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Abstract: It is well-known that for a given sequence, its optimal codeword length is fixed. 

Many coding schemes have been proposed to make the codeword length as close to the 

optimal value as possible. In this paper, a new block-based coding scheme operating on the 

subsequences of a source sequence is proposed. It is proved that the optimal codeword 

lengths of the subsequences are not larger than that of the given sequence. Experimental 

results using arithmetic coding will be presented. 
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1. Introduction 

For any discrete memoryless source (DMS, an independent identically distributed source—a typical 

example is a sequence of independent flips of an unbiased coin), Shannon’s lossless source coding 

theorem [1] shows that the optimal lossless compression rate is bounded by the entropy of the given 

source. Since then, there has been considerable interest in designing source codes and the objective is 

to make them matched to different applications. As regards the existing source codes, the most widely used 

algorithms are indubitably Huffman coding [2], arithmetic coding [3,4] and Lempel-Ziv coding [5,6].  

Of these coding methods, arithmetic coding offers great potential for the combination of compression 

and encryption. Recently, many novel approaches on joint compression and encryption have been 

presented [7–14] and interested readers may find their corresponding cryptanalysis in [15–18]. 

The first exhibited coding method is the well-known Huffman coding, proved to be optimal by 

Huffman [2]. Due to the optimality of Huffman coding, it has been applied into many international 

OPEN ACCESS



Entropy 2014, 16 3316 

 

 

standards, such as JPEG [19]. Later, with the appearance of arithmetic coding, Huffman coding has 

been replaced gradually and many new standards (such as JPEG2000 [20] and H.264 [21]) in 

multimedia have utilized modified versions of arithmetic coding to serve as their entropy coders. 

The predecessor of arithmetic coding is Shannon-Fano-Elias coding. The extension of Shannon-

Fano-Elias method to sequences is based on the enumerative methods presented by Cover [22]. 

Nevertheless, both of these codes suffer from precision problem. Fortunately, Rissanen and Langdon [3] 

successfully solve this problem and characterize the family of arithmetic codes through the notion of 

the decodability criterion which applies to all such codes. Actually, a practical implementation of 

arithmetic coding is due to Witten et al. [23] and a revisited version of arithmetic coding should be 

attributed to Moffat et al. [24]. 

As is known, the prerequisite for the establishment of Shannon’s theorem is that the encoder should 

be optimal and work according to the distribution of the given source, which indicates the compression 

ratio is restricted by the entropy rate of the given DMS. The contribution of this paper is to draw 

freedom lines not bound by entropy rate constraint for a given DMS. The source sequence is first 

separated into two or more subsequences which are encoded independently. Then we consider a simple 

case that the length of each subsequence is the same and analyze the proposed coding scheme 

theoretically. Next, we prove that for general case, the sum of optimal codeword lengths of the 

subsequences is no longer than that of the original sequence. Moreover, the subsequences are encoded 

without interference, which facilities parallel computing. In addition, it should be noted that the coding 

algorithms adopted here are for a class of mean-optimal source codes. As a result, in the sequel, 

arithmetic coding is the main compression algorithm so as to achieve desired results. 

The rest of this paper is arranged as follows: in the next section, the proposed scheme is described 

in detail. In Section 3, its constraint and feasibility are analyzed. In Section 4 we introduce a simple 

arithmetic coding scheme and present the experimental results as well. Finally, conclusions are drawn 

in Section 5. 

2. Block-Based Coding 

Let X be a random variable having value A or B: 

    with probability ( )

    with probability ( )

A p A
X

B p B

 


 (1)

Let 1 2:n
nX X X X   be an independent and identically distributed sequence of length n generated 

according to this distribution and let nA and nB denote the number of times that symbols A and B 

appeared, respectively. Let x be a realization of X, then the optimal codeword length L of this sequence 

is given by [25]: 

 { , }

1
( ) log

x A B

L np x
p x

   (2)

where here and throughout the sequel 2log( ) : log ( )   . Let the given binary message sequence be 

divided into two subsequences of lengths 1n  and 2n , respectively. Let the number of symbols A and B 

in the first subsequence be n1A and n1B, respectively. For the second one, they are n2A and n2B. Denote 
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the actual probability mass function of the source sequence as p(X). For the two subsequences, they are 

q(X) and r(X), respectively. 

