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Abstract: Many thermodynamic relations involve inequalities, with equality if a process
does not involve dissipation. In this article we provide equalities in which the dissipative
contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence).
The processes considered are general time evolutions both in classical and quantum
mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating
a transport coefficient we show that indeed—at least in this case—the source of dissipation
in that coefficient is the relative entropy.
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1. Introduction

The distinction between heat and work, between the uncontrollable flow of energy of molecular
processes and the controllable flow of energy usable by an agent, underlies all of thermodynamics, and is
implicitly incorporated in the equation dE = d̄W+d̄Q. This distinction is defined by human subjectivity
and by the human technological ability to extract work from the flow of energy of microscopic processes.

On the other hand, assuming that the evolution is given by the fundamental laws of dynamics, classical
or quantum, one must represent the evolution of a system at a fundamental microscopic level by the
action of a unitary operator on a quantum state (density operator) in quantum situations or by the action
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of a symplectic operator on a classical state (probability distribution) in classical situations. The state of
the system evolves according to the Heisenberg equation of motion or according to the Liouville equation
respectively. An immediate consequence is that the entropy of the exact microscopic state of a system
that is isolated or is coupled only to an external source of work stays constant during the evolution.
In particular, the microscopic state cannot tend to an equilibrium state. Thus, the information content
of the exact microscopic state stays constant during the evolution. The problem is that in practice it
is impossible both to define the microscopic state and to follow its exact evolution. The definition
of the state and the representation of the exact evolution using unitary or symplectic dynamics are
thus untenable idealizations. Nevertheless, and this constitutes a paradox, these idealizations cannot
be ignored or dismissed, because it is precisely the difference between the exact evolution and its
standard approximations which explains and can be used to predict dissipative effects, both of energy
and information.

In thermodynamics, in kinetic theories or in stochastic dynamics, the exact microscopic state of a
system is replaced by an approximate or “coarse-grained” state and the corresponding exact evolution
is replaced by an evolution of the corresponding coarse-grained state (or, in standard thermodynamics
by a quasi-static or formal evolution). There are two main reasons for using these approximate states
and evolutions:

(1) As discussed, it is impossible—even in principle—to specify the exact state of a large system
and follow its evolution. An attempt at extremely high precision would modify the system, even
in a classical context (related to Maxwell’s demon). And it is even worse for quantum systems.
Moreover, this would be useless.

(2) Only slow variables (on the time scales of microscopic processes) can be measured with confidence
and stability. As a result, an observer can only describe the system as a state of minimal
information (or maximal entropy) compatible with the observed slow variables [1,2].

The coarse-grained state is thus a statistical data structure which summarizes at a given moment the
knowledge of the observer. The evolution of this coarse-grained state merely reflects the evolution
of the knowledge of the observer about the system. The observer cannot follow the microscopic
processes, but only the slow variables which can be measured and used, and as a consequence there
is a loss of information about the details of the microscopic processes; in the traditional language
of thermodynamics, entropy increases or is produced. The observer, reflecting a particular state of
knowledge (or more precisely, a lack of knowledge), describes the state of the system as a state of
minimal information (or maximal entropy) compatible with observation. Thus, entropy is not a kind
of substance flowing from one part of a system to another part or mysteriously produced internally by
the physical system, as is often suggested by many texts of thermodynamics or statistical physics: it
is only the observer’s partial inability to relate the exact microscopic theory to a reduced macroscopic
description in order to use the system as a source of useful work or information. This is what is measured
as an increase of entropy or by entropy production. The macroscopic state is the result of a statistical
inference (specifically, maximum entropy) for the given, observed, macroscopic variables (which are
the slow variables of the system [1,2]. This point of view on the nature of entropy was emphasized by
Jaynes, who observed [3,4], “The expression ‘irreversible process’ represents a semantic confusion. . . ”
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The difference between the exact evolution of the microscopic ideal state and the evolution of its
coarse-grained approximation is what is called “dissipation,” both of information content and of energy
or other “useful” variables. Standard thermodynamics uses the maximal coarse graining of equilibrium,
and the idealized evolution is not modeled explicitly, so dissipation can be taken into account only by
inequalities. For more detailed coarse-graining (as in hydrodynamics, Boltzmann’s equation, kinetic
theories or stochastic thermodynamics) one can obtain an estimate for the dissipative effects, for
example, by the calculation of transport coefficients.

In this article, our main purpose is to prove that the relative entropy term between the initial and
final states measures dissipation. In our approach, “dissipation” is defined as the difference between the
maximal work that the physicist thinks could be extracted from a system when using the thermodynamic
or quasi-static theory to make predictions, and the work that is actually extracted because the system
is evolving according to the exact dynamics, classical or quantum, independently of what the physicist
thinks (see also our use of relative entropy in [5] and [6], where the context was more limited [7]).
Moreover, in the present context we find that the relative entropy terms are proportional to the square
of the interaction energy. In all standard theories, dissipative effects are measured by the transport
coefficients of energy or momentum or concentration of chemical species. Thus, we need prove that the
relative entropy allows the calculation of transport coefficients. Indeed, we show below that the relative
entropy terms provide the calculation of the thermal conductivity between two general quantum systems,
initially at thermal equilibrium at different temperatures. This is a kind of Fourier law, except that we
do not suppose a linear regime, so that the temperature dependence is more complicated than simple
linearity. Moreover, our exact calculation of the transport coefficient shows that it is indeed proportional
to the square of the interaction energy, which confirms that for vanishingly small interaction energy no
transfer occurs in finite time. In other words, no power or finite rate of information flow can be extracted
from a system if one does not have at the same time dissipative effects.

In the following material, we first consider a system comprised of two components, A and B. We
make no specific hypotheses on the size of the systems, and we do not introduce thermal reservoirs. Thus,
the identities we derive are in effect exact tautologies. In Sections 3 to 5, we present several identities. We
here mention two examples: (1) a derivation of the Brillouin-Landauer estimate of the energy necessary
to change the information content of a system; (2) an estimate of the work that can be extracted from a
two-part system in interaction with an external source of work in terms of non-equilibrium free energies
and relative entropy of the state before and after the evolution. Similar identities were also obtained
recently by Esposito et al. [8], Reeb and Wolf [9], and Takara et al. [10] Continuing, we study the effect
of an external agent on an (otherwise) isolated system; again we obtain an identity relating the work
to the difference of internal (not the free) energies along with the usual dissipative terms. Then, we
derive the relation between the relative entropy and the heat conductivity in a quantum system. Finally,
we define a general notion of coarse-graining or reduced description, which includes the usual notions.
In some of our examples one or both systems are initially at thermal equilibrium, but only the initial
temperatures appear explicitly in the definition of the non-equilibrium free energies. The latter are no
longer state functions because they depend explicitly on the initial temperature and not on the actual
effective temperature. No coarse graining by an effective final or intermediate thermal state is used, and
neither system is a reservoir.
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2. Notations and Basic Identities

2.1. States and Entropy

Many results will be valid both in classical and quantum contexts. We denote by ρ either a probability
distribution function over a classical phase space, or a density matrix in the quantum case. We denote by
Tr either the integral on the phase space, or the trace operation. Thus ρ is a positive quantity and satisfies
Tr ρ = 1. The entropy of ρ is

S(ρ) = −Tr ρ log ρ . (1)

It is defined up to a multiplicative constant. (Classically ρ should be divided by a dimensional constant
to render it dimensionless.)

The relative entropy (see [11]) is defined by

S(ρ|ρ′) = Tr (ρ (log ρ− log ρ′)) , (2)

where ρ and ρ′ are states.
One has

S(ρ|ρ′) ≥ 0 , (3)

and S(ρ|ρ′) does not depend on the units in phase space. Moreover S(ρ|ρ′) = 0 if and only if ρ = ρ′.
Writing S(ρ|ρ′) as −Tr ρ log ρ′ − (−Tr ρ log ρ), suggests the following interpretation: Suppose the

true state is ρ, but the observer thinks that the state is ρ′. S(ρ|ρ′) is then the true average of the missing
information minus the estimate of the missing information.

2.2. The Basic Identity

If we add and subtract S(ρ′) in the second member of Equation (2), we obtain the basic identity

S(ρ|ρ′) = S(ρ′)− S(ρ)− Tr ((ρ− ρ′) log ρ′) . (4)

Most of our results follow from this identity.
When ρ′ is a thermal state at (inverse) temperature β [12],

ρ′ = ρβ =
e−βH

Z(β,H)
, (5)

where
Z(β,H) = Tr e−βH (6)

is the partition function. With ρ′ = ρβ , the identity (4) reduces to

S(ρ|ρβ) = S(ρβ)− S(ρ) + β Tr ((ρ− ρβ)H) . (7)

Here H is a given function or operator.
Defining the free energy of state ρ by

F (ρ,H) = Tr (ρH)− 1

β
S(ρ) , (8)
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we obtain
S(ρ|ρβ) = β (F (ρ,H)− F (ρβ, H)) , (9)

and F (ρβ, H) is the equilibrium free energy related to the partition function by

Z(β,H) = exp (−βF (ρβ, H)) . (10)

Equation (9) is important for applications, because its right hand side can be related to energy dissipation
(up to the factor β), which gives a clear physical meaning to the relative entropy (see Section 3).

2.3. Evolution Operators and Entropy

We assume that the system (classical or quantum) evolves under the action of an arbitrary operator U
(symplectic or unitary). If ρ is a state, we denote by ρ(U) the new state after the evolution U .

Entropy is conserved by the evolution

S(ρ(U)) = S(ρ). (11)

For example, in the quantum case, we have ρ(U) = UρU †, where U is the propagator: idU
dt

= [H,U ],
U |t=0 = 1, with H a possibly time-dependent Hamiltonian.

