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Abstract: This paper studies the transformation properties of the spatial balance of energy 

equation for a dissipative material, under the superposition of arbitrary spatial diffeomorphisms. 

The study reveals that for a dissipative material the transformed energy balance equation 

has some non-standard terms in it. These terms are related to a system of microforces with 

its own balance equation. These microforces act during the superposition of the spatial 

diffeomorphism, because of the dissipative properties of the material. Moreover, it is shown 

that for the case in question the stress tensor is additively decomposed into a conventional 

part given by the standard Doyle-Ericksen formula and a non-conventional one which is 

related to changes in the material internal structure in the course of deformation. On the 

basis of the second law of thermodynamics and the integrability condition of a Pfaffian 

form it is shown that the non-conventional part of the stress tensor can be related not only 

to dissipative but also to conservative response. A further insight to this conservative response 

is provided by exploiting the invariance properties of the balance of energy equation within 

the context of the material intrinsic “physical” metric concept. In this case, it is shown that 

the assumption of spatial covariance yields the standard conservation and balance laws of 

classical mechanics but it does not yield the standard Doyle-Ericksen formula. In fact, the 

Doyle-Ericksen formula has an additional term in it, which is related directly to the evolution 

of the material internal structure, as it is determined by the (time) evolution of the material 

metric in the spatial configuration. A formal connection between this term and the Eshelby 

energy-momentum tensor is derived as well. 
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1. Introduction 

Invariance principles play a fundamental role in several branches of mechanics and physics. The basic 

idea relies crucially on the fact that if a quantity, underlying the response of a dynamical system, is 

invariant under the action of some group of transformations, then by exploiting the corresponding 

invariance properties one can determine relations between the system variables, which in turn may be 

interpreted as conservation and/or balance laws. 

The study of invariance principles within the context of continuum mechanics is rather an old subject 

and seems to go back to Ericksen [1]. In particular, Ericksen stated that by postulating an energy balance 

equation and its invariance under superimposed rigid body motions, one can derive the conservation 

and the balance laws for a continuum theory related to liquid crystals. In that he was followed by 

Green and Rivlin [2], who by postulating the invariance of the global form of the spatial energy balance, 

under the action of rigid translations and rotations in the current configuration, derived conservation of 

mass, as well as the balances of linear and angular momenta of classical mechanics. Identical results to 

those of Green and Rivlin [2] were derived also in a paper by Noll [3], with the basic difference in 

Noll’s work being in the treatment of the superimposed rigid body motion, which was viewed therein 

as a time dependent change of coordinates. As a matter of fact, both works are based on the same idea 

and are related by the so called alias-alibi (e.g., see, Bishop and Goldberg ([4], p. 72) viewpoint of 

coordinates in differential manifolds (see also Frewer [5] for a concise discussion of the alias-alibi 

concept in continuum mechanics). 

The concept was studied further by Marsden and Hughes ([6], pp. 154–176), who by realizing that: 

“Any theory (relativistic or nonrelativistic) that purports to be fundamental ought to be generalizable 

so that the underlying physical space is a manifold and not just Euclidean (or Newtonian) space.”, 

generalized the work of Green and Rivlin by replacing the (rigid) Euclidean ambient space by a 

Riemannian one. More precisely, these authors by postulating the covariance of the global energy balance 

equation, that is, its invariance under arbitrary superimposed spatial diffeomorphisms, derived not  

only the conservation and balance laws, but also the mechanical state equation in the form of the 

Doyle-Ericksen formula (Doyle and Ericksen [7]). Related to the work of Marsden and Hughes [6], is 

that of Simo and Marsden [8], who on the basis of the polar decomposition theorem and by postulating 

the existence of two different Riemannian metrics in the reference configuration, one of which remains 

invariant under the application of a spatial diffeomorphism while the other changes, derived an expression 

of the rotated stress tensor in terms of the body metric in the reference configuration. 

An alternative approach was proposed by Šilhavý [9] who unlike the aforementioned works did not 

consider either the concept of mass, or the standard splitting of the total energy into invariant internal 

energy and kinetic energy. Instead, Šilhavý [9] by postulating the invariance of the global balance of 

energy under Galilean transformations and the boundness of energy from below derived the classical 

structure of Cauchy’s equations of motion together with the existence of a non-negative mass and its 
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conservation law. Moreover, he derived the standard splitting of the total energy into internal and kinetic 

energies and the transformation law for external forces. Since then a lot of effort has been placed and  

a series of papers have appeared in the literature dealing with the concept of covariant energy balance 

in both a conservative (see, e.g., Yavari et al. [10]; Kanso et al. [11]; Yavari and Ozakin [12]; Yavari 

and Marsden [13]; Panoskaltsis and Soldatos [14]) as well as a dissipative (see, e.g., Yavari [15]; 

Panoskaltsis et al. [16,17]) setting. 

The work which constitutes the contribution that has been preferred in the present study is that of 

Yavari et al. [10]. In this work, the authors besides revisiting the basic theorem of the covariance of the 

energy balance equation of Marsden and Hughes ([6], pp. 163–167) by clarifying some technical details  

in its proof and by providing a proof for its converse, they also consider the case in which the material 

(referential) energy balance equation is invariant under the superposition of spatial diffeomorphisms; 

their results are identical with those of Marsden and Hughes [6]. The authors stated that even they have 

initially considered their basic statement: “if a deformed body satisfies the balance of energy, any 

framing of it should satisfy the balance of energy as well” as a postulate, they concluded that “one can 

justify it (or motivate it) by the fact that the ambient space S is homogeneous”. 

A similar assumption has been also made in a recent paper by Panoskaltsis et al. [17], which addresses 

an internal variable model of highly dissipative response. More specifically, Panoskaltsis et al. in [17] 

started by postulating that the spatial balance of energy equation is covariant. On the basis of this 

postulate, they derived mass conservation, the balance equations of linear and angular momenta and 

some additional conditions - related to the equilibrium properties of the material - under which, the 

Doyle-Ericksen formula holds. Nevertheless, in the course of their analysis Panoskaltsis et al. [17] realized 

that in general, for a dissipative material, the spatial balance of energy equation cannot be covariant. 

The authors attributed the lack of covariance to the fact that, unlike the conservative case studied in 

Yavari et al. [10], in the dissipative case the evolution of the body is determined not only by the 

deformation map—that is, by the motion of the body within the (homogeneous) ambient space—but 

also by the evolution of the internal variables. The internal variables under the superposition of a 

spatial diffeomorphism, are expected to perform work, which in turn, will result in the appearance of 

some non-standard terms in the expression of the transformed balance of energy equation. 