As the symbols of the given binary sequence is independent, we have [25]: 

1 1 1

1 2

1 2 1 2

( ) ( )

( ) ( )

n
n

n n n n

H X H X X X

H X X X H X X X 



 



 
 (3)

where H(Xn) is the entropy of the source sequence. Note that the entropy here refers to the information 

entropy presented by Shannon [1]. There are of course other kinds of entropies, interested readers can 

find them in [26–29]. Thus, the optimal codeword length of the source sequence can be rewritten as: 

   
       

{ , }

1 2
{ , } { , }

1 2

1
log

1 1
log log

x A B

x A B x A B

L np x
p x

n p x n p x
p x p x

L L



 



 

 



   (4)

where L1 and L2 denote the respective codeword lengths of the two subsequences after encoding in 

accordance with the distribution of the source sequence. Actually, it can be easily found that the 

probability mass functions of the two subsequences and the source sequence are not necessarily the 

same. Therefore, after partitioning the real optimal codeword length of the first subsequence is: 

   
*
1 1

{ , }

1
log

x A B

L n q x
q x

   (5)

For the second subsequence, the real optimal codeword length is expressed as: 

   2 2
{ , }

1
log

x A B

L n r x
r x





   (6)

From Equations (4)–(6), it seems that the source sequence has been encoded according to a wrong 

distribution after partitioning. In other words, an i.i.d. source sequence can be further compressed if it 

is divided into two subsequences. In the following subsections, we shall formally analyze this fact. 

2.1. An Alphabet of Size Two 

Consider a given binary sequence of length n. Without loss of generality, suppose that n is an even 

number and the two subsequences have the same length, i.e., 1 2n n= . Then similar to the manner 

above, we have: 

( )

( )

A

B

n
p A

n
n

p B
n

 

 


 (7)

The optimal codeword length of the binary sequence can be given by: 
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log log

log log

A B

A B

A B
A B

n nn n
L n n

n n n n

n n
n n

n n

     

 

 
(8)

After partition, it is easy to observe that 
10

2A

n
n  , 

20
2A

n
n   and 1 2A A An n n  . Therefore, we 

can obtain the following pair of equations: 

1 1
1 1 1

1 1

2 2
2 2 2

2 2

log

log log

logA B
A B

A B
A B

n n
L n n

n n

n n
L n n

n n









 

 


 (9)

and the sum of the optimal codeword lengths of these two subsequences is: 

1 2

*
sumL L L    (10)

The above discussion leads to Theorem 1. 

Theorem 1. For a given binary message Xn with length ( 2)n n  , the sum of the optimal codeword 

length of the two equally-divided subsequences is no greater than that of the given message sequence 

as: 
*

1 2sumL L L L     (11)

with equality holds if and only if 1 2A An n= . 

Proof of Theorem 1. From Equations (8)–(10), we have: 

log logA B
A B

n n
L n n

n n
 

 
*

1 1 2 2
1 1 2 2

1 1

2

2 2

1

log log log log

sum

A B A B
A B A B

L
n n n n

n n n n
n

L

n

L

n n

 

   


 (12)

If 1 2A An n= , we have: 

* log logsum A B
A B

n n
L n n L

n n
    

as 1 2A A An n n= + . 

If 1 2A An n , we can rewrite Equation (12) as: 
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 1 1          log 2 2
2 A A A A

n
n n n n n      

 

 (13)

Equation (13) implies that *
sumL  is a function of n1A since n and nA are constants for a given binary 

sequence. In order to make Equation (13) clear, here let F(t) and t denote *
sumL  and n1A , respectively. 

Then differentiating F(t) with respect to t yields: 

       
  
 

log 2 log 2 log 2 log 2 2

2
log

2 2

A A

A

A

d
F t t n t n t n n t

dt
n t n t

t n n t

        

 


 

 (14)

After rearrangement, we have: 

    2

2

2 2
= log

2 2
A A

A

n t n t n td
F t

dt nt n t t

  
 

 (15)

As 0An t  , 2 0n t  , 0t   and 2 0An n t   , letting: 

    2

2

2 2
=

2 2
A A

A

n t n t n t
g t

nt n t t

  
 

 (16)

yields ( ) 0g t ³ . Regarding Equation (16), there are two possible cases: 

(a) If An t t  , i.e., 
2
An

t  , then ( ) 1g t   and 0
dF

dt
 ; 

(b) If An t t  , i.e., 
2
An

t  , then 0 ( ) 1g t   and 0
dF

dt
 . 

The above two cases are visualized in Figure 1. It is clear that *
sumL  is concave and *

sumL L . 

Figure 1. A plot of H* when (a) nA < n/2; and (b) nA ≥ n/2. 

 
(a)                                                                          (b) 
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2.2. A Special Case for an Alphabet of Size 2 

In this subsection, we shall demonstrate the case where the two subsequences are of arbitrary 

lengths while the sum of the two lengths are constant for a given source message sequence. 