If φ(ρ) is a functional of ρ which evolves with U , and φ(ρ(U)) is the functional after evolution of ρ,
we denote the variation of φ(ρ) after the evolution U in the following way

δ(U)(φ(ρ)) = φ(ρ(U))− φ(ρ) . (12)

Remark 1: Many of our results are valid for a general evolution U which is not symplectic or unitary,
for example stochastic evolution.

3. Two Systems in Interaction

A basic procedure in thermodynamics is to consider the evolution and properties of an otherwise
isolated two-part system. Although it is often the case that the overall system conserves energy, for the
subsystems more general behavior is often seen.

3.1. Hypotheses

We assume that the system is formed of two parts, A and B, in interaction. At time-0, the state is a
product state

ρ0 = ρA,0 ⊗ ρB,0 . (13)

After the evolution U , the state is ρ(U) and we denote by ρ(U)
A and ρ(U)

B its marginals,

ρ
(U)
A = TrB ρ

(U) and ρ
(U)
B = TrA ρ

(U) , (14)

which are then states onA andB respectively. We also assume that there is a quantityH that is conserved
by the evolution and H has the form

H = HA +HB + VAB , (15)
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whereHA andHB are quantities depending only onA andB respectively and VAB is an interaction term.
Then, if we denote

E(ρ) = Tr (ρH) = EA(ρ) + EB(ρ) + EV (ρ) (16)

EA(ρ) = Tr (ρHA) = Tr (ρAHA) (17)

EB(ρ) = Tr (ρHB) = Tr (ρBHB) (18)

EV (ρ) = Tr (ρVAB) , (19)

our hypothesis is that
δ(U(t))E(ρ) ≡ E(ρ(U))− E(ρ0) = 0 . (20)

In particular this is the case if U is time-evolution with Hamiltonian H .

Remark 2: For this situation, certain results are also valid without the assumption that the evolution U
preserves the energy H .

If ρ is a state corresponding to a system formed of two parts, A and B, and ρA and ρB are its marginals
(as in Equation (14)), then the relative entropy S (ρ|ρA ⊗ ρB) is the same as the mutual information of
the associated distributions. It can be interpreted as the amount of information in ρ that comes from the
fact that A and B are in interaction (see [11]). This quantity will appear in many of our relations below
(e.g., Equation (28)) as part of the dissipation.

3.2. Relation between a State and Its Marginals

Assuming Equation (13) (that the initial state is a product state), one has the identity

δ(U(t))S(ρA) + δ(U(t))S(ρB) = S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) . (21)

Indeed, using the conservation of the entropy of ρ during the evolution U ,

δ(U(t))S(ρA) + δ(U(t))S(ρB) = S(ρ
(U)
A ) + S(ρ

(U)
B )− S(ρ0)

= S(ρ
(U)
A ) + S(ρ

(U)
B )− S(ρ(U)) = S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) .

This is because one evidently has −Tr
(
ρ(U) log ρ

(U)
A

)
= −Tr

(
ρ

(U)
A log ρ

(U)
A

)
. Note that Equation (21)

requires that U preserve the entropy. One has also the well-known inequality

S(ρ(U)) ≤ S(ρ
(U)
A ) + S(ρ

(U)
B ) , (22)

which is a particular case of
S(ρ) ≤ S(ρA) + S(ρB) (23)

for any state ρ.
Note that the stronger result, Equation (21), is obtained by retaining the relative entropy term in this

equation. The same remark will apply in most of the following results.
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3.3. The Case Where A is Initially in a Thermal State

At time 0 we take ρA,0 to be thermal with temperature βA,

ρA,0 = ρA,βA =
e−βAHA

ZA(βA)
, (24)

where ZA(βA) = ZA(βA, HA) is the partition function, (6). From Equation (7) with ρ → ρ
(U)
A and

ρβ → ρA,βA , we deduce (note that this requires that HA be independent of time)

δ(U(t))S(ρA)− βAδ(U(t))EA(ρA) = −S(ρ
(U)
A |ρA,βA) , (25)

and as a consequence
δ(U(t))S(ρA)− βAδ(U(t))EA(ρA) ≤ 0 . (26)

The last two equations do not require that U be a unitary evolution conserving the entropy, nor that it
conserve the energy.

Remark 3: This inequality can be found in [13] as an unnumbered equation. Its consequences were not
deduced in that reference.

Remark4: Note that it is the initial temperature that appears in Equations (25) and (26). Moreover, ρ(U)
A

is not in general an equilibrium state.

Suppose that B starts in an arbitrary initial state ρB,0, while A begins in the thermal state ρA,βA .
Combining Equations (21) and (25), we obtain

βAδ
(U(t))EA(ρ) + δ(U(t))S(ρB) = S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) + S(ρ

(U)
A |ρA,βA) . (27)

The last equation requires that U preserve entropy, since that feature is used in the derivation of
Equation (21). It also remains valid if the Hamiltonian of B, HB, depends on an external parameter
varying with time, so thatB receives work from an external agent. This is because the entropy-preserving
property only depends on U being unitary (or symplectic). On the other hand, HA should be time
independent (see the parenthetical remark before Equation (25)). Then if U conserves energy

βA
(
δ(U(t))EB(ρ) + δ(U(t))EV (ρ)

)
= δ(U(t))S(ρB)−

[
S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) + S(ρ

(U)
A |ρA,βA)

]
. (28)

These relations imply the following inequalities:

(1) If U preserves entropy, even if HB depends on an external parameter varying with time

βAδ
(U(t))EA(ρ) ≥ −δ(U(t))S(ρB) . (29)

(2) If U conserves entropy and the total energy, one has

βA
(
δ(U(t))EB(ρ) + δ(U(t))EV (ρ)

)
≤ δ(U(t))S(ρB) , (30)
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with the following interpretations. Suppose U conserves the entropy; then we couple a system B

(initially in an arbitrary state ρB,0) to system A (initially in thermal equilibrium) and that we want to
lower the entropy of B so that δ(U(t))S(ρB) ≤ 0. Then, the energy of A must increase by at least

δ(U(t))EA(ρ) ≥ 1

βA
|δ(U(t))S(ρB)| (31)

even if B receives work from an external source (so that HB depends on an external parameter).
Moreover, if the total energy is conserved, the sum of the energy of B and the coupling energy must
decrease by at least:

δ(U(t))EB(ρ) + δ(U(t))EV (ρ) ≤ 1

βA
δ(U(t))S(ρB) < 0 . (32)

Thus lowering the entropy of a system B, coupled to a system initially at equilibrium, costs transfers
of energy from B to A or to the interaction energy; thus the sum of B’s energy and the interaction
energy must decrease, but B’s energy alone need not decrease. This is a result analogous to those of
Brillouin [14] and Landauer [15] (reprinted in Leff and Rex [16]), even if system B receives work from
an external source. But note again that only the temperature βA appears. This is the initial temperature
at the beginning of the evolution U , so that system A is not necessarily a thermal bath, because its
temperature may vary during the evolution U .

3.4. The Case of Equality in Equation (31)

It is important to study the case where the previous inequalities are changed into equalities, because
this occurs if and only if strong conditions are verified: expressing these conditions is one of the
advantages of our approach.

Equation (31) was derived under the hypothesis δ(U)S(ρB) < 0. Then by Equation (27) one has
S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) = S(ρ

(U)
A |ρA,βA) = 0. This implies ρ(U)

A = ρA,βA and ρ(U) = ρ
(U)
A ⊗ ρ

(U)
B .

Because ρ(U)
A = ρA,βA , δ(U)EA(ρA) = 0, so by Equation (31), δ(U)S(ρB) = 0. But we could also

derive δ(U)S(ρB) = 0 from Equation (21), because δ(U(t))S(ρA) = 0 and S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) = 0.

3.5. Both Systems A and B are at Equilibrium

Assume that A and B are initially at thermal equilibrium at different temperatures. Then, one has

(1) For a general evolution

δ(U(t))S(ρA)− βAδ(U(t))EA(ρA) = −S(ρ
(U)
A |ρA,βA) , (33)

δ(U(t))S(ρB)− βBδ(U(t))EB(ρB) = −S(ρ
(U)
B |ρB,βB) . (34)

(2) If U conserves entropy

δ(U(t))S(ρA) + δ(U(t))S(ρB) = S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) . (35)

(3) If U conserves energy

δ(U(t))EA(ρA) + δ(U(t))EB(ρB) + δ(U(t))EV (ρ) = 0 . (36)
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Then, we conclude

(A) If U conserves entropy: Combining Equations (33), (34), and (35) yields

βAδ
(U(t))EA(ρA) + βBδ

(U(t))EB(ρB) = S(ρ(U)|ρA,βA ⊗ ρB,βB) , (37)

It is easy to check directly that

S(ρ(U)|ρA,βA ⊗ ρB,βB) = S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) + S(ρ

(U)
A |ρA,βA) + S(ρ

(U)
B |ρB,βB) .

Thus

S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) = δ(U(t))S(ρA) + δ(U(t))S(ρB)

= βAδ
(U(t))EA(ρA) +βBδ

(U(t))EB(ρB) −
[
S(ρ

(U)
A |ρA,βA) + S(ρ

(U)
B |ρB,βB)

]
. (38)

This last identity implies the Clausius-like inequality

0 ≤ δ(U(t))S(ρA) + δ(U(t))S(ρB) ≤ βAδ
(U(t))EA(ρA) + βBδ

(U(t))EB(ρB) . (39)

(B) For a general evolution U : Combining Equations (33) and (34)

δ(U(t))EA(ρA) + δ(U(t))EB(ρB) = TA

[
δ(U(t))S(ρA) + S(ρ

(U)
A |ρA,βA)

]
+TB

[
δ(U(t))S(ρB) + S(ρ

(U)
B |ρB,βB)

]
, (40)

and thus
δ(U(t))EA(ρA) + δ(U(t))EB(ρB) ≥ TAδ

(U(t))S(ρA) + TBδ
(U(t))S(ρB) . (41)

This may be viewed as an inequality for free energies of A and B at the respective temperatures TA and
TB. Note again that during the time evolution neither A nor B need remain in thermal states.