This paper presents a first attempt at exploiting the transformation properties of the spatial balance 

of energy equation under the superposition of spatial diffeomorphisms in the case of a dissipative material. 

In order to accomplish this goal, after briefly reviewing some standard concepts from the tensor analysis 

on manifolds (see, e.g., Bishop and Goldberg [4]; Abraham et al. [18]; Szekeres, [19]) in Section 2, we 

revisit the approach of Yavari et al. [10] on the covariant energy balance within the context of a 

dissipative material in Section 3. Unlike our previous studies in Panoskaltsis et al. [16,17], where the 

dissipative response was modeled by means of internal variables, within the present approach we 

assume that the dissipative response of the body is closely tied to a system of microforces, that acts 

during the superimposition of an arbitrary spatial diffeomorphism by performing work. The proposed 

approach has its origins in the work of Gurtin [20] dealing with configurational forces, which are 

forces acting in the reference configuration due to changes in the material internal structure, in addition 

to the standard (deformational) forces. The analysis reveals that for the case in question, this system of 

microforces has its own balance equation, while the stress tensor is decomposed additively into a 

conventional part, which is given by the standard Doyle-Ericksen formula and a non-conventional one, 
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which is related to changes in the material internal structure. In Section 4, on the basis of the second 

law of thermodynamics, several constitutive equations for this non-conventional part are proposed. 

Moreover, on the basis of the integrability condition of a Pfaffian form, it is shown that such an additive 

decomposition may also hold for the case of a non-dissipative material with internal structure, which 

evolves in the course of deformation. A further insight to this non-standard case is provided in Section 5 

where the approach of Yavari et al. [10] is revisited within the context of the material intrinsic 

“physical” metric concept (Valanis [21]; see also Valanis and Panoskaltsis [22]; Panoskaltsis et al. [16]). 

In particular, by following the suggestions given in these works, it is assumed that the internal structure 

of the material may be modeled macroscopically by the material intrinsic metric “as seen” in the 

spatial configuration, while its changes may by modeled by the time evolution of this metric. In this case 

it is shown that the assumption of spatial covariance yields the standard conservation and balance laws of 

classical mechanics but does not yield the standard Doyle-Ericksen formula. In fact, the  

Doyle-Ericksen formula has an additional term that is related directly to the evolution of the internal 

structure of the material, as this is determined by the evolution of the material metric. A formal 

connection between this term and the Eshelby energy-momentum stress tensor “as seen” in the spatial 

configuration is derived as well. 

2. Review of Some Basic Concepts from the Geometry of Continuum Mechanics 

This section reviews some basic elements of the geometrical approach to continuum mechanics that will 

be used in our subsequent developments. A summary of these concepts may be found in the monograph of 

Marsden and Hughes [6], as well as in the survey articles by Stumpf and Hoppe [23] and Ganghoffer [24]. 

Accordingly, we denote by B the reference configuration of the body of interest, which is modeled 

as a three dimensional Riemannian manifold with (covariant) metric G and points labeled by X, and 
we define a motion of B as an one-parameter family of mappings : :t B S   

( ) ( , ),  ,  ,t t t B S    x X X X x  (1)

where S is the ambient space which is modeled by a three-dimensional (Riemannian) manifold with 

metric g. Then, the deformation gradient is the two-point tensor F, defined as the tangent map of (1), 

that is: 

:  ,T T B T S X xF  (2)

with components:  

( , ) ,
i i

i
I I I

x
t

X X

 
 
 

F X  (3)

where T BX  and T Sx  stand for the tangent spaces at BX  and Sx (e.g., see Marsden and Hughes 

([6], pp. 35–47), respectively. The mapping t  is assumed invertible and orientation preserving with 

determinant     det
, det , 0.

det
i
IJ t F t   

g
X X

G
 

A material (referential) tensor Z of type 
p

q

 
 
 

 at X (or in component form  indices

 indices

...

         ...  
p

q

IK L

MN OZ



) is defined as a 

multilinear mapping:  
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 copies  copies

:  ... ... ,
p q

T T T T R      X X X XZ    
(4)

where T 
X stands for the cotangent space at .BX  

The push-forward ,Z  of the material tensor Z by the deformation mapping (1) is defined to be the 

spatial tensor z of type 
p

q

 
 
 

, with components:  

... ...
... ...... ...

i l M O
i l I L

m o M OI L m o

x x X X
z Z

X X x x

   

   

 (5)

while the pull-back of the spatial tensor z, is the material tensor defined as: 
1( ) ( ( )).  

z z  (6)

If 1W  and 2W  are two tangent vectors at X, their inner product 1 2,W W is defined in terms of the 

material metric tensor :T B T B R X XG as: 

2
1 2 1 2, ,  ( , ) {1, 2,3} .I J

IJG W W I J W W  (7)

In a similar manner the inner product of their images 1 1w FW  and 2 2w FW  under the mapping 

(1) on ,T Sx  is defined in terms of the spatial metric :T S T S R x xg  as:  

2
1 2 1 2, ,  ( , ) {1, 2,3} .i j

ijg w w i j w w  (8)

Then, since the mapping (1) is invertible it will be 1
1 1

W F w  and 1
2 2

W F w  so that from 

Equations (3) and (7) it follows that:  

1 2 1 2 1 2, ,
I J

i j i j
IJ iji j

X X
G w w c w w

x x

 
 

 
W W  (9)

where the tensor :T S T S R x xc  with components:  

,
I J

ij IJi j

X X
c G

x x

 

 

 (10)

stands for the push-forward of G and corresponds to the material (referential) metric “as seen” in the 

spatial configuration. One usually defines c as the Finger deformation tensor. 

