derivative {PP, LRF, ¬FRF, SA, ¬EA} using component entropy.

We remark here that our approach does not force the user to follow a fixed sequence of questions. In

each configuration step, the user may decide not to answer the best entropy-ranked question, but the one

she thinks is more convenient. After the question is answered, the entropies are recomputed and, thus,

our approach adjusts to the user preferences in an interactive way.

5. Experimental Evaluation

To test the validity of our approach, we have used two case studies:

(1) The configuration model provided by the car manufacturing company Renault DVI [14], which

deals with the configuration of a family of cars named Renault Megane and is freely available

at [15]. We have selected this model because it illustrates the practical applicability of our approach

(i.e., instead of using an example made up for academic purposes, our work is tested on a real

configuration model that comes from the industry). In addition, the Renault Megane problem is a

benchmark of widespread use by the configuration community [39–49].

(2) The Electronic Shopping model provided by Lau [17], which deals with an electronic commerce

platform that allows consumers to directly buy goods or services from a seller over the

Internet using a web browser. This benchmark is widely used by the software product line

community [26,50,51] and is freely available at [16].

5.1. Experimental Design

The goal of this section is to check if:

• Our approach produces better results than related work.

• The algorithm presented in Section 4.2 provides reasonable response times and, thus, supports

customer interactivity during the configuration process.

To do so, we have created a test bed composed of 1,000 random derivatives for every configuration

model. As we will see, a sample of 1,000 derivatives is big enough to get results with high statistical

power and significance.

To generate valid derivatives that satisfy all constraints, we have encoded the models as propositional

logic formulas (see Subsection 4.1.2.) and then as BDDs. To get efficient BDD sizes, the directions given

by Narodytska et al. [43] have been followed. The BuDDy package [52] has been used to guarantee the

generation of valid derivatives (i.e., derivatives that conform to the BDD).

The test bed is used to compare the following methods:

Entropy 2014, 16 3347

(1) Mazo et al.’s Heuristics 1, 2 and 5. [9] Remember that, strictly speaking, Mazo et al.’s Heuristic

4 is not a heuristic, but a propagation mechanism that all configuration systems should support.

Therefore, we have included such mechanism in all of the methods tested in this paper.

(2) The probability-driven approach, i.e., the method proposed by Chen et al. [10] and Mazo et al. [9]

(Heuristic 3).

(3) The entropy-driven approach, i.e., the method we propose in this paper.

To compute the option probabilities, which are required by the entropy and probability approaches,

an implementation of the algorithm presented in Section 4.2 has been included into the BuDDy package.

5.2. Case Study 1: Renault Megane

5.2.1. Results

Table 8 summarizes the results of the experiments for the Renault Megane configuration model.

Histograms in Figure 5a represent the number of steps needed to configure the 1,000 derivatives

using Mazo et al.’s [9] Heuristics 1, 2 and 5 and the entropy and probability approaches. Figure 5b

complements the histogram representation of the results with a box plot. In Figure 5b, “whiskers” start

from the edge of the box and extend to the furthest data point that is within 1.5 times the inter-quartile

range (i.e., the range that goes from the 25th percentile to the 75th percentile). Points that are past the

ends of the whiskers have been considered outliers and are displayed with dots.

Figure 5. The number of configuration steps according to the used approach for

Renault Megane. (a): Histograms; (b): Box plots.

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

m
ax. en

tro
p

y
H

eu
ristic 2

H
eu

ristic 1
H

eu
ristic 5

m
ax. p

ro
b

.

50 75 100 125 150
steps

de
ns

ity

(a)

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

m
ax

. e
nt

ro
py

H
eu

ris
tic

 2

H
eu

ris
tic

 1

H
eu

ris
tic

 5

m
ax

. p
ro

b.

approach

st
ep

s

(b)

Entropy 2014, 16 3348

Table 8. Result of the experiments for Renault Megane.

approach mean SD median min max range

entropy 73.49 9.5 73 50 97 47

probability 105.79 11.54 106 56 137 81

Heuristic 1 86.04 11.26 86 53 118 65

Heuristic 2 82.74 11.12 83 51 114 63

Heuristic 5 99.39 15.95 100 52 143 91

Using the central limit theorem, the 95% confidence intervals (CI) of the population mean can be

estimated (i.e., the range where, with a 95% guarantee, the mean of the number of steps required to

configure every derivative of the Megane model lies). Table 9 summarizes the CIs for each approach,

which are estimated as population mean CI = sample mean± t(std. error, 95%, 999 degrees of freedom),

where t stands for the Student’s t-distribution.