3.6. Case of Equality in (39) (2nd) and (41)

(A) U conserves entropy. Equality in Equation (39) implies immediately that ρ(U)
A = ρA,βA and ρ(U)

B =

ρB,βB , in which case the energy of A and the energy of B have not changed and δ(U(t))S(ρA) =

δ(U(t))S(ρB) = 0. From the first equality in Equation (38) one has

ρ(U) = ρ
(U)
A ⊗ ρ

(U)
B = ρA,βA ⊗ ρB,βB , (42)

and one deduces that the state ρ has not changed.

(B) General evolution U . If one has equality in Equation (41), it follows from Equation (40) the same
results as above: the state ρ has not changed.
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3.7. Interaction Energy and Relative Entropy

It is often assumed that the interaction energy between the parts of the complete system can be
neglected but, obviously, if this were exactly true the subsystems would evolve independently. Of
course, an interaction can be small but nevertheless have significant impact when it persists for long
times. However, there are cases where even for short times the interaction cannot be neglected. Assume
then that U conserves entropy and energy. Divide Equations (33) and (34) by βB and add; then use the
conservation of energy Equation (36) to eliminate δ(U)EB(ρ) and deduce after some calculations

− δ(U(t))EV (ρ) =

(
1− βA

βB

)
δ(U(t))EA(ρA) + TBS(ρ(U)|ρA,βA ⊗ ρB,βB) , (43)

so that

− δ(U(t))EV (ρ) ≥
(

1− βA
βB

)
δ(U(t))EA(ρA) . (44)

In case of equality in Equation (44), one deduces that ρ(U) = ρA,βA ⊗ ρB,βB so that the state has not
changed and δ(U)EA(ρA) = δ(U)EV (ρ) = 0. Moreover if δ(U)EA(ρA) is positive and TA is larger than
TB, the interaction energy V is necessarily not zero and δ(U)EV (ρ) is negative.

Finally, if one could neglect the interaction energy, Equation (44) implies that energy flows from the
hot to the cold system.

3.8. The Case βA = βB

Again assume that U conserves both entropy and energy. From Equation (43) and the conservation of
energy, one deduces

− δ(U(t))EV (ρ) = δ(U(t))EA(ρA) + δ(U(t))EB(ρB) =
1

β
S(ρ(U)|ρA,βA ⊗ ρB,βB) , (45)

so that δ(U)EV (ρ) ≤ 0. Thus when A and B are initially at thermal equilibrium at the same temperature,
the sum of the energies of A and B can only increase at the expense of the interaction energy [17].

4. Two Systems in Interaction With a Work Source

The problem of converting heat into work, first treated by Carnot, was at the origin of classical
thermodynamics. Here, to address this issue, we explicitly introduce a work source interacting with
two systems A and B, before focusing in Section 5 on the interaction of one system with a work source.

4.1. Hypotheses

We consider two systems A and B in interaction, with system A coupled to a work source. We
represent the action of the work source by parameters, collectively denoted by λ, so that HA = HA(λ).
Thus we assume that HB and V are independent of λ. The action of the work source is given by an
evolution of the parameters λ(t) imposed by an external agent. The total system A+ B has a unitary or
symplectic evolution U(t) depending explicitly on time-t. Clearly, U(t) conserves entropy but does not
conserve energy, and instead one has the identity

δ(U(t))EA(ρ) + δ(U(t))EB(ρ) + δ(U(t))EV (ρ) + δ(U(t))W = 0 , (46)
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with the following notation

δ(U(t))EB(ρ) = Tr
(
(ρ(U) − ρ0)HB

)
(47)

δ(U(t))EV (ρ) = Tr
(
(ρ(U) − ρ0)HV

)
(48)

δ(U(t))EA(ρ) = Tr
(
ρ(U)HA(λ(U))− ρ0HA(λ0)

)
. (49)

Here, λ0 is the initial value of the parameter λ and λ(U) is its final value at the end of the evolution
U , this being an abbreviation for U(t), t being the final time. Note that Equation (49) extends the
definition given near Equation (12). Such an extension is needed because we now allow changes in the
Hamiltonian, represented by the additional variable λ. Equation (46) defines the work δ(U)W , which is
taken to be positive if the source receives work from the system A+B. (Note that this is opposite to the
usual convention which was implicit in the opening paragraph of this paper.)

We assume that initially A and B are in independent thermal states, but A depends on the work source
parameter λ. The complete initial state at time 0 is thus

ρ0 = ρA,βA,λ0 ⊗ ρB,βB , (50)

with

ρA,βA,λ0 =
e−βAHA(λ0)

ZA(βA, λ0)
, (51)

ZA(βA, λ0) = Tr
(
e−βAHA(λ0)

)
, (52)

and
ZA(βA, λ0) = exp (−βAFA(βA, λ0)) . (53)

Here, FA(βA, λ0) denotes the equilibrium free energy for A. For a general state ρ of a system with energy
H we define the non equilibrium free energy of the state ρ at temperature T to be

F (β, ρ) = Tr(ρH)− 1

β
S(ρ) . (54)

In particular, for subsystem A one can define the non equilibrium free energy of the state ρ
(U)
A at

temperature βA to be

F
(U)
A (βA) = FA(βA, ρ

(U)
A ) = Tr

(
ρ

(U)
A HA(λ(U))

)
− 1

βA
S(ρ

(U)
A ) . (55)

In both of the above formulas temperature is not necessarily related to the state ρ.

4.2. Identities for the Work

We next establish the following two relations

δ(U(t))W = −δ(U(t))EV (ρ)− Tr
(
ρ

(U)
A

[
HA(λ(U))−HA(λ0)

])
−
(

1− βB
βA

)
δ(U(t))EB(ρ)− 1

βA
S(ρ(U)|ρA,βA ⊗ ρB,βB) (56)
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and

δ(U(t))W = −δ(U(t))EV (ρ)−
(

1− βB
βA

)
δ(U(t))EB(ρ) +

(
FA(βA, λ0)− F (U)

A

)
− 1

βA

(
S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) + S(ρ

(U)
B |ρB,βB)

)
, (57)

with F
(U)
A the non equilibrium free energy of ρ(U)

A calculated at the initial temperature TA, namely
Equation (55), F (U)

A = TrA(ρ
(U)
A HA(λ(U))− TAS(ρ

(U)
A ). We will comment on these relations in Par. 4.3

Remark 5: Here the free energy of Equation (55) is not a state function, because it is calculated at
the initial temperature of A. Note our notation: When we write FA(βA, λ0) this is the equilibrium free
energy of the thermal state of A at temperature βA and external parameter λ0. When we write F (U)

A we
mean the non-equilibrium free energy, as defined above.

Proof of Equation (56): One again starts from the fundamental identities Equations (7) and (25)

δ(U(t))S(ρB)− βBδ(U(t))EB(ρ) = −S(ρ
(U)
B |ρB,βB) , (58)

δ(U(t))S(ρA)− βA TrA

(
(ρ

(U)
A − ρA,βA,λ0)HA(λ0)

)
= −S(ρ

(U)
A |ρA,βA,λ0) , (59)

and
δ(U(t))S(ρA) + δ(U(t))S(ρB) = S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) . (60)

Note that Equation (59) is just Equation (7) with the substitutions ρ → ρ
(U)
A and ρB → ρA,βA,λ0 .

Therefore it contains the initial HA(λ0) (referring to ρB → ρA,βA,λ0), not the final one. Equation (60) is
likewise a rewriting of Equation (35).

Now add Equations (58) and (59) and subtract Equation (60), using the fact that

S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) + S(ρ

(U)
A |ρA,0) + S(ρ

(U)
B |ρB,0) = S(ρ(U)|ρA,0 ⊗ ρB,0) (61)

(this is the same as our unnumbered equation between Equations (37) and (38)) we obtain

− βBδ(U(t))EB(ρ)− βA TrA

(
(ρ

(U)
A − ρA,βA,λ0)HA(λ0)

)
= −S(ρ(U)|ρA,0 ⊗ ρB,0) . (62)

Conservation of energy Equation (46) gives

δ(U(t))W = −δ(U(t))EV (ρ)− δ(U(t))EB(ρ)− TrA

(
ρ

(U)
A

(
HA(λ(U))−HA(λ0)

))
−TrA

((
ρ

(U)
A − ρA,βA,λ0

)
HA(λ0)

)
. (63)

We eliminate the second trace in the right hand side of Equation (63) using Equation (62), multiply by
TA to obtain Equation (56).

Proof of Equation (57): In Equation (56), we replace the relative entropy term, using

S
(
ρ

(U)
A

∣∣ρA,βA,λ) = −S(ρ
(U)
A ) + βA Tr

(
ρ

(U)
A HA(λ0)

)
+ logZA(βA, λ0)

= −S(ρ
(U)
A ) + βA Tr

(
ρ

(U)
A HA(λ0)

)
− βAFA(βA, λ0) , (64)

and use the definition of F (U)
A of Equation (55)

− 1

βA
S
(
ρ

(U)
A

∣∣ρA,βA,λ0

)
− Tr

(
ρ

(U)
A

(
HA(λ(U))−HA(λ0)

))
= FA(βA, λ0)− F (U)

A . (65)
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4.3. Inequalities for the Work

From the identities of Equations (56) and (57), we deduce immediately corresponding inequalities

δ(U(t))W ≤ −δ(U(t))EV (ρ)− TrA

(
ρ

(U)
A

(
HA(λ(U))−HA(λ0)

))
−
(

1− βB
βA

)
δ(U(t))EB(ρ) (66)

and

δ(U(t))W ≤ −δ(U(t))EV (ρ)−
(

1− βB
βA

)
δ(U(t))EB(ρ) +

(
FA(βA, λ0)− F (U)

A

)
. (67)

The interpretation of inequality (67) is straightforward. If one can neglect the interaction energy, and if
TA = TB, one gets an analogue of the familiar thermodynamic inequality giving an upper bound between
the work received by the work source and the variation of the free energy of A,

δ(U(t))W ≤ FA(βA, λ0)− F (U)
A . (68)

Note that this relation is not restricted to cycles, nor to exchanges with thermal baths (which would stay
in their initial thermal states).