In a similar manner:  

1 2 1 2 1 2, ,
i j

I J I J
ij IJI J

x x
g W W C W W

X X

 
 

 
w w  (11)

where the tensor :T B T B R X XC  with components: 

i j

IJ ij I J

x x
C g

X X

 


 
 (12)

is the pull-back of the spatial metric g and corresponds to the (spatial) metric as “seen” in the reference 

configuration. One usually defines C as the right Cauchy-Green deformation tensor. 
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The material velocity is defined as:  
3 ( , )

:  ,  ( ) ( , ) ,t t

t
B R t

t


  


X

V V X V X  (13)

and the spatial velocity is defined as:  
1:  ( ) ,  ( ) ( , ).t t tB S t  v v x V x  (14)

The material acceleration is defined as:  

( , )
:  ,  ( ) ( , ) ,t t

t
B S t

t


  


V X

A A X A X  (15)

while the spatial acceleration is defined as:  
3 1:  ( ) ,  ( ) ( , ).t t tB R t  a a x A x  (16)

The (convected) Lie derivative L ( )
V

z  of a time-dependent spatial tensor z of type 
p

q

 
 
 

 is obtained 

by pulling z back to the reference configuration, taking its time derivative by keeping X fixed and 

pushing-forward the result to the spatial configuration, that is:  

  const.L ( ) ,
t

 
 

 
   

v Xz z  

with components (see, e.g., Marsden and Hughes ([6], p. 97)):  

 
...

... ......
......

...
...

...
...

L

(all upper indices)+

+ +(all lower indices).

ik l
ik l ik l gmn o

mn ogmn o

i
gk l

mn o g

g
ik l

gn o m

z
z z v

t x

v
z

x

v
z

x

 
 

 


 




v

 (17)

For further use we define the autonomous Lie derivative ( )
V

z if we hold t fixed in z (see, e.g., 

Marsden and Hughes ([6], p.96) as:  

  ... ... ...
... ......

...
...

(all upper indices)

+ +(all lower indices),

i
ik l ik l g gk l

mn o mn og gmn o

g
ik l

gn o m

v
z z v z

x x

v
z

x

 
   

 



v

 (18)

that is:  

L ( )= ( ).
t


 

v v

z
z z  (19)

3. Transformation Formula of the Energy Balance Equation Under Spatial Diffeomorphisms for 

a Dissipative Process  

As a point of departure in the examination of the transformation formula of the spatial energy 

balance for the case of a dissipative material, we consider the covariant theory of Marsden and  
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Hughes ([6], pp. 154–176); see also Yavari et al. [10]. As a first step we consider that balance of 

energy holds, that is (see Marsden and Hughes ([6], pp. 163–165):  

Assumption 3.1. Let tx  be a fixed motion of a dissipative body, given by the deformation mapping (1), 

which maps the reference configuration B onto the current configuration ( ) ,t B Sx  with boundary 

( ).t Bx  Let ( , )t x  denote the mass density, ( , )e tx the internal energy function per unit mass, ( , )tv x  

the spatial velocity, ( , )ta x  the spatial acceleration, ( , )tb x  the external body force per unit mass and 

( , , )tt x n  the Cauchy traction vector, where n is the unit normal to the boundary ( ).Bx  Then the principle 

of balance of energy for any nice subset U B  may be stated as an axiom as follows: 

   1
2( ) ( ) ( )

, , , ,
t t tx U x U x U

d
e dv dv da

dt
 


    v v b v t v  (20)

where dv, da are the volume and area elements respectively in the current configuration. By considering 
the mass density  as a 3-form (see Yavari et al. [10]), Equation (20) may be restated as follows:  

 1
2( ) ( ) ( )

, , , .
t t tx U x U x U

d
e da

dt
 


    v v b v t v  (21)

As a second step, unlike the classical elastic case, we assume that in the case of a dissipative material 

under the action of a spatial diffeomorphism, the dissipative mechanisms within the material will perform 

some work, a fact that will result in the appearance of some extra terms in the transformed balance of 

energy equation. We further assume that the dissipative mechanisms can be modeled as interactions of 
microscopic nature which result to a (body) microforce 0b  and a microtraction 0 ,t which act in the 

spatial configuration by performing the aforementioned work. A similar idea has been employed in the 

approach of Gurtin [20] investigating the nature of the configurational forces. This idea has been also 

implemented within the context of an infinitesimal theory of viscoplasticity by Gurtin [25] and has been 

discussed further within the context of the finite theory by Gurtin and Anand [26]. A straightforward 

application of this concept can be also found in the paper of Yavari et al. [10], where it is used as a 

basis for the derivation of the transformation formula of the material (referential) energy balance 

equation under the superimposition of arbitrary referential diffeomorphisms. Accordingly, our 

second basic assumption deals with the transformation formula of the energy balance equation and 

may be stated as follows: 

Assumption 3.2. For the fixed motion tx  which satisfies the balance of energy assumption, consider 

an arbitrary superimposed spatial diffeomorphism :  S S.t ξ  Postulate that during the new motion: 

,t t tx ξ x  (22)

densities, velocities, accelerations etc. are transformed according to the standard laws of the Cartan 

theory of spacetimes (see, e.g., Marsden and Hughes ([6], p. 163)) and the internal energy density 
( ( , , ))e e t x g  transforms tensorially, that is:  

( ),   ( , , ) ( , , ).t t e t e t  x ξ x x g x ξ g  (23)

Assume that there exists a microforce vector (field) 0b  and a microtraction vector (field) 0t , acting 

by performing work during the superposition of ,tξ  so that the balance of energy equation in the 

barred system has the following form:  
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 1
2( ) ( ) ( )

0 0( ) ( )

, , ,

, , ,

t t t

t t

x U x U x U

x U x U

d
e da

dt

da

 







   

 

  

 

v v b v t v

b w t w
 (24)

where 0 0,b t  are unknown vector fields, which are related to the dissipative properties of the material 

and must be determined. Note that in Equation (24) the velocity in the barred system is given as 
,t v ξ v w where tξ v  is the spatial velocity “as seen” in the barred system and 

t





tw


 is the 

velocity of .tξ  

Before determining the microforce system 0 0,b t  the following remarks are in order. 

Remark 3.3. Within this approach and by following Marsden and Hughes [6, p. 163] and Yavari et al. [10], 

we adopt the usual (metric-dependent) definition of traction. It is noted that in general the traction t is 

an exterior 1-form (see, e.g., Kanso et al. [11]; Mariano [27]), a consideration which leads to a 

metric-independent power defined as the natural pairing between the velocity vector field and the 

traction 1-form. 