Table 9. The 95% CIs of the population mean for Renault Megane.

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.3 72.90-74.08 0.36 105.07-106.50 0.36 85.35-86.74 0.35 82.05-83.43 0.5 98.40-100.38

According to the summarized data, there is experimental evidence supporting that our approach

produces better results than related work.

5.2.2. Statistical Significance

To check the statistical significance of the results, an analysis of variance (ANOVA) test has been run

on the experimental data. Table 10 summarizes the ANOVA outcomes. Since the p-value is less than

0.001 (in particular, p-value < 2 · 10−16), the experimental results are statistically highly significant.

Table 10. ANOVA test for Renault Megane.

Degrees of freedom Sum of squares Mean of squares F-value Pr(> F)

approaches 4 676,884 169,221 1,162 < 2 · 10−16

residuals 4,995 727,312 146

Table 11 summarizes the power analysis of the ANOVA test. Given the sample size and the high

effect size (i.e., the high values of η2 and Cohen’s f 2), the ANOVA test has high statistical power.

Finally, to check the statistical significance of the pairwise comparison between the approaches, a

Tukey Honest Significant Differences (HSD) has been run. According to the results, summarized in

Table 12, the difference between the number of steps required by any pair of approaches to configure a

derivative is statistically highly significant. Whereas the ANOVA test rejects the null hypothesis: “there

is no difference between the five approaches (i.e., all of them produce approximately the same results)”,

Entropy 2014, 16 3349

the Tukey HSD test rejects ten null hypotheses separately: “there is no difference between Heuristic 2

and the entropy approach”, “there is no difference between Heuristic 1 and the entropy approach”, etc.

Table 11. Power analysis for Renault Megane.

Effect size Power

eta squared η2 Cohen’s f 2

0.48 0.93 ≈ 1

Table 12. Tukey HSD test for Renault Megane.

Difference 95% CI Adjusted p-value

Heuristic 2 vs. entropy 9.25 7.78–10.72 ≈ 0

Heuristic 1 vs. entropy 12.56 11.08–14.02 ≈ 0

Heuristic 5 vs. entropy 25.89 24.42–27.37 ≈ 0

probability vs. entropy 32.29 30.82–33.77 ≈ 0

Heuristic 1 vs. Heuristic 2 3.30 1.83–4.77 ≈ 0

Heuristic 5 vs. Heuristic 2 16.65 15.17–18.12 ≈ 0

probability vs. Heuristic 2 23.04 21.57–24.52 ≈ 0

Heuristic 5 vs. Heuristic 1 13.34 11.87–14.82 ≈ 0

probability vs. Heuristic 1 19.74 18.27–21.22 ≈ 0

probability vs. Heuristic 5 6.40 4.93–7.87 ≈ 0

5.3. Case Study 2: Electronic Shopping

Table 13 and Figure 6 summarize the results of the experiments for the Electronic Shopping

configuration model. Table 14 summarizes the CIs for each approach. According to the outcomes,

there is experimental evidence supporting that our approach produces better results than related work.

Table 13. Result of the experiments for Electronic Shopping.

approach mean SD median min max range

entropy 165.57 2.23 166 158 171 13

probability 193.67 6.06 194 164 207 43

Heuristic 1 187.38 5.69 188 168 201 33

Heuristic 2 189.36 5.7 190 170 203 33

Heuristic 5 169.33 3.1 169 153 178 25

Entropy 2014, 16 3350

Figure 6. The number of configuration steps according to the used approach for

Electronic Shopping. (a): Histograms; (b): Box plots.

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

m
ax. en

tro
p

y
H

eu
ristic 5

H
eu

ristic 1
H

eu
ristic 2

m
ax. p

ro
b

.

150 160 170 180 190 200 210
steps

de
ns

ity

(a)

155

160

165

170

175

180

185

190

195

200

205

m
ax

. e
nt

ro
py

H
eu

ris
tic

 5

H
eu

ris
tic

 1

H
eu

ris
tic

 2

m
ax

. p
ro

b.

approach

st
ep

s

(b)

Table 14. The 95% CIs of the population mean for Electronic Shopping.