Theorem 2. For a given binary source sequence 1 2 nX X X  with length  ( 2)n n  , which takes 

values in {A, B} with probabilities p(A) and p(B), respectively. Let the binary sequence be partitioned 

into two subsequences with arbitrary lengths 1n  and 2n  (note that 1 2n n n+ = ), then the sum of the 

optimal codeword lengths of the two subsequences is no greater than the length of the given binary 

sequence, i.e., *
21sumL LLL     . 

Before the formal proof is presented, the following lemma [25] is required: 

Lemma 1: Let p(x) and q(x), x X , be two probability mass functions. Then  || 0D p q  with 

equality holds if and only if ( ) ( )p x q x  for all x. Here, ( )D  represents the relative entropy. 

Proof of Theorem 2. From the previous part, we have: 

 

       

       

       

1 2

1 1 1

2 2 2

, , ,

1 1
   log log ,

1 1
log log ,

1 1
log log .

nL H X X X

np A np B
p A p B

L n q A n q B
q A q B

L n r A n r B
r A r B







 

 

 



 (17)

For symbol A, we have: 

     1 2np A n q A n r A   (18)

Now, expanding the first part of Equation (17) using Equation (18) with respect to the optimal 

codeword length of symbol A in the given source sequence, we have: 

         
   

       
   

1 2

1 2

1 1
log log

1 1
                        log log

np A n q A n r A
p A p A

q A r A
n q A n r A

p A q A p A r A

   

   
 (19)

Similarly, for symbol B we have: 

       
       

   1 2

1 1 1
log log log

q B r B
np B n q B n r B

p B p B q B p B r B
     (20)

Combining Equations (19) and (20), we have: 
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1 1
, ,

1 2 1 2

1 1
log log

1 1
log log

| |

x A B x A B

L np A np B
p A p B

q x r x
n q x n r x

p x q x p x r x

n D q p n D r p L L

 

 

 

   

   

   (21)

From Lemma 1, we know that: 

   || 0,   || 0.D q p D r p   (22)

If the equality holds, we have: 

           ,   .q A p A r A q B p B r B     (23)

As a result, the proof of Theorem 2 has been shown. Additionally, we can see that Theorem 1 is a 

special case of Theorem 2 and Equation (21) can be considered as a coding scheme which is designed 

based on a wrong distribution [25]. 

2.3. An Alphabet of Size D > 2 

In the above two subsections, we have discussed the case that the alphabet size is two. In this 

subsection, we shall deal with the case of alphabet size 2D  . 
Consider an i.i.d. random variable Z taking value from the set {1, 2, , }D  and a given discrete 

sequence 1 2 nZ Z Z  of length n. Suppose that the number of occurrences of symbol i is ni for some 

{1, 2, , }i D   and the corresponding probability is p(i). Obviously, we have: 

1 2

1
D

D

i
i

n n n n n


      (24)

Following the preceding method, we once more partition the given sequence into two subsequences 

ZA and ZB with length nA and nB, respectively. We further assume that the probability of symbol i 

is ( )Ap i  and the number of times that symbol i occurred in ZA is niA. For ZB, they are ( )Bp i  and niB, 

respectively. Similarly, we have: 

1 2
1

1 2
1

,

,

D

A A A DA iA
i
D

B B B DB iB
i

n n n n n

n n n n n





    

    








 (25)

and: 

i iA iBn n n   (26)

Then the entropies of the source sequence and the two subsequences are given by:  
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D

i

D

A A A
i A
D

B B B
i B

H Z p i
p i

H Z p i
p i

H Z p i
p i







 

 

 

 (27)

Their corresponding optimal codeword lengths: 

   
   
   

1

1

1

1
log ,

1
log ,

1
log .

D

i

D

A A A
i A
D

B B B
i B

L np i
p i

L n p i
p i

L n p i
p i











 

 

 

 (28)

Similar to Theorem 2, we have the following theorem. 

Theorem 3. For a discrete sequence from a multiple-symbol source, after partitioning it into  

two subsequences (ZA and ZB), its optimal codeword length * *
A BL L L   with equality holds if and 

only if their probability mass functions satisfy      A Bp i p i p i   for all {1, 2, , }i D  . 