Remark 6: Equation (57) contains much more information than inequalities Equations (67) and (68),
since it expresses the difference between the maximum work that can be delivered by system A and the
work effectively extracted from A, which is the energy dissipated in the process. It is expressed in terms
of relative entropies, and it will be shown in Section 6 that it can be explicitly estimated, which yields a
calculation of transport coefficients from first principles.

4.4. The Case of Equalities in Equations (66) and (67)

If one has equality in Equation (66), the relative entropy of Equation (56) must be equal to 0,

S
(
ρ(U)

∣∣ ρA,βA ⊗ ρB,βB) = 0 , (69)

so ρ(U) = ρA,βA ⊗ ρB,βB and the final state has come back to its initial value. If we have equality in
Equation (67), both relative entropies of Equation (57) are equal to 0. In this case ρ(U)

B has come back to
its initial value ρB,βB and δ(U)EB(ρ) = 0. Then, one has

δ(U(t))W = −δ(U(t))EV (ρ) + FA(βA, λ0)− F (U)
A . (70)

4.5. Case Where A is not Initially in Thermal Equilibrium.

We shall now assume that the initial state is

ρ0 = ρA,0 ⊗ ρB,β0 , (71)

ρA,0 being a general state.
The following identity also holds:

− δ(U(t))W = δ(U(t))FA(βB, ρA) + δ(U(t))EV (ρ) + TB

(
S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) + S(ρ

(U)
B |ρB,βB)

)
. (72)
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This equation, true for any initial state ρA, can be found in [8,18]. Note the temperature of B appearing
in the non equilibrium free energy of A

FA(βB, ρA) = EA(ρA)− TBS(ρA) . (73)

If no work is performed, Equation (72) reduces to Equation (28) upon exchanging the labels A and B.

Proof: Using S(ρ(U)) = S(ρ0) and the definition of the thermal state, one has

S(ρ(U)|ρ(U)
A ⊗ρ

(U)
B )+S(ρ

(U)
B |ρB,βB) = −S(ρA,0)−S(ρB,βB)+S(ρ

(U)
A )+βBEB(ρ

(U)
B )+logZB(βB) . (74)

Then,
logZB(βB) = −βBEB(ρB,βB) + S(ρB,βB) , (75)

and Equation (74) becomes

S(ρ(U)|ρ(U)
A ⊗ ρ

(U)
B ) + S(ρ

(U)
B |ρB,βB) = δ(U(t))S(ρA) + βBδ

(U(t))EB(ρB) . (76)

Using the conservation of energy, Equation (46), one obtains

δ(U(t))W = −δ(U(t))EV (ρ)− δ(U(t))FA(βB, ρA)− TB
[
S(ρ(U)|ρ(U)

A ⊗ ρ
(U)
B ) + S(ρ

(U)
B |ρB,βB)

]
. (77)

Here
δ(U(t))FA(βB, ρA) = δ(U(t))EA(ρA)− TBδ(U(t))S(ρA) (78)

is the variation of the non equilibrium free energy of A calculated at the initial temperature TB of B and

δ(U(t))EA(ρA) = TrA

(
HA(λ(U))ρ

(U)
A

)
− TrA (HA(λ0)ρA,0) . (79)

In particular
δ(U(t))W ≤ −δ(U(t))EV (ρ)− δ(U(t))FA(βB, ρA) , (80)

which gives a general upper bound for the work production from heat exchanges between an arbitrary
system A and a system B initially at equilibrium (not necessarily a heat bath). In this relation, equality
is realized if and only if the two relative entropy terms of Equation (77) are zero, which means that

ρ
(U)
B = ρB,βB and ρ(U) = ρ

(U)
A ⊗ ρB,βB . (81)

Remark 7: By convention, a thermal bath is in a thermal state which is assumed to remain constant
during the evolution. Our system B is not a thermal bath in this sense; its state varies during the evolution.

5. A System Coupled Only to an External Work Source

While Carnot and many others primarily considered model machines exchanging heat with several
reservoirs, new thermodynamic relations have recently been announced [19] concerning exchanges of a
single system with a work source. We now focus on this case.
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5.1. Hypotheses

We consider a system coupled only to an external work source, so that the Hamiltonian of the system
is H(λ).

At time t = 0, the state of the system is supposed to be a thermal state ρβ0(λ0). The external observer
imposes an evolution λ(t) of the parameter λ from λ0 to λ(U), inducing a unitary or symplectic evolution
U of the whole system. The work that the external observer must perform to realize this evolution is
obviously the variation of the energy of the system. With the convention of Section 4.1, we denote
by δ(U(t))W the work counted positive if the external source receives it from the system. We are now
in a particular case of Section 4.1 when the system is A, there is no system B and no V . Thus from
Equation (46)

δ(U(t))W = −δ(U(t))E(ρ) = Tr

(
ρβ0(λ0)H(λ0)− ρ(U)H(λ(U))

)
. (82)

5.2. Identities for the Work

From Equations (56) and (57) we obtain immediately

δ(U(t))W = −Tr

(
ρ(U)

(
H(λ(U))−H(λ0)

))
− 1

β0

S
(
ρ(U)|ρβ0(λ0)

)
(83)

and
δ(U(t))W = F (β0, λ0)− F (U) , (84)

with F (U) the non equilibrium free energy at temperature β0.

F (U) = Tr
(
ρ(U)H(λ(U))

)
− 1

β0

S(ρ(U)) (85)

We now prove the following identity

δ(U(t))W = F (β0, λ0)− F (β0, λ
(U))− 1

β0

S(ρ(U)|ρβ0(λ(U))) . (86)

This is a particular case of the result of [19].

Proof of Equation (86): We start from Equation (84) written as

δ(U(t))W = F (β0, λ0)− F (U) = F (β0, λ0)− F (β0, λ
(U)) + F (β0, λ

(U))− F (U) . (87)

Now
β0

(
F (U) − F (β0, λ

(U))
)

= −S(ρ(U)) + β0 Tr
(
H(λ(U))ρ(U)

)
− β0F (β0, λ

(U)) . (88)

But
S(ρ(U)|ρβ0(λ(U))) = −S(ρ(U)) + β0 Tr

(
H(λ(U))ρ(U)

)
+ logZ(β0, λ

(U)) , (89)

so that comparing Equations (88) and (89), one has

β0

(
F (U) − F (β0, λ

(U))
)

= S(ρ(U)|ρβ0(λ(U))) , (90)

and from Equation (87) we then deduce Equation (86).

Remark 8: Since the transition under discussion is adiabatic, free energy is less suitable for inequalities
of the form (86) than is internal energy. See Section 5.6.
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5.3. Inequalities for the Work

5.3.1. From Equation (83)

From Equation (83) we deduce

δ(U(t))W ≤ −Tr
(
ρ(U)

(
H(λ(U))−H(λ0)

))
, (91)

with equality if and only if ρ(U) = ρβ0(λ0), i.e., the final state ρ(U) is the initial state.

5.3.2. From Equation (86)

From Equation (86) we deduce

δ(U(t))W ≤ F (β0, λ0)− F (β0, λ
(U)) (92)

with equality if and only if
ρ(U) = ρβ0(λ(U)) . (93)

That is, ρ(U) is the thermal state at the initial temperature and final value λ(U) of λ. Note that a
necessary condition for this is that the entropy of the final thermal state is the same as the entropy of the
initial state.

5.4. Relation to the Identity of Jarzynski

Let z denote a point in the phase space of the system. In this section we assume that the dynamics
is classical.

We denote by z(s|z0) the classical trajectory of the phase space point at time s starting from z0 at time
s = 0, for the classical evolution U . The external observer imposes the variation λ(s) of λ from λ0 to
λ(U) = λ(t). The identity of Jarzynski is [20]:〈

e−β0(H(z(t|z0),λ(U))−H(z0,λ))
〉
ρβ0

(λ0)
=
Z(β0, λ

(U))

Z(β0, λ0)
= exp

(
−β0

(
F (β0, λ

(U))− F (β0, λ0)
))
. (94)

Because the exponential function is strictly convex, Jensen’s inequality implies that

exp
(
−β0

〈
H(z(t|z0), λ(U))−H(z0, λ0)

〉
ρβ0

(λ0)

)
≤
〈
e−β0(H(z(t|z0),λ(U))−H(z0,λ))

〉
ρβ0

(λ0)
, (95)

so that using Equation (94) and taking the logarithm, one obtains

δ(U(t))W ≤ F (β0, λ0)− F (β0, λ
(U)) , (96)

which is the inequality (92).
But if the inequality (96) is an equality, we deduce ρ(U) = ρβ0(λ(U)) as in Equation (93), but we

also deduce that the inequality of Jensen (95) is an equality. Because the exponential function is strictly
convex, this implies that the differences

H(z(t|z0), λ(U))−H(z0, λ0) = C , (97)
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where C is a constant independent of z0 (but obviously dependent on λ0, λ(U) and t); in other words, the
“microscopic work” is independent of the microscopic trajectory. Although this equality would seem
impossible, it turns out that identity (97) can be realized for certain systems and evolutions of λ (see
appendix A).

5.5. Effective Temperatures

Let H(λ) be a Hamiltonian depending on λ and ρ a state (classical or quantum) with energy E(ρ) =

Tr (ρH(λ)). We can define two temperatures for ρ.