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.07 165.43-165.71 0.19 193.29-194.04 0.18 187.03-187.73 0.18 189.01-189.72 0.1 169.14-169.52

5.3.1. Statistical Significance

Table 15 summarizes the ANOVA outcomes. Since the p-value is less than 0.001 (in particular,

p-value < 2 · 10−16), the experimental results are statistically highly significant. Table 16 summarizes

the power analysis of the ANOVA test. Given the sample size and the high effect size, the ANOVA test

has high statistical power. Finally, Table 17 summarizes the outcomes of HSD, which show that the

difference between the number of steps required by any pair of approaches to configure a derivative is

statistically highly significant.

Table 15. ANOVA test for Electronic Shopping.

Degrees of freedom Sum of squares Mean of squares F-value Pr(> F)

approaches 4 645,314 161,328 6,950 < 2 · 10−16

residuals 4,995 115,944 23

Entropy 2014, 16 3351

Table 16. Power analysis for Electronic Shopping.

Effect size Power

eta squared η2 Cohen’s f 2

0.85 5.57 ≈ 1

Table 17. Tukey HSD test for Electronic Shopping.

Difference 95% CI Adjusted p-value

Heuristic 5 vs. entropy 3.76 3.17–4.35 ≈ 0

Heuristic 1 vs. entropy 21.81 21.22–22.40 ≈ 0

Heuristic 2 vs. entropy 23.79 23.21–24.38 ≈ 0

probability vs. entropy 28.09 27.51–28.68 ≈ 0

Heuristic 1 vs. Heuristic 5 18.05 17.46–18.64 ≈ 0

Heuristic 2 vs. Heuristic 5 20.03 19.45–20.62 ≈ 0

probability vs. Heuristic 5 24.33 23.75–24.92 ≈ 0

Heuristic 2 vs. Heuristic 1 1.98 1.39–2.57 ≈ 0

probability vs. Heuristic 1 6.28 5.69–6.87 ≈ 0

probability vs. Heuristic 2 4.30 3.71–4.89 ≈ 0

5.4. Threats to Validity

A threat to the validity of our approach is the time required to compute the component probabilities,

which is also the Achilles’ heel for Chen et al.’s [10] approach and Mazo et al.’s [9] Heuristic 3. For the

sake of interactivity, configurators must provide customer guidance in a short time, and the usual way to

compute the probabilities is highly time consuming (see Section 4.1.2.). To assess the response time of

our algorithm (see Section 4.2), we determined the time needed to configure 1,000 randomly generated

derivatives for Case Studies 1 and 2 using our entropy-driven approach. Figure 7 compares the average

times needed to completely configure the derivatives by computing the component probabilities using our

algorithm and calling repeatedly the BuDDy function, satcount. The performance tests were conducted

on an Intel c© CoreTM 2 i3-4010U with 1.7 GHz and 4GB RAM (although, only one core was used).

As Figure 7 shows, our algorithm greatly improves the probability computation time. For instance, it

requires 4.54 seconds on average to compute all component probabilities (and thus, their entropy values)

for the first configuration step in the Renault Megane example. In contrast, calling satcountrepeatedly

consumes 625.18 seconds.

Note that the first configuration’s steps are the most expensive in time. As the configuration process

advances, the configuration space gets reduced and, so, the time needed to compute the probabilities.

There is a point where both approaches converge and get response times close to zero.

Entropy 2014, 16 3352

Figure 7. Time required to compute component probabilities. (a): Renault Megane;

(b) Electronic Shopping.

0

200

400

600

0 20 40 60
step

tim
e

(in
 s

ec
on

ds
)

approach
calling satcount repeteadly

our algorithm

(a)

0.00

0.25

0.50

0.75

1.00

0 50 100 150
step

tim
e

(in
 s

ec
on

ds
)

approach
calling satcount repeteadly

our algorithm

(b)

6. Conclusions

To satisfy a wide range of customers, product platforms must provide a high variety of optional

components. For this reason, the configuration of all, but trivial, derivatives involves considerable effort

in selecting which components they should include, while avoiding violations of the inter-component

dependencies and incompatibilities. Our approach enriches existing automated configurators by reducing

the number of steps required to configure a valid derivative.