Remark 3.4. It is noted that unlike the standard approaches to the bodies with internal structure (see, 

e.g., Mariano [27]; Yavari and Marsden [13]) in which an independent manifold M is attributed to the 
material substructure and usually the microforce 0b  and the microtraction 0t  are defined as 1-forms 

over its cotangent space (see, e.g., Mariano [27]) , in the present approach the microforce systems 0b  

and 0t  are defined in the spatial configuration of the body. The basic conceptual difference between 

these approaches and the present one, relies crucially in the origins of the system of microforces: within the 

context of bodies with substructure the microforce system is considered as existing throughout the 

deformation history of the body, while in the present approach the microforce system is considered as 
originating because of the superimposition of the spatial diffeomorphism .ξ  
Remark 3.5. An alternative approach to the concept of invariance can be provided by noting the natural 

connection which exists between conservation laws and the symmetries of a dynamical system (see, e.g., 

Gotay et al. [28]; Ganghoffer [24]). In particular, if the Euler-Lagrange equations of the system are 

satisfied and the Lagrangian is invariant under the action of some group of transformations, Noether’s 

theorem establishes the existence and the precise nature of the corresponding conserved quantities. 

Such an approach within the context of a dissipative body has been favored by Rahuadj et al. [29,30] 

and Mariano [27]. A formal comparison between the two approaches, namely the covariant energy 

balance and the one based on Noether’s theorem, can be found, for the case of a conservative material, 

in Yavari et al. [10]. Related is also and the very recent paper by Romero [31]. 
The determination of the unknown fields 0b  and 0t  can be performed as in the classical elastic case 

(see, e.g., Marsden and Hughes, ([6], pp. 166–167) Yavari et al., [10]; Panoskaltsis and Soldatos [14]) 
by evaluating Equation (24) at time 0t t  for which:  

0

0

(identity) and .
t t

t tt



 


ξ

ξ 1 w  
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The derivation to be presented here follows closely the one by Yavari et al. [10]. Accordingly, upon 
denoting by 1

2 , ,f e  v v  the scalar quantity multiplying the 3-form   in Equation (24) and by 

applying the transport theorem for k-forms (see, e.g., Marsden and Hughes [6, p. 121]) we derive: 

( ) ( ) ( )
L ( ) L L .

t t tx U x U x U

d
f f f f

dt
       v v v  (25)

Since * , v ξ v w  it will be: 

*L L . v vξ  (26)

The Lie derivative of f is determined as in Yavari et al. [10] as:  

L , ,f e v v a  (27)

where a  the spatial acceleration in the barred system. Equations (26) and (27) evaluated at 0t t  yield:  

0
L L ,

t t
 


v v  (28)

and: 

00

1
2L L L ( , ) : , .

t tt t

e
f e e




      

v v v wv v g v w a
g

  (29)

In light of Equations (25), (28) and (29) the left-hand side of Equation (24) at 0t t , can be written as:  

0

0

( ) ( )

( )

( : , )  

1
( , , )L ,

2

t t

t

t tx U x U
t t

x U

d e
f e

dt

f

 







     



   

 



w

v

g v w a
g

v w v w w


 (30)

where 1
2 , .f e  v v  By evaluating in a similar manner the left-hand side of Equation (21) and by 

subtracting the result from Equation (30), we derive: 

0 0

0 0

( ) ( )

0 0( ) ( ) ( ) ( )

1
( : , ) , )+ ( , ) , )L   

2

, ) , ) ( , ) , , ,     

t t

t t t t

t t t tx U x U

t t t tx U x U x U x U

e

da da

 

 

 

   


     



    

 

   

w vg v a a w a v w w w
g

v b b w b w t b w t w

 

(31)

where it has been assumed that 0 * 0b ξ b  and 0 * 0.t ξ t  To this end it is noted that 0b  and 0t  are 

quantities defined on ( ),t Ux  while 0b  and 0t  are the corresponding quantities defined on ( ).t Ux  From 

Equation (31) by using the identity 
0t t

  b a b a  (see Marsden and Hughes [6,p. 163]) we can derive: 

( ) ( )

0 0( ) ( ) ( ) ( )

1
: , , L

2

, , , , .

t t

t t t t

x U x U

x U x U x U x U

e
dv

da da

 

 
 

 
    

    

 

   

w vg v w w w
g

w b a t w b w t w

 (32)
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As it is noted in Yavari et al. [10], Cauchy’s theorem implies that , , , ,t w n w where   is the 

Cauchy stress tensor and n is the outward normal on ( ).tx U  In a similar manner there exists a microstress 

stress tensor   such as 0, , , .t w n w  

The traction terms in the right hand-side of Equation (32), by recalling the identity 
( . ) ( ). : :div div  w w s k     (see, e.g., Marsden and Hughes ([6] p. 167)), where ( )div   stands for 

the divergence operator, , ,

1
( )

2ab a b b as w w   for the spin and , ,

1
( )

2ab a b b ak w w  , 
1

( ),
2

 wk g  can be 

written as:  

( ) ( )

0( ) ( )

1
, ( , : ) ,

2
1

, ( , : ) .
2

t t

t t

x U x U

x U x U

da div da dv

da div da dv

 

   

  

   

 

 

w

w

t w w g

t w w g s

 

   
 (33)

Then in view of Equations (33) and by assuming conservation of mass, Equation (32) can be written as:  

( ) ( )

0( ) ( ) ( )

: ,

1
( ): ( ): ( ) , ,

2

t t

t t t

x U x U

x U x U x U

e
dv dv

dv dv div dv

 

  

 
     

   

 

  

w

w

g w a b
g

g s b w        

 (34)

from which by using the balances of linear and angular momenta, since U, w, wg  and s are arbitrary 

we can derive:  

0 0,div   b  (35)

T ,    (36)

2 .
e



g

    (37)

It is noted that if Equation (37) holds, Equation (36) is trivially satisfied because of the symmetry of 
  and g. Thus, the unknowns of the problem, namely the body force vector 0b  and the traction vector 

0 ,t have been determined as:  

0

0

1
,  

, , where 2 .

div

e







 

 


 



b

t n
g



   
 (38)

Therefore, we can state the following theorem:  

Theorem 3.6. If assumption 3.1 holds and the spatial energy density transforms tensorially (see 

Equation (23)), then for a dissipative material, under the superimposition of an arbitrary spatial 
diffeomorphism :  S S,t ξ  the spatial balance of energy obeys the following transformation formula:  
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 1
2( ) ( ) ( )

0 0( ) ( )

, , ,

, , ,

t t t

t t

x U x U x U

x U x U

d
e da

dt

da

 







   

 

  
 

v v b v t v

b w t w
 

where: 

0

0

1
[ ( 2 )],

2 , .

t

t

e
div

e
















 



b ξ
g

t ξ n
g

 


 (39)

4. On the Nature of the Microforce Systems 0b  and 0t  and its Relationship to Thermodynamics 

Our previous analysis besides establishing the transformation properties of the spatial balance of 

energy equation under superimposed spatial diffeomorphisms, it also determines a general material 

(constitutive) model, namely the model determined by the microforce balance equation (see Equation 

(35)) and the constitutive relation (37). Since this model is intended to be one of dissipative behavior, 

its compatibility with the second law of thermodynamics must be examined first. 