(i) The temperature βe(ρ, λ) is the temperature such that

E(ρ) = E(βe, λ) , (98)

with E(βe, λ) = Tr(ρβe(λ)H(λ)). It is known that ∂E(β, λ)/∂β < 0, so that Equation (98)
defines βe unambiguously. The basic identity (4) shows that

S(ρβe(λ))− S(ρ) = S(ρ|ρβe(λ)) , (99)

so that
S(ρβe(λ)) ≥ S(ρ) , (100)

which is the well known fact that ρβe(λ) maximizes the entropy among all states ρ having a fixed
energy. The quantity βe(ρ, λ) can be called the effective temperature.

(ii) There is a second temperature βa(ρ, λ) such that

S(ρ) = S(βa, λ) . (101)

In this definition, S(β, λ) is the entropy of a thermal state with temperature β and external parameter
λ. We call this the adiabatic temperature, and by the same arguments as given above it is well-defined.
From Equation (100) and Equation (101), one has

S(βe, λ) ≥ S(βa, λ) . (102)

Because
∂E

∂S(β, λ)

∣∣∣∣
λ fixed

=
1

β
(103)

we deduce from Equation (102) that

E(βa, λ) ≤ E(βe, λ) = E(ρ) (104)

and
βa ≥ βe . (105)

Because S is a strictly increasing function of E (for λ fixed), one sees that in Equation (102)
or (104), one has equality if and only if βa = βe. Moreover, one has the identity

S(ρ|ρβa(λ))− S(ρ|ρβe(λ)) = S(ρβe(λ)|ρβa(λ)) , (106)

which can immediately be verified.
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5.6. A More Precise Expression for the Work

In thermodynamics, for an adiabatic evolution, the work is related to the internal energy by dE =

−dW , rather than to the free energy. Similarly, the work is related to the adiabatic temperature rather
than to the effective energy temperature.

Given the state ρ(U) (corresponding to the evolution U , the parameter varying from λ0 to λ(U)) we can
define the adiabatic temperature β(U)

a such that

S(β(U)
a , λ(U)) = S(ρ(U)) = S(β0, λ0) . (107)

We prove the following identity

δ(U(t))W = E(β0, λ0)− E(β(U)
a , λ(U))− 1

β
(U)
a

S(ρ(U)|ρ
β

(U)
a

(λ(U))) . (108)

Proof of Equation (108): One has by definition (82)

− δ(U(t))W = E(ρ(U))− E(β0, λ0) = E(ρ(U))− E(β(U)
a , λ(U)) + E(β(U)

a , λ(U))− E(β0, λ0) . (109)

Then

S
(
ρ(U)

∣∣ ρ
β

(U)
a

(λ(U))
)

= −S(ρ(U)) + β(U)
a E(ρ(U)) + logZ(β(U)

a , λ(U))

= β(U)
a

(
E(ρ(U))− E(β(U)

a , λ(U))
)
, (110)

because S(ρ(U)) = S(β
(U)
a , λ(U)) by the definition (107). From this result and Equation (109) we deduce

Equation (108).
As a consequence of Equation (108), we deduce the inequality

δ(U(t))W ≤ E(β0, λ0)− E(β(U)
a , λ(U)) . (111)

In standard thermodynamics, for system thermally isolated and coupled to a work source, one has
dE = −dW , because δ(U(t))S = 0 for an adiabatic (thermally isolated) process and we recover equality
in Equation (111). In this situation, the inequality (92) comparing the work to the difference of free
energies is not relevant, because the temperature does not remain constant.

Note that the work upper bound (111), given in terms of energy and the adiabatic temperature, is
sharper than the bound given by (92), which is in terms of free energy. This is proved in the next
subsection.

5.7. Upper Bounds on the Work Delivered by a System. Comparison of Equations (92) and (111)

We next show that using internal energy for the work inequality gives a sharper result than using the
free energy. Specifically,

δ(U(t))W ≤ E(β0, λ0)− E(β(U)
a , λ(U)) ≤ F (β0, λ0)− F (β0, λ

(U)) . (112)

Proof of Equation (112): We need only prove that

∆ ≡ F (β0, λ0)− E(β0, λ0)−
(
F (β0, λ

(U))− E(β(U)
a , λ(U))

)
≥ 0 . (113)
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Using the definition of the equilibrium free energy and Equation (107) we have

∆ = − 1

β0

[
S(β(U)

a , λ(U))− S(β0, λ
(U))
]

+
[
E(β(U)

a , λ(U))− E(β0, λ
(U))
]
. (114)

Note that in Equation (114) all terms involving λ are evaluated at λ(U). Therefore

∆ =

∫ β
(U)
a

β0

[
∂E(β, λ(U))

∂β
− 1

β0

∂S(β, λ(U))

∂β

]
dβ . (115)

But
∂S(β, λ)

∂β
=
∂S

∂E

∂E(β, λ)

∂β
= β

∂E(β, λ)

∂β
. (116)

Using Equation (116) in Equation (115), we obtain

∆ =

∫ β
(U)
a

β0

∂E(β, λ(U))

∂β

[
1− β

β0

]
dβ . (117)

But ∂E(β,λ(U))
∂β

< 0, so that ∆ ≥ 0. Note that this does not depend on which of β0 and β(U)
a is larger.

5.8. The Case of Equalities in Equations (111) and (92)

5.8.1. Equality in Equation (111)

In this case, one has S(ρ(U)|ρ
β

(U)
a

(λ(U))) = 0 in Equation (108) so

ρ(U) = ρ
β

(U)
a

(λ(U)) . (118)

In particular, ρ(U) is a thermal state so that

β(U)
e = β(U)

a . (119)

However, if one has equality in Equation (111), this does not improve the upper bound of Equation (92)
for the free energy,

δ(U(t))W ≤ F (β0, λ0)− F (β0, λ
(U)) . (120)

In other words, the optimal bound for δ(U(t))W is given by the internal energy and not the free energy
(so that the internal energy in general yields a better bound than that given in [20]).

5.8.2. Equality in Equation (92)

From Equation (93) we deduce that

ρ(U) = ρβ0(λ(U)) , (121)

so that ρ(U) is a thermal state and thus

β(U)
e = β0 = β(U)

a . (122)

This implies that we also have equality in Equation (111)

δ(U(t))W = E(β0, λ0)− E(β0, λ
(U)) . (123)
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5.9. The Case λ(U) = λ0

If one assumes that the final value λ(U) of λ is equal to its initial value, we see immediately that
β

(U)
a = β0. Indeed

S(β(U)
a , λ0) = S(ρ(U)) = S(β0, λ0) , (124)

so that the temperatures are equal β(U)
a = β0. In this case, one has from Equation (108)

δ(U(t))W = − 1

β0

S(ρ(U)|ρβ0(λ0)) ≤ 0 , (125)

with equality if and only if
ρ(U) = ρβ0(λ0) , (126)

so that the state has returned to its initial value.

Remark 9: If the external observer imposes a variation λ(t) of the control parameter with λ(0) = λ0,
λ(t1) = λ1, λ(tf) = λ0, inequality (125) says that at the end of the cycle, the observer has always lost
work. In particular, the work that the external observer has put in the system in the time interval [0, t1]

cannot be entirely recovered in the time interval [t1, tf ] whatever one does, except if the final state ρ(U)

is the initial state.

Remark 10: When λ(U) = λ0, one can also recover Equation (125) from the identity (86). This identity
reduces to

δ(U(t))W = − 1

β0

S(ρ(U)|ρβ0(λ0)) . (127)

6. Relative Entropy, Energy Dissipation and Fourier’s Law

In this Section we derive dissipation in the quantum context and show it to be intimately related to
the relative entropy.

6.1. The Born Approximation

A quantum system has a Hamiltonian

H = H0 + V. (128)

Let ψ(0)
k , E(0)

k be the eigenstates and eigenvalues of H0. In the Born approximation, the state |ψ(0)
n 〉

becomes at time t a state |ψn(t)〉 with

|ψn(t)〉 =
∑
k

a
(n)
k (t) e−iE

(0)
k t/h̄|ψ(0)

k 〉 . (129)

The quantities a(n)
k (t) = δk,n + ã

(n)
k (t) satisfy

ih̄
dã

(n)
k

dt
=
∑
l

Vk,l(t)
(
δl,n + ã

(n)
l

)
, (130)

where

Vk,l(t) = Vk,l exp

(
i

h̄

(
E

(0)
k − E

(0)
l

)
t

)
. (131)
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We assume here Vn,n = 0 for all n. One readily deduces that in the Born approximation

a
(n)
k (t) =

Vk,n

E
(0)
k − E

(0)
n

(
1− ei(E

(0)
k −E

(0)
n ) t

h̄

)
(k 6= n) (132)

and by unitarity
∑

k |a
(n)
k (t)|2 = 1, so to second order in ã(n)

k

2 Re ã(n)
n (t) = −

∑
k 6=n

|ã(n)
k (t)|2 . (133)

Let ρ0 be an initial state diagonal in the basis ψ(0)
n

ρ0 =
∑

p0,n|ψ(0)
n 〉〈ψ(0)

n | . (134)

Then, at time t, the state becomes

ρ(U(t)) = ρ0 +

(∑
n

p0,n

∑
l 6=n

e−i(E
(0)
n −E

(0)
l ) t

h̄ ã
(n)∗
l |ψ(0)

n 〉〈ψ
(0)
l |+ c.c.