Applying the information theory concept of entropy, our approach takes advantage of the fact that, due

to the inter-component constraints, some decisions may be automatically derived from other decisions

previously made. Therefore, the order in which decisions are made has a strong influence on the number

of decisions required to complete a configuration. Moreover, our approach does not provide a static

ordering that the customer is forced to follow. On the contrary, it suggests orderings dynamically,

reacting to the customer decisions. In addition, we have proposed an algorithm that efficiently computes

the variable probabilities of a Boolean formula, supporting in this way not only our approach, but also

other methods proposed in related work.

The Renault Megane and Electronic Shopping configuration benchmarks have been used to test the

applicability of our approach and its effectiveness. In particular, it has been shown that our approach

needs less configuration steps than related work.

Acknowledgements

This work has been supported by the Spanish Government under the CICYT project DPI-2013-

44776-R, and the Comunidad de Madrid under the RoboCity2030-II excellence research network

S2009DPI-1559.

Entropy 2014, 16 3353

Author Contributions

This is a joint effort based on an original idea conceived by Ruben Heradio and David Fernandez-

Amoros. The development of the idea, its implementation and validation has been performed by Ruben

Heradio, David Fernandez-Amoros, Hector Perez-Morago, and Antonio Adan.

Conflicts of Interest

The authors declare no conflict of interests.

References

1. Simpson, T.W.; Siddique, Z.; Jiao, J.R. Product Platform and Product Family Design: Methods

and Applications; Springer: Berlin/Heidelberg, Germany, 2005.

2. Pil, F.K.; Holweg, M. Mitigating product variety’s impact on the value chain. Interfaces 2004,

34, 394–403.

3. Sabin, D.; Weigel, R. Product Configuration Frameworks-A Survey. IEEE Intell. Syst. 1998,

13, 42–49.

4. Configit. Available online: http://www.configit-software.com/ (accessed on 16 June 2014).

5. SAP Product Configurator. Available online: https://scn.sap.com/docs/DOC-25224 (accessed on

16 June 2014).

6. Oracle Configurator. Available online: http://docs.oracle.com/cd/B12190 11/current/acrobat/

115czinstg.pdf (accessed on 16 June 2014).

7. Van Nimwegen, C.; Burgos, D.; van Oostendorp, H.H.; Schijf, H. The paradox of the assisted

user: Guidance can be counterproductive. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, Montreal, Canada, April 2006; ACM: New York, NY, USA, 2006;

pp. 917–926.

8. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.

9. Mazo, R.; Dumitrescu, C.; Salinesi, C.; Diaz, D. Recommendation heuristics for improving

product line configuration processes. In Recommendation Systems in Software Engineering;

Springer-Verlag: Berlin/Heidelberg, Germany, 2014.

10. Chen, S.; Erwig, M. Optimizing the Product Derivation Process. In Proceedings of the 15th

International Software Product Line Conference, Munich, Germany, 21–26 August 2011; IEEE

Computer Society: Munich, Germany, 2011; pp. 35–44.

11. Kübler, A.; Zengler, C.; Küchlin, W. Model Counting in Product Configuration. In Proceedings of

the 1st International Workshop on Logics for Component Configuration, Edinburgh, UK, 10 July

2010; pp. 44–53.

12. Huth, M.; Ryan, M. Logic in Computer Science: Modelling and Reasoning about Systems;

Cambridge University Press: Cambridge, UK, 2004.

13. Jackson, D. Software Abstractions: Logic, Language, and Analysis, 2nd ed.; The MIT Press:

Cambridge, MA, USA, 2012.

14. Renault DVI. Available online: http://www.renault.fr/ (accessed on 16 June 2014).

Entropy 2014, 16 3354

15. Configuration Model of the Renault Megane Platform. Available online: http://www.itu.dk/

research/cla/externals/clib/ (accessed on 16 June 2014).

16. SPLOT: Software Product Lines Online Tools. Available online: http://gsd.uwaterloo.ca:8088/

SPLOT/index.html (accessed on 16 June 2014).

17. Lau, S.Q. Domain Analysis of E-Commerce Systems Using Feature-Based Model Templates.

Master’s thesis, University of Waterloo, Waterloo, ON, Canada, 2006.