4.1. Compatibility with the Second Law of Thermodynamics 

As a first step, we note that once 0  is known the microbody force 0b  is also known from Equation (35) 

and therefore the (local) material state at the spatial point x is determined uniquely by the couple 

0( , ).g   Accordingly, it may be assumed that the corresponding state space D can be attached at the 

spatial point x, so that the set { }x D is a fiber of x and since it is an open subset of S D, it is a local 

manifold. Then, a local process within D may be identified by a parametrized curve 1 2:[ , ]C t t   D, so 

that for such a process it may be assumed that the second law of thermodynamics within the present 

(isothermal) setting can be expressed in the form of the (local) Clausius-Duhem inequality as:  

1
: L 0.

2
e  vg   (40)

Upon substitution of the expression for the stress tensor (see Equation (37)), the inequality (40) 

reduces to:  

1
: L 2 ) : L 0,

2

e e 
 

  
 v vg g
g g

   (41)

which yields: 

:L 0. vg  (42)

Therefore, when relation (40) holds as an inequality,   constitutes indeed the dissipative part of 

the (spatial) stress tensor .  Moreover, it is emphasized that in general (see Equation (37)), the stress 

tensor is decomposed additively in a conventional part given by the standard Doyle-Ericksen formula 
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( 2 )
e 
g

  and a non-conventional one obeying the dissipation inequality see (Equation (42)). As a 

next step, we propose some constitutive equations for .  

4.2. Some Constitutive Equations for   

We start with the general case, where Equation (42) holds as an inequality and therefore the  
non-conventional part   constitutes the dissipative part of the stress tensor. Without loss of generality, 

that is by imposing some restrictions in the memory of the material, a general constitutive equation 
for   may be written in the form:  

0 ( ,L )   with ( ,L ):L >0. v v vf g g f g g g  (43)

Then in view of Equation (43), the simplest constitutive equation for the microstress tensor may be 

stated in the form:  

0 ( ,L )L , v va g g g  (44)

where a is a positive definite function of its denoted arguments. The simple material model introduced 

by means of Equation (44), besides incorporating the essential features of (rate-dependent) dissipative 

response, does not require—but does not preclude—the existence of a yield surface, which constitutes 

the central concept of the theories of plasticity. In particular, a yield surface exists if the function 
a vanishes in a non-vanishing region of the state space defined by ( ) 0. g  Then, this region may be 

defined as the elastic range and its boundary constitutes the yield surface. Moreover, by following the 

ideas of the overstress (viscoplastic) models (see, e.g., Perzyna, [32]; see also Panoskaltsis et al. [17]) 

Equation (44) in the presence of a yield surface may be stated in the form:  

0 ( ,L ) ( ) L , v vg g g   (45)

where  is a (positive definite) function embodying the rate-dependent properties of the material and 

( )  is defined as:  

 0     for  0
( ) .

( ) for  0




 


   
 

Remark 4.1. An alternative expression for 0  may be derived by means of the principle of maximum 

plastic dissipation, which within the present setting may be formulated (see Le and Stumpf [33]) as:  

0
0 0 0  with ( ,L ) 0,

(L )

D
D D


  
 v

v

g g
g

  (46)

where 0D is the dissipation function which is assumed to be positive definite, convex and lower-semi-

continuous with respect to the argument L ,vg  and the symbol ( )   denotes the sub-differential of 

convex functions. 

Remark 4.2. It is noted that even though the microstress tensor 0  has not been included in the arguments 

of the energy density (see Equation (23)), it underlies the dissipative response of the material and 

accordingly may be considered as a non-conventional internal (hidden) variable. Moreover, since the 
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present approach does not consider either the existence of any primitive kinematical measure accounting 

for irreversible deformation, or any decomposition of the kinematical quantities in conservative (elastic) 

and dissipative (plastic) parts, but instead, it is based on the additive decomposition of the stress tensor 

(see Equation (37)), Equation (44)—or equivalently Equations (45) or (46)—it may be particularized 

by a non- conventional (viscoplastic) flow rule. 

4.3. A Non-Conventional Model of Conservative Response 

As a next step we study the particular case in which the Clausius-Duhem inequality holds as an 
equality. To this end, it is noted that Lvg  may be identified by a tangent vector in D at the current material 

state, so that the expression 0:L , vg   constitutes in the spatial configuration a 1-form (Pfaffian 

form). Then, the (dissipation) inequality (42) in D may be written as:  

0.   (47)

In the limiting case where the dissipation inequality (47) holds as an equality, the integrability of 

the Pfaffian form 0   (see, e.g., Szekeres, ([19], pp. 455–456)) asserts that there exist surfaces given 
in the state space by ( ) constant g , such as:  

0 ,
 


g

  (48)

where   is a positive constant. It is noted that in this case 0  depends only on g and accordingly  

the predicted response is conservative (elastic). More importantly, it is noted that if Equation (47) 
holds as an equality and if we subsequently evaluate it at time 0t t  with 

0
,

t t
ξ 1  since 

0
:L : L : L : ,

t t    
   v v w v wg g g g     it will be that : 0  wg  (at 0t t ). 

Consequently, in this case and if both the standard Doyle-Ericksen formula and the microforce 

balance equation (Equation (35)) hold, the energy balance equation will be covariant. This result can 

be summarized in the following proposition: 

Proposition 4.3. Assume that for a material with internal structure defined by a microforce vector field 

0b  and a microtraction vector field 0t  

(i) Assumption 3.1 holds. 

(ii) The spatial energy density transforms tensorially. 

(iii) Conservation of mass, balances of linear and angular momenta hold. 
(iv) The microforce system is self-equilibrated, that is 0 0,div   b  where the microstress 

tensor   is given as 0 .t n  

(v) The standard Doyle-Ericksen formula 2 )
e 
g

   holds.  