)
+
∑
n

p0,n

(
ã(n)
n (t) + ã(n)∗

n (t)
)
|ψ(0)
n 〉〈ψ(0)

n |

+
∑
n

p0,n

∑
k,l 6=n

ã
(n)
k (t)ã

(n)
l (t)∗e−i(E

(0)
k −E

(0)
l ) t

h̄ |ψ(0)
k 〉〈ψ

(0)
l |+ . . . . (135)

If L is a Hermitian operator diagonal in the basis ψ(0)
n with eigenvalues λn, using Equation (135) one

obtains in the Born approximation

Tr
(
L(ρ(U(t)) − ρ0)

)
=

1

2

∑
k 6=n

|ã(n)
k (t)|2(λk − λn)(p0,n − p0,k) . (136)

6.2. Two Interacting Systems

We consider two quantum systems A, B with Hamiltonians HA, HB respectively, interacting. Denote
by V = VA,B the interaction energy and

H = HA +HB + V . (137)

We call |ψ(0)
A,k〉, E

(0)
A,k (resp. |ψ(0)

B,l〉, E
(0)
B,l) the eigenstates and eigenvalues of HA (resp. HB), and we apply

the Born approximation to H , with H0 = HA +HB. The non perturbed Hamiltonian H0 has eigenstates
|ψ(0)
A,k〉|ψ

(0)
B,l〉 with eigenvalues E(0)

A,k + E
(0)
B,l.

We assume that at time t = 0, the state of the system A+B is ρ0 = ρA ⊗ ρB with

ρA =
∑

pA,k|ψ(0)
A,k〉〈ψ

(0)
A,k|

ρB =
∑

pB,l|ψ(0)
B,l〉〈ψ

(0)
B,l| , (138)

so that they are diagonal in the eigenbasis of HA and HB and therefore commute with HA+HB. At time
t, the initial state ρ0 = ρA ⊗ ρB evolves to ρ(t). Then

S(ρ(t)|ρA ⊗ ρB) = Tr (ρ(t) log ρ(t))− Tr (ρ(t) log(ρA ⊗ ρB)) . (139)
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But S(ρ(t)) = S(ρ0) by unitarity of the evolution, so that

S(ρ(t)|ρA ⊗ ρB) = −Tr [(ρ(t)− ρA ⊗ ρB) (log ρA + log ρB)] . (140)

This is of the form of Equation (136) with

L = − (log ρA + log ρB) . (141)

L has eigenvectors |ψ(0)
A,k〉|ψ

(0)
B,l〉 with eigenvalues log pA,k + log pB,l ; ρA ⊗ ρB has the same eigenvectors

with eigenvalues pA,k + pB,l. Applying Equation (136), one obtains in the Born approximation

S(ρ(t)|ρA ⊗ ρB) =
1

2

∑
(k,l)6=(n,m)

|ã(n,m)
(k,l) (t)|2(pA,npB,m − pA,kpB,l) log

pA,npB,m
pA,kpB,l

. (142)

Notice that the quantity in the right hand side is automatically non-negative. Here, we have

|ã(n,m)
(k,l) (t)|2 = |V (n,m)

(k,l) |
2

sin2

(
E

(0)
A,k+E

(0)
B,l−E

(0)
A,n−E

(0)
B,m

2h̄
t

)
(
E

(0)
A,k+E

(0)
B,l−E

(0)
A,n−E

(0)
B,m

2

)2 , (143)

with V (n,m)
(k,l) = 〈ψ(0)

A,n ⊗ ψ
(0)
B,m|V |ψ

(0)
A,k ⊗ ψ

(0)
B,l〉.

We also deduce from this result that in this approximation S(ρ(t)|ρA ⊗ ρB) = 0 if and only if V = 0

(recall that the diagonal elements of V are 0).

6.3. The Case Where Both Initial States are Thermal

Assume that at time t = 0, ρA = ρA,βA and ρB = ρB,βB are the thermal states ofA andB respectively.
From Equation (37) one has

βAδ
(U(t))EA(ρA) + βBδ

(U(t))EB(ρB) = S(ρ(t)|ρA,βA ⊗ ρB,βB). (144)

Moreover, from conservation of energy

δ(U(t))EA(ρA) + δ(U(t))EB(ρB) + δ(U(t))EV (ρ) = 0 , (145)

so that eliminating δ(U(t))EB(ρB), one obtains

(βA − βB)δ(U(t))EA(ρA) = βBδ
(U(t))EV (ρ) + S(ρ(t)|ρA,βA ⊗ ρB,βB) . (146)

We now estimate both terms on the right hand side of Equation (146).

6.3.1. Estimate of the Relative Entropy

From Equation (142) we deduce

S(ρ(t)|ρA ⊗ ρB) =
1

2ZAZB

∑
(k,l)6=(n,m)

|ã(n,m)
(k,l) (t)|2e−(βAEA,n+βBEB,m)

×
(

1− e−(βA(EA,k−EA,n)+βB(EB,l−EB,m))
)

× (βA (EA,k − EA,n) + βB (EB,l − EB,m)) . (147)
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Moreover, when t→∞, as in the usual Born approximation, Equation (143) shows that

|ã(n,m)
(k,l) (t)|2 ' 2π

h̄
|V (n,m)

(k,l) |
2δ
(
E

(0)
A,k + E

(0)
B,l − E

(0)
A,n − E

(0)
B,m

)
t . (148)

Thus if fA and fB denote the density of states for A and B, we obtain from Equation (147)

S(ρ(t)|ρA ⊗ ρB) =
2π

2h̄ZAZB
(βA − βB)

∫
dEAdE ′AdEBdE ′BfA(EA)fA (E ′A) fB(EB)fB(E ′B)

×e−(βAE′A+βBE
′
B)|V (E′A,E

′
B)

(EA,EB) |
2δ (EA + EB − E ′A − E ′B) (EA − E ′A)

×
(

1− e−(βA−βB)(EA−E′A)
)
t . (149)

6.3.2. Estimate of the Interaction Energy

Because δ(U(t))V (ρ) = −δ(U(t))EA(ρ)− δ(U(t))EB(ρ), one has

δ(U(t))VA,B(ρ) = Tr (−(HA +HB)(ρ(t)− ρA,βA ⊗ ρB,βA)) . (150)

This is of the form of Equation (136) with L = −HA −HB, and so

βBδ
(U(t))VA,B(ρ) = − βB

2ZAZB

∑
(k,l)6=(n,m)

|ã(n,m)
(k,l) (t)|2 (EA,k + EB,l − EA,n − EB,m)

×e−(βAE′A+βBE
′
B)
(

1− e−(βA(EA,k−EA,n)+βB(EB,l−EB,m))
)
t . (151)

Up to a sign, this expression is formally identical to the expression Equation (142), except that the
difference of energies (EA,k +EB,l−EA,n−EB,m) replaces the quantity βA(EA,k−EA,n) +βB(EB,l−
EB,m). As a consequence EA,k + EB,l − EA,n − EB,m partially cancels the denominator of |ã(n,m)

(k,l) (t)|2

and one sees that βBδ(U(t))EV (ρ) is negligible when t→∞.
Then from Equations (146) and (149), one sees that

δ(U(t))EA(ρA) ' S(ρ(t)|ρA,βA ⊗ ρB,βB)

βA − βB
' (βA − βB)Kt . (152)

In Equation (152) K is the positive constant

K =
2π

2h̄ZAZB

∫
dEAdE ′AdEBdE ′B ϕ(EA, E

′
A, EB, E

′
B) , (153)

with

ϕ = fA(EA)fA(E ′A)fB(EB)fB(E ′B)e−(βAE′A+βBE
′
B)
∣∣∣V (E′A,E

′
B)

(EA,EB)

∣∣∣2 δ (EA + EB − E ′A − E ′B)

×EA − E
′
A

βA − βB

(
1− e−(βA−βB)(EA−E′A)

)
. (154)

It is obvious that ϕ ≥ 0. Note that K does not vanish for βA close to βB.
The expression (152) is a form of Fourier’s law for heat transport from B to A, (βA−βB)K being the

rate of dissipation. In this case, one sees that the significance of the relative entropy S(ρ(t)|ρA,βA⊗ρB,βB)

is that of a transport coefficient, here the transport of energy from one part of a system to another part.
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7. Coarse Grained States

Coarse-graining is omnipresent in in macroscopic and mesoscopic physics, since microscopic
variables are often not what is observed. In general coarse-graining represents a loss of information,
hence an increase in entropy. In this section we consider a variety of coarse-graining procedures, and
consistent with our work in this article, relative entropy plays a significant role both in the definition of
coarse-graining and in the measures of entropy increase.

7.1. Definition

Let ρ and ρ′ be two states of the same system (classical or quantum). We say that ρ′ is obtained from
ρ by a coarse graining operation if

Tr ((ρ− ρ′) log ρ′) = 0. (155)

The idea is that the information associated with ρ′ (namely log ρ′) is the same whether one averages with
ρ′ or with the more detailed distribution ρ. Using the basic identity, Equation (4), we can say that ρ′ is
obtained from ρ by a coarse graining operation, if and only if

S(ρ′)− S(ρ) = S(ρ|ρ′) . (156)

In particular, S(ρ′) ≥ S(ρ), so that the entropy increases by coarse-graining. (See the comment after
Equation (3).)

A coarse-graining mapping is a mapping Γ which associates to any state ρ (or to some states of a
given class), a coarse grained state ρ′ = Γ(ρ).

7.2. Examples of Coarse-graining Mappings

Example 1: Maximum entropy.
Let A1, . . . , An be observables of the system, so they are either functions in the phase space or hermitian
operators on the Hilbert space of the system. We consider the class of states ρ such that

Tr (Aiρ) <∞ , i = 1, .., n . (157)

One can then consider the state ρ′ such that ρ′ has maximal entropy given the relation

Tr (Aiρ
′) = Tr (Aiρ) . (158)

It is immediately seen that

ρ′ = C exp

(
n∑
i=1

αiAi

)
, (159)

whereC is a normalization constant and αi are the “conjugate parameters”, (provided ρ′ is normalizable).
The mapping Γ : ρ→ ρ′ is indeed a coarse grain mapping in the sense of the previous definition, because
by Equation (159)

Tr ((ρ− ρ′) log ρ′) =
n∑
i=1

Tr ((ρ− ρ′)Ai) = 0 . (160)
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In particular, one has Equation (156).
The case of the thermal state is the best known, where one takes A = H , the Hamiltonian of

the system.