18. White, J.; Dougherty, B.; Schmidt, D.C.; Benavides, D. Automated reasoning for multi-step

feature model configuration problems. In Proceedings of the 13th International Software Product

Line Conference, San Francisco, USA, 24–28 August 2009; Carnegie Mellon University Press:

Pittsburgh, USA, 2009; pp. 11–20.

19. Kang, K.; Cohen, S.; Hess, J.; Novak, W.; Peterson, S. Feature-Oriented Domain Analysis

(FODA) Feasibility Study; Technical Report CMU/SEI-90-TR-21; Software Engineering Institute:

Pittsburgh, USA, 1990.

20. Software Productivity Consortium Services Corporation. Reuse-Driven Software Processes

Guidebook, Version 02.00.03; Technical Report SPC-92019-CMC; Software Productivity

Consortium Services Corporation: Herndon, USA, 1993.

21. Czarnecki, K.; Grünbacher, P.; Rabiser, R.; Schmid, K.; Wasowski, A. Cool features and

tough decisions: A comparison of variability modeling approaches. In Proceedings of the 6th

International Workshop on Variability Modeling of Software-Intensive Systems, Leipzig, Germany,

25–27 January 2012; ACM: New York, NY, USA, 2012; pp. 173–182.

22. Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps, Y. Generic semantics of feature diagrams.

Comput. Netw. 2007, 51, 456–479.

23. Junker, U. Configuration. In Handbook of Constraint Programming; Rossi, F., van Beek, P.,

Walsh, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 837–868.

24. Dhungana, D.; Grünbacher, P.; Rabiser, R. The DOPLER meta-tool for decision-oriented variability

modeling: A multiple case study. Autom. Softw. Eng. 2011, 18, 77–114.

25. Sinz, C.; Haag, A.; Narodytska, N.; Walsh, T.; Gelle, E.; Sabin, M.; Junker, U.; O’Sullivan, B.;

Rabiser, R.; Dhungana, D.; et al. Configuration. IEEE Intell. Syst. 2007, 22, 78–90.

26. Mendonça, M. Efficient Reasoning Techniques for Large Scale Feature Models. Ph.D. Thesis,

University of Waterloo, Waterloo, ON, Canada, 2009.

27. White, J.; Benavides, D.; Schmidt, D.; Trinidad, P.; Dougherty, B.; Ruiz-Cortes, A. Automated

diagnosis of feature model configurations. J. Syst. Softw. 2010, 83, 1094–1107.

28. Janota, M. SAT Solving in Interactive Configuration. Ph.D. Thesis, University College Dublin,

Dublin, Ireland, 2010.

29. Hegedus, A.; Horvath, A.; Rath, I.; Varro, D. A model-driven framework for guided design

space exploration. In Proceedings of the 26th International Conference on Automated Software

Engineering, Lawrence, USA, 6–12 November 2011; IEEE Computer Society: Washington, DC,

USA, 2011; pp. 173–182.

Entropy 2014, 16 3355

30. Soltani, S.; Asadi, M.; Hatala, M.; Gasevic, D.; Bagheri, E. Automated planning for feature model

configuration based on stakeholders’ business concerns. In Proceedings of the 26th International

Conference on Automated Software Engineering, Lawrence, USA, 6–12 November 2011; IEEE

Computer Society: Washington, DC, USA, 2011; pp. 536–539.

31. Siegmund, N.; Rosenmüller, M.; Kuhlemann, M.; Kästner, C.; Apel, S.; Saake, G. SPL Conqueror:

Toward optimization of non-functional properties in software product lines. Softw. Qual. J. 2011,

20, 487–517.

32. Steinberg, L. Question Ordering in a Mixed Intiative Program Specification Dialogue. In

Proceedings of the 1st Annual National Conference on Artificial Intelligence, Stanford, CA, USA,

18–21 August 1980; AAAI Press: Stanford University, CA, USA, 1980.

33. Bryant, R.E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Comput.

1986, 35, 677–691.

34. Pohl, K.; Bockle, G.; Linden, F. Software Product Line Engineering: Foundations, Principles and

Techniques; Springer: Berlin/Heidelberg, Germany, 2005.

35. Biere, A.; Heule, M.J.; van Maaren, H.; Toby, W. Handbook of Satisfiability; IOS Press:

Amsterdam, The Netherlands, 2009; pp. 697–698.