(vi) The response is conservative, that is :L 0. vg  

Then:  

(i) The balance of energy is spatially covariant. 
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(ii) There exists a scalar function   of the spatial metric g and a positive constant  , such that the 

microstress tensor is given as:  

0 .
 

 
g

  

Remark 4.4. From the present analysis we conclude that even though at the outset we had assumed 
that the system of microforces 0b  and 0t  is related to dissipative mechanisms within the material, in 

the course of development it turned out that may also exist identical non-conventional conservative 

mechanisms within the material. Clearly, these mechanisms are related to reversible changes in the 

material’s internal structure and result to a system of microforces identical to that appearing in the case 

of a dissipative material. 

4.4. On the Nature of the Force System 0b and 0t  

In this subsection we arrive at some essential comments regarding the nature of the (spatial) 
microforce systems 0b  and 0.t  

Our motivation for studying the transformation properties of the balance of energy equation in the 

spatial configuration, was our previous work in Panoskaltsis et al. [17], where it was realized that for  

a dissipative material - with the dissipative response being simulated by internal variables—the spatial 

balance of energy cannot be covariant. Subsequently, motivated by the works of Gurtin [20] and 

Yavari et al. [10], we assumed that the dissipative response, which is closely tied to changes in the 
internal structure of the material, may be modeled by the existence of the microforce systems 0b  and 0 ,t  

which act during the superposition of the spatial diffeomorphism .ξ  After employing the transformation 

properties of the balance of energy equation and with the help of the second law of thermodynamics, 

we concluded that these systems of forces, besides having their own balance equations, also contribute 

to the stress tensor. In this sense, these systems of forces are conceptually identical to the configurational 
force system considered by Gurtin [20], since both 0b  and 0 ,t  constitute “…basic primitive objects 

with their own force balance…” and are related to the evolution of the internal structure of the 

material, with the basic difference being that while in the present work the system of forces is defined 

in the spatial configuration, in Gurtin [20]—see also Yavari et al. [10]—it is defined in the reference 

configuration. Moreover, similar to the configurational force system of Gurtin, the present microforce 

system has its origins in a kinematical process different from the deformation mapping, since it 
appears because of the superimposition of the spatial diffeomorphism ,ξ which indeed is a different 

kinematical process from the deformation mapping. Nevertheless, after considering the constitutive 

restrictions imposed on the microstress tensor by the second law of thermodynamics, we concluded 
that the microstress tensor is work—conjugate to the external (deformation) agent L .gv  Such a result 

should not be surprising, since the deformation mapping is responsible for the deformation of the body, 

resulting in the part of the stress tensor given by the Doyle-Ericksen formula 2
e 


g

 , while the 

external agent L gv —with the notable exception of a relaxation process—is responsible for the 

changes of the internal structure of the material, resulting in the non-conventional part 0.  A further 

insight of this subtle point for the conservative case will be given in the forthcoming section, where the 
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changes in the internal structure of the material will be directly modeled by the changes of the material 

metric G “as seen” in the spatial configuration. 

To this end, it is interesting to note further that the results derived herein are in full agreement with our 

interpretation of spatial covariance in Panoskaltsis et al. [34], according to which “… all configurations of 

the body are practically indistinguishable and the equation forming is a matter of observation.” 

5. Physical Metric and Covariant Energy Balance 

The basic objective of this section is to provide a link between the microstress tensor 0  introduced 

and studied in the previous section and the intrinsic material “physical” metric G, by employing the 

invariance properties of the balance of energy equation. For this purpose, unlike the classical elastic 

case examined in Marsden and Hughes ([6], pp. 154–176) and Yavari et al. [10] and by following a 

suggestion given in Valanis [21]—see also Valanis and Panoskaltsis [22], Panoskaltsis et al. [16]—we 

assume that the internal energy density e , besides being a function of g, is also a function of the Finger 
deformation tensor c, that is ( , );e e g c  (recall that c is the push-forward of the material metric G, that 

is, it is the metric G “as seen” in the spatial configuration). We further assume that the balance of 

energy holds and that in this case is covariant. Accordingly, assumption 3.1 remains essentially 

unaltered, while assumption 3.2 may be restated as follows: 

Assumption 5.1. For the fixed motion tx  which satisfies the balance of energy, consider an arbitrary 

superposed spatial diffeomorphism :  S S.t ξ  Postulate that during the new motion: 

,t t tx ξ x  

densities, velocities, accelerations, etc. are transformed according to the standard laws of the Cartan 

theory of spacetimes, and the internal energy density e transforms tensorially, that is:  

( ),   ( , , , ) ( , , , ).t t e t e t   x ξ x x g c x ξ g ξ c  (49)

Assume further that the balance of energy is (spatially) covariant, that is  

 1
2( ) ( ) ( )

, , , .
t t tx U x U x U

d
e da

dt
 


    v v b v t v  (50)

Remark 5.2. It is noted that, unlike the standard approaches to bodies with internal structure (see, e.g., 

Mariano [27]; Yavari and Marsden [13]; Yavari [15]) the thermodynamic force work-conjugate to c, 

that is ,
e
c

 does not enter the expression of working. Accordingly, the proposed scheme resembles the 

standard internal variables approaches, in the sense that the material metric c in the spatial configuration 

does not enter explicitly the balance of energy equation. 

In order to exploit the invariance properties of the balance of energy equation we evaluate Equation (50) 
at 0t t  (Yavari et al. [10], Panoskaltsis and Soldatos [14]). Then, by applying the standard procedure 

(see Section 3), the left hand side of Equation (50) reads in view of Equation (49):  



Entropy 2014, 16 3249 

 

 

0
0

( : : , )  ( ) ( )

1
( , , )L .( ) 2

d e e
f ex U x U t tt tdt t t

fx Ut

 



 
          

   

g c v w aw wg c

v w v w w v


 (51)

By evaluating the left-hand side of Equation (51) as in Section 3 and subtracting the result from 

Equation (51) we derive: 

0 0

0 0

( )

( ) ( )

( : : , ) , ) 

( , , )+ , ,

t t t tx U

t t t tx U x U

e e

da


 

  

 
     

 

  



 

w wg c v a a w a
g c

v b b w b w t

 (52)

from which, by using the identity 
0

,
t t

  b a b a we derive:  

( ) ( ) ( )

1
( : : , )  ( , , )L  = , ,

2x U x U x U

e e
da 



 
      

   w w vg c w a b v w w w w t
g c

 (53)

which in turn, upon application of the divergence theorem, reads:  

( )

( ) ( )