Example 2: Naive coarse graining; the observables as characteristic functions.

(i) Classical case: Let Z be the phase space of the system and {Zi} a finite partition of Z (Z =⋃n
i=1 Zi and Zi

⋂
Zj = ∅ for i 6= j). We choose Ai = χZi (i.e. the characteristic function of Zi).

This is a particular case of example 1 and if ρ is a state

ρ′ = C exp

(
n∑
i=1

αiχZi

)
. (161)

Using the condition (156), namely, ∫
Zi

ρ′dz =

∫
Zi

ρ dz , (162)

one can deduce from Equations (161) and (162)

ρ′|Zi =
1

Vol(Zi)

∫
Zi

ρ dz or ρ′ =
n∑
i=1

(ρ′|Zi)χZi . (163)

This equation implies that ρ′ is normalized
∫
ρ′dz = 1. We recover the usual coarse graining.

(ii) Quantum case: Let H be the Hilbert space of the system and Pi a resolution of the identity by
orthogonal projectors

Id =
∑

Pi and PiPj = Piδi,j . (164)

Then the analogue of Equation (163) is

ρ′ =
n∑
i=1

Tr (ρPi)

dimPi(H)
Pi . (165)

Example 3: Coarse graining by marginals.

(i) Classical case: We assume that the system consists of several parts, and that its phase space is a
Cartesian product, Z =

∏n
i=1 Zi, corresponding to various subsystems with phase space Zi. If ρ is

a state on Z, we denote by ρi its marginal probability distribution on Zi, so

ρi(zi) =

∫
. . .

∫
ρ(ζ1, . . . , ζi−1, zi, ζi+1, . . . , ζn)

∏
j 6=i

dζj . (166)

Let Γ be the mapping that associates the product of its marginals to ρ(z)

Γ(ρ)(z1, . . . , zn) =
n∏
i=1

ρi(zi) . (167)

Then the condition (155) is satisfied. It is easy to see that
∏n

i=1 ρi(zi) is the state ρ′ that maximizes
the entropy among all the states ρ′′ such that ρ′′i = ρi for any i.
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(ii) Quantum case. The Hilbert space of the system is

H =
n⊗
i=1

Hi , (168)

where theHi are the Hilbert spaces of the subsystems. If ρ is a state, then its marginal state onHi

is the partial trace on the Hilbert space Ki, which is the tensor product of the Hilbert spacesHj for
j different from i

ρi = TrKi ρ (169)

and the mapping Γ,

Γ(ρ) =
n⊗
i=1

ρi , (170)

is a coarse grained mapping. Γ(ρ) is again the state ρ′ which maximizes the entropy among all
states ρ′′ such that ρ′′i = ρi for all i.

Example 4: Decomposition of Z.

If Z =
⋃n
i=1 Zi, but the Zi do not form a partition of Z (they can have intersections of non-zero

measure), one can still apply Example 1 to Ai = χ
Zi

and obtain

ρ′ = C exp
(∑

αiχZi

)
. (171)

But now Equation (163) is no longer valid because, for given z, there will be in general several i with
z ∈ Zi.

7.3. Coarse Graining and Relative Entropy

(i) The case of the naive coarse-graining is distinguished among all types of coarse-graining by the
following property. Let Z =

⋃n
i=1 Zi a partition of the phase space and p, q two probability

distributions on Z. Let p̄ = Γp and q̄ = Γq be the coarse grained states of p and q associated to
this partition. Then one has

S(p̄|q̄) ≤ S(p|q). (172)

Proof: call pi =
∫
Zi
p dz and qi =

∫
Zi
q dz. We have, using the definition of p̄ and q̄

S(p̄|q̄) =
n∑
i=1

pi log
pi
qi
. (173)

Now ∑
i

pi log
pi
qi

=
∑
i

(∫
Zi

p(z) dz

)
log

∫
Zi
p(z) dz∫

Zi
q(z′) dz′

=
∑
i

(∫
Zi

q(z′) dz′
)(∫

Zi

p(z)

q(z)

q(z)∫
Zi
q(z′) dz′

dz

)

× log

(∫
Zi

p(z)

q(z)

q(z)∫
Zi
q(z′) dz′

dz

)
. (174)
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But
∫
Zi

q(z)∫
Zi
q(z′) dz′

dz = 1. We use the fact that the function x log x is convex, so that for each i

(∫
Zi

p(z)

q(z)

q(z)∫
Zi
q(z′) dz′

dz

)
log

(∫
Zi

p(z)

q(z)

q(z)∫
Zi
q(z′) dz′

dz

)

≤
∫
Zi

q(z)∫
Zi
q(z′) dz′

(
p(z)

q(z)
log

p(z)

q(z)

)
dz . (175)

Therefore from Equation (175)∑
i

pi log
pi
qi
≤
∑
i

∫
Zi

p(z) log
p(z)

q(z)
dz = S(p|q) . (176)

(ii) For the coarse-graining associated to subsystems one has Z =
∏n

i=1 Zi and if p, q are states on Z,
the coarse grained states are p̃ =

⊗n
i=1 pi, q̃ =

⊗n
i=1 qi and we deduce immediately that

S(p̃|q̃) =
n∑
i=1

S(pi|qi) . (177)

Consider the case i = 1, and call z = (z1, z
′) with z′ = (z2, . . . , zn) and call Z ′ = Z2 × · · · × Zn.

Then

S(p1|q1) =

∫
Z1

dz1

(∫
Z′
p(z1, z

′) dz′
)

log

∫
Z′
p(z1, z

′) dz′∫
Z′
q(z1, z′) dz′

=

∫
Z1

dz1

(∫
Z′
q(z1, z

′′) dz′′
)(∫

Z′
dz′

p(z1, z
′)

q(z1, z′)

q(z1, z
′)∫

Z′
q(z1, z′′) dz′′

)
× log

∫
Z′

dz′
p(z1, z

′)

q(z1, z′)

q(z1, z
′)∫

Z′
q(z1, z′′) dz′′

. (178)

Now
∫
Z′

dz′ q(z1,z′)∫
Z′ q(z1,z

′′) dz′′
= 1. As in Equation (175), we use the convexity of x log x and deduce

that
S(p1|q1) ≤

∫
Z1

dz1

∫
Z′

dz′p(z1, z
′) log

p(z1, z
′)

q(z1, z′)
= S(p|q) . (179)

From Equation (177) we deduce that for the coarse graining mapping associated to the division of
Z =

∏n
i=1 Zi in n subsystems, one has

S(p̃|q̃) ≤ nS(p|q) . (180)

Remark 11: The upper bound of Equation (180) cannot be improved. Indeed consider the
case where: p(z1, . . . , zn) = p1(z1)δ(z1 − z2) . . . δ(zn−1 − zn) q(z1, . . . , zn) = q1(z1)δ(z1 −
z2) . . . δ(zn−1 − zn). Then pi = p1 and qi = q1, but S(p|q) = S(p1|q1) and S(p̄|q̄) = nS(p1|q1).

(iii) Thermal coarse graining.
Let Z be a phase space, and p and q two probability distributions on Z, H(z) a function of z ∈ Z.
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Let p̃ and q̃ be the thermal coarse grained probability distributions of p and q, respectively, with
respect to H . So

p̃(z) =
1

Z(β(p))
exp (−β(p)H(z)) . (181)

where β(p) is the effective temperature of p, i.e., 〈H〉p = 〈H〉p̃.

Assuming that p − q is small, an obvious bound, after straightforward calculations (expanding to
second order in p− q), is

S(p̃|q̃) ≤ 〈H2〉p
〈H2〉p̃ − (〈H〉p)2S(p|q) . (182)

This bound is surely not optimal, because if p and q are already thermal states, S(p̃|q̃) = S(p|q).
Note though that even without the hypotheses on p and q, S(p̃|q̃) ≤ S(p|q̃).

8. Conclusions

The results in this article are used to obtain upper bounds for entropy production or energy variation
in various situations of thermodynamic interest, with many such results either new or sharper than
similar known bounds. Furthermore, the energy dissipated in these processes is expressed in terms of
relative entropies, which not only gives a general microscopic interpretation of dissipation, but also, in
relevant examples, leads to an explicit, first principles, evaluation of dissipation terms, analogous to the
Fourier law.

Although relative entropy has made appearances in many contexts, especially with respect to
information theory, our results on a generalized Fourier heat law relates it in a direct way to the notion
of dissipation as understood in physics.
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Appendixes

A. An Example of Trajectory-Independent Microscopic Work.

We exhibit a Hamiltonian H(z, λ) and an evolution λ(t) of the external parameter such that

H(z(tf |z0), λ(tf))−H(z0, λ0) = C , (A1)

with C independent of z0.
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Take the harmonic oscillator

H(x, p, λ) =
p2

2
+
ω2x2

2
− ω2λx . (A2)

Call

x̄(t|x0, p0) = x0 cosωt+ p0
sinωt

ω
p̄(t|x0, p0) = −ωx0 sinωt+ p0 cosωt (A3)

the solution with λ = 0.
For λ(s) a function of time s, the solutions of the Hamiltonian equations starting from (x0, p0) at

s = 0 are

x(t|x0, p0) = x̄(t) + ω

∫ t

0

λ(s) sin(ω(t− s)) ds (A4)

p(t|x0, p0) = p̄(t) + ω2

∫ t

0

λ(s) cos(ω(t− s)) ds (A5)

with dx
dt

= p and dp
dt
−−ω2x+ ω2λ(t). Assume that λ0 = 0. Define Λc(t) ≡

∫ t
0
λ(s) cosω(t− s) ds and

Λs(t) ≡
∫ t

0
λ(s) sinω(t− s) ds. Then

H(x(t), p(t), λ(t)) −H(x0, p0, 0) = −ω2λ(t)x̄(t) + ω2p̄(t)Λc(t)

+ω3x̄(t)Λs(t) +
1

2
ω4 (Λc(t))

2

+
1

2
ω4 (Λs(t))

2 − ω3λ(t)Λs(t) . (A6)

We can impose a condition on t such that this quantity does not depend on x0 and p0, namely

Λc(t) =

∫ t

0

λ(s) cosω(t− s) ds = 0

−λ(t) + ωΛs(t) = −λ(t) + ω

∫ t

0

λ(s) sinω(t− s) ds = 0 . (A7)

Then using these two equalities, one has

H(x(t), p(t), λ(t))−H(x0, p0, 0) = −ω
2

2
(λ(t))2. (A8)

Thus if λ(t) 6= 0, we can arrange that the microscopic work is independent of the initial condition and is
non zero.