Proof of Theorem 3. Let the source sequence be represented by 1 2:n
nZ Z Z Z  . As the source 

sequence is independent and identically distributed, we have: 

   

   
1 2

1 2 1 2          
A A A

n
n

A n B n n n

H Z H Z Z Z

H Z Z Z H Z Z Z 



 



 
 (29)

Similar way to the proof of Theorem 2, we have: 

         
   

       
   

1 1
log log

1 1
                        log log

A A B B

A B
A A B B

A B

np i n p i n p i
p i p i

p i p i
n p i n p i

p i p i p i p i

   

   
 (30)

Thus: 

   
   

       
   

   

1

1 1

1
log

1 1
log log

|| ||

D

i

D D
A B

A A B B
i iA B

A A B B A A B B

L np i
p i

p i p i
n p i n p i

p i p i p i p i
n D p p n D p p n H n H



 

 

    

   

 (31)

As: 

   | 0,   | 0,A BD p p D p p   (32)

we have: 
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   || + ||A B A A B B

A B

L L L n D p p n D p p

L L

 

 

  

 
 (33)

with equality holds if and only if:  

     A Bp i p i p i   (34)

Now, we can see that not only binary sequences but also the non-binary ones can be further 

compressed by using the proposed method. 

3. Constraint and Feasibility 

In Section 2, we have studied the advantages of block-based coding. Particularly, as the source 

message is sufficiently large, we can repeat the partition operation. Nevertheless, this has the downside 

of increasing the size of the output file when the number of subsequences or alphabet size grows since 

more distributions will take up too much space in the output file. In this section, we shall show the 

constraint and feasibility of our approach. 
For a given binary sequence 1 2 nx x x  with length n and probability mass function 1 2( , , , )np x x x , 

it can, without doubt, be encoded to a length of 1 2log(1/ ( , , , )) 2np x x x   bits [25]. This means that if the 

source is i.i.d., this code achieves an average codeword length within 2 bits above the entropy. If the 

prefix-free restriction is removed, a codeword length of 1 2log(1/ ( , , , )) 1np x x x   bits can be achieved. 

When the given message sequence 1 2 nx x x  is partitioned into two subsequences of length n1 and 

n2, the practical codeword lengths of the two subsequences can be given by: 

 

 

1

1 1

1

1 2

2

1 2

1
log 2,

, , ,
1

log 2.
, , ,

n

n n n

L
p x x x

L
p x x x 

 

 





 (35)

Now, consider the following two special cases: 

(a) Suppose that the message sequence is 010101…, i.e., equal number of zeros and ones. 

Obviously, it is not compressible. However, if we separate it into two subsequences 

alternatively, one subsequence will have all zeros while another will consist of all ones. Both 

subsequences have zero entropy and this is the ideal case; 

(b) Suppose the message sequence is 010101… and the numbers of zeros and ones are both even 

numbers. After partitioned into three sequences, each one has equal probability of zero and one. 

According to the preceding analysis, the final codeword length will be within 2 bits above the 

codeword length before partitioning. 

There is no doubt that the second special case exists. Thus, we suggest applying this work to binary 

arithmetic coding when the size of target input file is much smaller. On the other hand, since the 

subsequences after partition are encoded without interference, this fact implies that parallel coding is 

feasible. Peculiarly, if the file to be compressed is considerably large, then we can partition it into 

multiple subsequences and encode them in parallel. 
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4. Experimental Results 

As an extension of Shannon-Fano-Elias coding, arithmetic coding is an efficient coding scheme for 

lossless compression. Unlike Huffman coding, the process of arithmetic coding does not require much 

additional memory as the sequence length increases. Therefore arithmetic coding has been adopted in 

quite a number of international standards. On the other hand, there is no need for a representative 

sample of sequence and the probability model can be updated with each symbol read, which indicates 

that adaptive coding can be utilized (but won’t perform well). 

In order to further illustrate the superiority of the proposed coding scheme, we have performed a 

simple binary coding experiment. The operating procedures are described in Table 1 and one can refer 

to Figure 2 as well. 

Table 1. Binary coding procedures. 

Input Original sequence 
Output Codeword sequence 
Step 1: Read the source sequence to buffer in bits. 
Step 2: Find the middle symbol in the original sequence. 
Step 3: Divide the original sequence into two subsequences. 

Step 4: 
Encode the two subsequences according to their own probability models and then 
obtain two codeword sequences. 

Step 5: Combine the two codeword sequences. 

Figure 2. Encoding process of the proposed arithmetic coding scheme. 

... A A A B A B B A B A B

A B A A B A A A 

B A B A B A A B B A B
Original sequence   

B A B A B A A A B A B A B B A B A B
Subsequent 1

...
Subsequent 2

...

B A A B A A B B A B

Codeword 1 Codeword 2

A B A A B A B A A A ... ...

B A A A B B A B... ...... ...