36. Thum, T.; Batory, D.; Kastner, C. Reasoning About Edits to Feature Models. In Proceedings of

the 31st International Conference on Software Engineering, Vancouver, Canada, 16–24 May 2009;

IEEE Computer Society: Washington, DC, USA, 2009; pp. 254–264.

37. Cook, S.A. The complexity of theorem-proving procedures. In Proceedings of the Third Annual

ACM Symposium on Theory of Computing, Shaker Heights, Ohio, USA, 3–5 May 1971; ACM:

New York, NY, USA, 1971; pp. 151–158.

38. Astesana, J.M.; Cosserat, L.; Fargier, H. Constraint-based Vehicle Configuration: A Case Study.

In Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence,

Arras, France, 27–29 October 2010; Volume 1, pp. 68–75.

39. Amilhastre, J.; Fargier, H.; Marquis, P. Consistency restoration and explanations in dynamic

CSPs-Application to configuration. Artif. Intell. 2002, 135, 199–234.

40. Jensen, R.M. CLab: A C++ Library for Fast Backtrack-Free Interactive Product Configuration.

In Proceedings of the 10th International Conference on Principles and Practice of Constraint

Programming, Toronto, Canada, 27 September–1 October 2004; Springer: Toronto, Canada, 2004.

41. O’Sullivan, B.; O’Callaghan, B.; Freuder, E.C. Corrective Explanation for Interactive Constraint

Satisfaction. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,

Edinburgh, UK, 30 July–5 August, 2005; Morgan Kaufmann Publishers Inc.: San Francisco, CA,

USA, 2005; pp. 1531–1532.

42. Hebrard, E.; Hnich, B.; O’Sullivan, B.; Walsh, T. Finding Diverse and Similar Solutions in

Constraint Programming. In Proceedings of the 20th National Conference on Artificial Intelligence

and the 17th Innovative Applications of Artificial Intelligence Conference, Pittsburgh, USA, 9–13

July 2005; AAAI Press/The MIT Press: Cambridge, MA, USA, 2005.

43. Narodytska, N.; Walsh, T. Constraint and Variable Ordering Heuristics for Compiling

Configuration Problems. In Proceedings of the 20th International Joint Conference on Artifical

Entropy 2014, 16 3356

Intelligence, Hyderabad, India, 6–12 January 2007; Morgan Kaufmann Publishers Inc.: San

Francisco, CA, USA, 2007; pp. 149–154.

44. Hansen, E.R.; Tiedemann, P. Compressing Configuration Data for Memory Limited Devices. In

Proceedings of the 22nd National Conference on Artificial Intelligence, Vancouver, Canada, 22–26

July 2007; AAAI Press: Vancouver, BC, Canada, 2007.

45. Cambazard, H.; O’Sullivan, B. Reformulating Positive Table Constraints Using Functional

Dependencies. In Proceedings of the 14th International Conference on Principles and Practice of

Constraint Programming, Sydney, Australia, 14–18 September 2008; Springer: Sydney, Australia,

2008; pp. 418–432.

46. Queva, M. A Framework for Constraint-Programming based Configuration. Ph.D. Thesis,

Technical University of Denmark, Kongens Lyngby, Denmark, 2011.

47. Kroer, C. SAT and SMT-based Interactive Configuration for Container Vessel Stowage Planning.

Master’s Thesis, IT University of Copenhagen, Copenhagen, Denmark, 2012.

48. Gange, G.K. Combinatorial Reasoning for Sets, Graphs and Document Composition. Ph.D. Thesis,

The University of Melbourne, Melbourne, Australia, 2012.

49. Bessiere, C.; Fargier, H.; Lecoutre, C. Global Inverse Consistency for Interactive Constraint

Satisfaction. In Principles and Practice of Constraint Programming; Schulte, C., Ed.; Springer:

Berlin/Heidelberg, Germany, 2013; Volume 8124, pp. 159–174.

50. Bagheri, E.; Gasevic, D. Assessing the maintainability of software product line feature models

using structural metrics. Softw. Qual. J. 2011, 19, 579–612.

51. Perrouin, G.; Oster, S.; Sen, S.; Klein, J.; Baudry, B.; le Traon, Y. Pairwise testing for software

product lines: Comparison of two approaches. Softw. Qual. J. 2012, 20, 605–643.

52. BuDDy. Available online: http://sourceforge.net/projects/buddy/ (accessed on 16 June 2014).

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