B. An Exactly Solvable Model

The system A+B is formed of two two-levels atoms. The Hamiltonians of A and B are

HA =

(
0 0

0 EA

)
and HB =

(
0 0

0 EB

)
, (A9)
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with eigenstates |0A〉, |+A〉, |0B〉, |+B〉, so that the total Hamiltonian is in the basis |0A, 0B〉, |+A, 0B〉,
|0A,+B〉, |+A,+B〉:

H =


0 0 0 w

0 EA 0 0

0 0 EB 0

w∗ 0 0 EA + EB

 (A10)

where w is the interaction energy.
Calling E0 = EA + EB, the eigenvalues of H are

λ± =
E0 ±

√
E2

0 + 4|w|2
2

. (A11)

as well as EA and EB. The eigenstates of EA and EB are |+A, 0B〉, |0A,+B〉, and the eigenstates of λ±
are

|ϕ±〉 =
1

N±
(w|0A, 0B〉+ λ±|+A,+B〉) , (A12)

so that

|0A, 0B〉 =
N+N−

w(λ− − λ+)

(
λ−
N−
|ϕ+〉 −

λ+

N+

|ϕ−〉
)

(A13)

|+A +B〉 =
N+N−
λ+ − λ−

(
1

N−
|ϕ+〉 −

1

N+

|ϕ−〉
)
. (A14)

Here N± =
√
|w|2 + |λ±|2 is the normalization factor.

The initial state is ρA,βA ⊗ ρB,βB :

ρA,βA ⊗ ρB,βB =
1

ZAZB

(
|0A, 0B〉〈0A, 0B|+ e−βAEA|+A, 0B〉〈+A, 0B|

+ e−βBEB |0A,+B〉〈0A,+B|+ e−βAEA−βBEB |+A +B〉〈+A +B |

)
.(A15)

Using these formulas one can compute

ρ(t) = e−iHtρA,βA ⊗ ρB,βBeiHt = U(t)ρA,βA ⊗ ρB,βBU(t)+ (A16)

and verify that

Tr (HAρ(t)) =
EA
ZAZB

(
e−βAEA + e−βAEA−βBEB

|λ+e
−iλ+t − λ−e−iλ−t|2

(λ− − λ+)2 |w|2 |e
−iλ+t − e−iλ−t|2

(λ− − λ+)2

)
.

(A17)
Then

S(ρ(t)|ρA,βA ⊗ ρB,βB) = Tr ((βAHA + βBHB)(ρ(t)− ρA,βA ⊗ ρB,βB)) (A18)

δEV (ρ) = −Tr ((HA +HB)(ρ(t)− ρA,βA ⊗ ρB,βB)) (A19)

and

S(ρ(t)|ρA,βA ⊗ ρB,βB) =
βAEA + βBEB

ZAZB

(
1− e−βAEA−βAEB

) |w|2 sin2 (λ+−λ−)t
2(

λ+−λ−
2

)2 (A20)
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δ(U(t))EV (ρ) = −EA + EB
ZAZB

(
1− e−βAEA−βAEB

)
|w|2 sin2 ((λ+ − λ−) t)

(λ− − λ+)2 . (A21)

Using Equation (146), one obtains

δ(U(t))EA(ρ) =
EA
ZAZB

(
1− e−βAEA−βAEB

)
|w|2 sin2 ((λ+ − λ−) t)

(λ− − λ+)2 . (A22)

Here these quantities are periodic functions of period 2π
λ+−λ− = 2π√

E2
0+4|w|2

. Near resonance, where

λ+ ' λ−, w ' 0, E0 = EA + EB ' 0 and we recover that δ(U(t))EA(ρ) ' K(βA − βB)t from
Equation (A22).

C. Example: Forced Harmonic Oscillator

We take the Hamiltonian

H = −1

2

d2

dx2
+
ω2x2

2
+ λ(t)x = H0 + λ(t)x , (A23)

with the condition λ(0) = 0. The classical action is

S(x, t|x′) =
ω

2 sinωt

(
(x2 + x′2) cosωt− 2xx′ − 2x

ω

∫ t

0

λ(s) sinωs ds

−2x′

ω

∫ t

0

λ(s) sinω(t− s) ds+ C(t)

)
, (A24)

where C(t) does not depend on x or x′. The quantum propagator is

G(x, t|x′, 0) ' exp(iS(x, t|x′, 0)) , (A25)

where “'” indicates that we have not written the normalization factor. This factor does not depend on x
or x′ and is at the moment unimportant. The thermal state for λ = 0 is

ρβ ' exp

(
− iω

2 sin(iωβ)

(
(y2 + y′2) cos iωβ − 2yy′

))
. (A26)

The time-evolved state at time-t is

ρ(t, x|x′) =

∫∫
G(x, t|y)ρβ(y|y′)G(y′t|x′)∗dy dy′ . (A27)

The energy at time-t, using λ(t) = 0, is

E(t) =

∫
dx H0,xρ(t, x|x′)|x′=x , (A28)

with H0,x = −1
2

d2

dx2 + ω2x2

2
. Define

I1 =

∫ y

0

λ(s)
sinωs

sinωt
ds (A29)

I2 =

∫ t

0

λ(s)
sin(ω(t− s)

sinωt
ds (A30)

A = −iI1 + iI2

(
sinωt

sin iωβ
− sin (ωt+ iωβ)

sin iωβ

)
(A31)

A′ = iI1 + iI2

(
sinωt

sin iωβ
+

sin (iωβ − ωt)
sin iωβ

)
. (A32)
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The calculation of the double Gaussian integral in Equation (A27) gives

ρ(t, x|x′) =
1

N(t)
exp

(
−ω

2
(x2 + x′2) cothωβ +

ωxx′

sinhωβ
+ Ax+ A′x′

)
, (A33)

where N(t) is the normalization factor

N(t) = exp

(
1

4

(A+ A′)2

ω cothωβ − ω
sinhωβ

) √
2π√

2(ω cothωβ − ω
sinhωβ

)
. (A34)

The action of the Hamiltonian on the propagated state is

H0,xρ(t, x|x′) =

(
1

2
ω cothωβ − 1

2

(
(−ωx cothωβ +

ωx′

sinhωβ
) + A

)2

+
ω2x2

2

)
ρ(t, x|x′) . (A35)

We define the variable X as
X = x− A+ A′

2
(
−ω cothωβ + ω

sinhωβ

) . (A36)

Then the energy of the propagated state at time t is

E(t) =

√
2
(
ω cothωβ − ω

sinhωβ

)
√

2π∫
dX exp

(
−
(
ω cothωβ − ω

sinhωβ

)
X2

)
×

[
1

2
ω cothωβ − 1

2

(
X

(
−ω cothωβ +

ω

sinhωβ

)
+

1

2
(A− A′)2

)

+
ω2

2

(
X +

1

2

A+ A′

ω cothωβ − ω
sinhωβ

)2 ]
, (A37)

and E(0) is the value of E(t) at t = 0, so that

E(t)− E(0) =
1

8

 (A+ A′)2(
cothωβ − 1

sinhωβ

)2 − (A− A′)2

 . (A38)

Finally using the values of A and A′ in terms of I1 and I2, we obtain

E(t)− E(0) =
1

2

(
I2

1 + I2
2 + 2I1I2 cosωt

)
. (A39)

This is independent of β and is positive. As a corollary, this result is valid if one propagates any eigenstate
of the Hamiltonian H0. One can also derive the classical energy

E(t)− E(0) = 〈H(x(t|x0, p0), p(t|x0, p0), λ = 0)−H(x0, p0, λ = 0)〉ρβ(λ=0) , (A40)

where ρβ(λ = 0) is the classical thermal state. One uses the equations of motion

x(t|x0, p0) = x0 cosωt+ p0
sinωt

ω
+ ω

∫ t

0

λ(s) sinω(t− s) ds (A41)

p(t|x0, p0) = −ωx0 sinωt+ p0 cosωt+ ω2

∫ t

0

λ(s) cosω(t− s) ds (A42)
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ρβ(λ = 0) =
1

Nβ

exp

(
−β
(
p2

2
+
ω2x2

2

))
, (A43)

and then

E(t)− E(0) =
1

2
ω4

((∫ t

0

λ(s) cosω(t− s) ds

)2

+

(∫ t

0

λ(s) sinω(t− s) ds

)2
)
. (A44)

If λ(0) = 0 but λ(t) 6= 0, one gets

E(t)− E(0) =
1

2
ω4

((∫ t

0

λ(s) cosω(t− s) ds

)2

+

(∫ t

0

λ(s) sinω(t− s) ds

)2

−2λ(t)

ω

∫ t

0

λ(s) sinω(t− s) ds

)
. (A45)

This can be negative, for example if λ(t) = t:

E(t)− E(0) = 1− t2ω2

2
− cosωt < 0 . (A46)
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