 

Eighteen standard test files from the Calgary Corpus [30] are compressed to show the performance 

of this compression method. The test results are listed in Table 2, where RT and RP represent the 

compression ratio of the traditional and the proposed schemes, respectively. Note that the proposed 

method is used to further improve the compression ratio instead of designing a new source coding 

algorithm. Consequently, we just compare the compression ratio of the proposed scheme with the 

traditional arithmetic coding algorithm. 
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Table 2. Test results (Two symbols). 

File Size (KB) Entropy RT (%) RP (%) 

bib 111.261 0.985334 98.5350 98.5332 
book1 768.771 0.992689 99.2691 99.2690 
book2 610.856 0.993655 99.3656 99.3656 

geo 102.400 0.858996 85.9014 85.9004 
news 377.109 0.991326 99.1326 99.1329 
obj1 21.504 0.929604 92.9688 92.9641 
obj2 246.814 0.979415 97.9422 97.9418 

paper1 53.161 0.992549 99.2570 99.2551 
paper2 81.768 0.994734 99.4757 99.4732 
paper3 46.526 0.995974 99.6002 99.5981 
paper4 13.286 0.993788 99.3828 99.3828 
paper5 11.954 0.989678 98.9794 98.9711 
paper6 38.105 0.988634 98.8637 98.8663 

pic 513.216 0.392885 39.2893 39.2893 
progc 39.611 0.980897 98.0914 98.0914 
progl 71.646 0.981620 98.1632 98.1632 
progp 49.379 0.971435 97.1466 97.1445 
trans 93.695 0.983281 98.3297 98.3286 

Similarly, another experiment is performed by employing a fixed model with 256 possible source 

symbols. The detailed operating procedures are the same as that listed in Table 1 except that the source 

sequence is read in bytes rather than in bits. The corresponding test results are listed in Table 3. 

Table 3. Test results (256 symbols). 

File Size (KB) Entropy RT (%) RP (%) 

bib 111.261 0.6501 65.04 65.06 
book1 768.771 0.5659 56.59 56.59 
book2 610.856 0.5991 59.91 59.82 

geo 102.400 0.7058 70.58 70.55 
news 377.109 0.6487 64.88 64.85 
obj1 21.504 0.7435 74.37 72.11 
obj2 246.814 0.7825 78.27 77.78 

paper1 53.161 0.6229 62.35 62.18 
paper2 81.768 0.5752 57.56 57.50 
paper3 46.526 0.5831 58.39 58.37 
paper4 13.286 0.5875 59.01 58.96 
paper5 11.954 0.6170 61.98 61.62 
paper6 38.105 0.6262 62.70 62.28 

pic 513.216 0.1513 15.13 15.06 
progc 39.611 0.6499 65.07 64.89 
progl 71.646 0.5963 59.67 59.16 
progp 49.379 0.6086 60.93 60.77 
trans 93.695 0.6916 69.19 68.85 
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So far, the compression ratios of most present compression algorithms cannot break the restriction 

of entropy. However, from Tables 2 and 3, it can be found that with extra relative entropy, the 

compression ratio of the proposed scheme is sometimes smaller than the entropy of the original 

sequence, which is highlighted in the two tables. The reason for this phenomenon can boil down to the 

following three aspects: 

(a) The probability distribution of the source sequence; 

(b) The partition method; 

(c) The encoding function.  

The first aspect is important since the compression ratio of a given source sequence depends on the 

probability distribution of the source sequence. As proved in Section 2, our method is able to work 

better than the traditional one because of the existence of the extra relative entropy. Meanwhile, a good 

partition method can increase the extra relative entropy. In other words, when there is a greater 

difference between the source sequence and the subsequence, the extra relative entropy will be larger 

and further the compression ratio will be higher. This fact exactly reflects the importance of Aspect 

(b). The importance of Aspect (c) is conspicuous and we no longer repeat it. In addition, as the 

subsequences are encoded independently, we can perform the coding by parallel processing which can 

obviously reduce the processing time. 

5. Conclusions 

In this paper, we have proved that the overall codeword length after sequence partition is no greater 

than the original one. The original sequence can be regarded as the case that the code is designed using 

a wrong distribution. Because of the existence of error in the encoding process, we cannot divide the 

sequence into multiple sequences infinitely. Nonetheless, if we perform the sequence separation 

properly according to the length of the original sequence, the expected codeword length can be 

achieved. This fact indirectly suggests that we can implement our scheme efficiently by parallel 

coding. Furthermore, since our work depends on the partition method, our future work will focus on 

how to partition different kinds of files and which kinds of files should be partitioned. 
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