( : : , )

1 1
( , , )L ( , : : ) ,

2 2

x U

x U x U

e e
dv

div dv





 
     

 

     



 

w w

v w

g c w a b
g c

v w w w σ w σ g σ s

 (54)

from which and since U, w, s are arbitrary we can derive:  

L 0, v  (55)

,div   σ b a  (56)
T ,σ σ  (57)

together with the additional identity: 

( )

1
[( ): : ] 0,

2tx U

e e
dv  

    
  w wg c
g c

  (58)

which, since wc  is also arbitrary, results in: 

1
0;   0,

2

e e  
  

 g c
  (59)

a case that must be excluded since we have assumed that e depends on c. Then, it must be considered 
that wg  and wc  must be somehow dependent. A rather simple relation expressing this dependence 

may be stated in the following (linear) form: 

( , ) : ,  w wc f g c g  (60)

where f is in general a tensorial function of the denoted arguments. Then, it can be proved (see Lemma 3.1 

in Panoskaltsis and Soldatos [13]) that Equation (60) holds, if c varies spatially with g according to:  

L ( , ) : Lv vc f g c g  (61)



Entropy 2014, 16 3250 

 

 

If this is the case, Equation (60) yields the following expression for the stress tensor: 

2 [ : ( , )].
e e  


 
f g c

g c
   (62)

As a further step we examine the compatibility of the stress tensor (62) with the second law of 

thermodynamics by evaluating the quantity 
1

: L ,
2

e  vg   that is:  

1
: L

2
1

( : L : L [2 [ : ( , )] : L ,
2

e

e e e e



 

 

   
 

   

v

v v v

g

g c f g c g
g c g c

 

  
 (63)

which in view of Equation (61) yields 
1

: L 0,
2

e  vg   which means that in this case the Clausius- 

Duhem inequality holds as an equality and accordingly the rate Equation (61) enforces a non-conventional 

conservative (elastic) response. 

Our results can be summarized in the following theorem:  

Theorem 5.3. If for an elastic (conservative) material with an internal energy density e of the form: 
( , , , ),e e t x g c   

(i) Assumptions 2.1 and 5.1 hold. 

(ii) The material metric in the spatial configuration in the course of deformation is related to the 

spatial metric by a relation of the form: 

L ( , ) : L ,v vc f g c g  

then:  

(i) Conservation of mass (Equation (55)), 

(ii) balance of linear momentum (Equation (56)), 

(iii) balance of angular momentum (Equation (57) 

hold, and  
(iv) the stress tensor is decomposed additively into the conventional part conv - given by the 

standard Doyle-Ericksen formula conv( 2 )
e 


g

 - and a non-conventional microstress tensor 

micro 2 : ( , ),
e 




f g c
c

  which is related to the internal structure of the material as well as its 

evolution in the course of deformation, as this (i.e., the evolution of the internal structure) is 

embodied by the changes in the material metric. Therefore, it holds that:  

conv micro .     (64)

Remark 5.4. It is emphasized that within the present structure, the covariant balance of energy approach 

does not yield explicitly any additional balance law for the microstress tensor. Nevertheless, an additional 

(micro) balance law does exist (see Panoskaltsis and Soldatos [14]; Panoskaltsis et al. [17]) and is 

given by the rate Equation (61), which may be identified as a balance type of equation between the 
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state variables g and c, the external agent Lvg  and the evolution of the material internal structure as 

the latter is embodied by L .vc  A further discussion on this subtle point may be found in Panoskaltsis 

and Soldatos [14], where an equation like (61) is considered as a first-order principle. 

Remark 5.5. The statement that Equation (61) enforces elastic response inevitably means that the 

internal energy function e  is a function of the spatial metric g alone, which in turn means that 

Equation (61) must be integrable. Accordingly, there must be restrictions imposed on the state function 

f in order to ensure integrability. The integrability conditions can be found by means of Frobenius 

theorem (see, e.g., Bishop and Goldberg ([4], pp. 151–153) and they have been analyzed in a material 

setting in Panoskaltsis and Soldatos [14]. 

As a further step we revisit the approach of Yavari et al. [10] within the present context in order to 

investigate the validity of the converse of Theorem 5.3. Accordingly, we assume that Equations (55)–(57) 

and (62) together with our basic assumptions 2.1 and 5.1 hold and we define the quantity:  

 1
2( ) ( ) ( )

( ) , , , .
t t t

t x U x U x U

d
E e da

dt
 


      ξ v v b v t v  (65)

Then the balance of energy equation will be covariant if ( ) 0.tE   

By extending the approach of Yavari et al. [10] we introduce the quantities:  

( ),  ( ),  ( ),  ( ).t t t t t t t t t

d

dt
     w ξ x W ξ w g ξ g c ξ c  (66)

By evaluating the integrals in the right-hand side of Equation (65) and involving mass conservation 

this equation yields: 

( ) ( )

( ) ( )

( ) (L ) ,

          , , .

t t

t t

t tx U x U t

t tx U x Ut t

E e

da

 







    

   

 
 

v g

g g

ξ a b v

a b W t v W


 (67)

By involving assumption 5.1, the integrand in the first integral can be evaluated by noting that: 

(L ) : : .t t tt t
t t

e e
e e   

    
 v W Wg c
g c

  (68)

On substituting from Equation (68) and applying the divergence theorem, Equation (67) reads:  

( )

( ) ( )

( ) ( ) ( : : )

           , ( , ) ,

t

t t

t t tt tx U
t t

t t t ttx U x Ut t

e e
E E Id dv

div dv





 
       

 

     



 

W W

Wg g

ξ g c
g c

a b W W g s


    


 (69)

where Id  stands for the identity transformation. By noting that ( ) 0E Id   and rearranging terms, 

Equation (69) now reads: 

( ) ( )

( )

( ) [ ( : : ) ]

           ( ( ), ) ,

t t

t

t t t t tt t tx U x U
t t

tx U t

e e
E dv dv

div dv





 
       

 

  

 



W W W

g

ξ g c g s
g c

a b W


   




 (70)

which after involving Equations (56), (57) and (62) it yields: 



Entropy 2014, 16 3252 

 

 

( )
( ) [ ( : ( , ) : : )] ,

t
t t tt tx U

t t

e e
E dv  

    
  W Wξ f g c g c
c c

 (71)

which means that the energy balance equation cannot be covariant, unless we make the further 

hypothesis that the rate equation (60) holds. 

Thus, the converse of Theorem 5.3 is valid and it is stated in the form: 

Theorem 5.6. (Converse of 5.3) If for the elastic (conservative) material with an internal energy 
density e of the form: ( , , , ),e e t x g c  

(i) Assumptions 2.1 and 5.1 hold. 

(ii) The material metric in the course of deformation is related to the spatial metric by a relation of 

the form: 

L ( , ) : L .v vc f g c g  

(iii) Equations (55)–(57) and (62) hold: 

then the spatial balance of energy equation is covariant. 

As a final step in our analysis, on the basis of an idea discussed within a different context by Le and 
Stumpf [33], we make a formal connection between the microstress tensor micro  derived herein and 

the Eshelby energy-momentum tensor (see, e.g., Eshelby [35]; Le and Stumpf [33]; Gurtin [20]; 

Epstein and Maugin [36]), “as seen” in the spatial configuration. 

There are two basic assumptions underlying the approach to be followed. The first is that the spatial 

energy density has the following special form: 

1
( , ),e 


 g b  (72)

where * *: ,T S T S R x xb is the inverse of c, that is the contravariant (reciprocal) material metric “as 

seen” in the spatial configuration. The second one is that mass conservation holds, i.e. (see, e.g., 

Marsden and Hughes ([6], pp. 96, 87): 

L 0 ., 0.i.e div
tv v
 

  


 (73)

Then, the rate of the internal energy density can be derived as:  

1 1
( L L ),e div
 

 
 

  
 v vv g b
g b

  (74)

which, by involving once more mass conservation in the form ,
J

div J
t





v  the known relation of the 

derivative of the determinant 
1

L : ,
2

J
J

t




 vc b  and the identity ,  , L L ,i.e. v vbc i b b cb    where i is 

the unit tensor in the spatial configuration, can be written as:  

1
L L L ,

2

e e
e e

 
  

 v v vb c g b b c
g b

  (75)

or equivalently: 
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1
L ( 2 )L ,

2

e e
e e

 
  
 v vg b i b c
g b

  (76)

so that the Lie derivative of f reads: 
1

L L ( 2 )L , .
2

e e
f e

 
   
 v v vg b i b c v a
g b

 (77)

In light of Equation (77), Equation (53) reads:  

0

0

( ) ( )

( )

1
( : ) : , )  

2

1
( , , )L ,

2

t t

t

t tx U x U
t t

x U

d e
f e

dt

f

 







       



   

 



w w

v

g b c v w a
g

v w v w w

 
 (78)

where the tensor ( 2 )
e

e 
  


i b

b
  may be identified as the Eshelby energy-momentum tensor “as 

seen” in the spatial configuration. Then by involving mass conservation and following an identical 

procedure we can derive the balance equations of linear and angular momenta together with the 

additional identity: 

( )

1 1
{[ ]: : } 0,

2 2tx U

e
dv 

    
 w wg b c
g

   (79)

from which, by applying analogous arguments as in the previous case, we can derive the following 

expression for the stress tensor: 

1
2 : ( , ),

2

e 



b f g c

g
    (80)

which means that in this case the microstress tensor is related to the spatial Eshelby energy-momentum 
tensor  as follows: 

micro

1
: ( , ).

2
 b f g c   (81)

Putting all these together, we can state the following corollary. 

Corollary 5.7. If for an elastic material with an internal energy density e of the form 
1

( , , , )e t


 x g b
 
and  

(i) Assumption 2.1 holds. 

(ii) The basic variables follow the standard laws of the Cartan theory of space times and the internal 
energy density transforms tensorially, that is ( ),t tx ξ x  ( , , , , ) ( , , , , ).e t e t   x g b x ξ ξ g ξ b  

(iii) The material metric 1 ( )c b  in the course of deformation is related to the spatial one by a 

relation of the form:  

L ( , ) : L ,v vc f g c g   

that is:  
1L [ ( , ) : L ] v vb b f g b g b  

(iv) Mass conservation holds. 
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Then:  

(i) Balance of linear and angular momenta hold. 
(ii) The stress tensor   is given by Equation (81) where   is identified as the Eshelby  

energy-momentum tensor defined in the spatial configuration as: ( 2 ).
e

e 
  


i b

b
  

6. Concluding Remarks 

The basic thrust of this paper resides in the determination of the transformation properties of the spatial 

balance of energy equation under the superposition of arbitrary spatial diffeomorphisms and the consequent 

repercussions of the second law of thermodynamics, as it is expressed by the local form of the Clausius-

Duhem inequality, in the response of continua with internal structure. In particular in this paper:  

(a) We have derived the transformation formula of the spatial balance of energy equation by 
considering a microforce system 0b and 0t , which acts during the spatial diffeomorphism by 

producing work. We have proved that this system of microforces has its own balance equation 

while the stress tensor is decomposed into a conventional part given by the standard  

Doyle-Ericksen formula and a non-conventional part, which in general is related to changes of 

the material internal structure in the course of deformation. 

(b) By means of the second law of thermodynamics we have proposed simple constitutive equations 

for the non-conventional part of the stress tensor. 

(c) We have concluded that this system of microforces, even though it is derived in the spatial 

configuration, is qualitatively indistinguishable from the configurational force system that acts 

in the reference configuration, since as in the latter system, it consists of a system of primitive 

objects with their own balance equations and is related to changes in the material internal 

structure via the non-conventional part of the stress tensor. 

Moreover, in the course of our development: 

(i) On the basis of the second law of thermodynamics and the integrability condition of a Pfaffian 

form, we have shown that the aforementioned force system can be also associated to (non-

conventional) conservative mechanisms within the material. 

(ii) We have explored further these non-conventional mechanisms by revisiting the covariant energy 

balance method within the context of the “physical” metric concept. In particular, we have 

shown that in the case where the changes in the material internal structure are modeled 

macroscopically by a rate equation describing the time evolution of the intrinsic material metric 

in the spatial configuration, the stress tensor, as in the previous case, is also decomposed into 

conventional and non-conventional (microstress tensor) parts, with the non-conventional part 

related to changes in the internal structure of the material. 

(iii) We have shown that, if mass conservation holds and the internal energy density has a particular 

form in terms of the mass density, the spatial metric and the contravariant (reciprocal) material 

metric, then the aforementioned non-conventional part of the stress tensor can be related to the 

Eshelby energy-momentum tensor “as seen” in the spatial configuration. 
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