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Abstract: We evaluate the information geometric complexity of entropic motion on
low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is
to make macroscopic predictions about systems in the presence of limited information.
Specifically, we observe that the complexity of such entropic inferences not only depends on
the amount of available pieces of information but also on the manner in which such pieces
are correlated. Finally, we uncover that, for certain correlational structures, the impossibility
of reaching the most favorable configuration from an entropic inference viewpoint seems to
lead to an information geometric analog of the well-known frustration effect that occurs in
statistical physics.
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1. Introduction

One of the main efforts in physics is modeling and predicting natural phenomena using relevant
information about the system under consideration. Theoretical physics has had a general measure of the
uncertainty associated with the behavior of a probabilistic process for more than 100 years: the Shannon
entropy [1]. The Shannon information theory was applied to dynamical systems and became successful
in describing their unpredictability [2].
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Along a similar avenue we may set Entropic Dynamics [3] which makes use of inductive inference
(Maximum Entropy Methods [4]) and Information Geometry [5]. This is clearly remarkable given
that microscopic dynamics can be far removed from the phenomena of interest, such as in complex
biological or ecological systems. Extension of ED to temporally-complex dynamical systems on curved
statistical manifolds led to relevant measures of chaoticity [6]. In particular, an information geometric
approach to chaos (IGAC) has been pursued studying chaos in informational geodesic flows describing
physical, biological or chemical systems. It is the information geometric analogue of conventional
geometrodynamical approaches [7] where the classical configuration space is being replaced by a
statistical manifold with the additional possibility of considering chaotic dynamics arising from non
conformally flat metrics. Within this framework, it seems natural to consider as a complexity measure
the (time average) statistical volume explored by geodesic flows, namely an Information Geometry
Complexity (IGC).

This quantity might help uncover connections between microscopic dynamics and experimentally
observable macroscopic dynamics which is a fundamental issue in physics [8]. An interesting
manifestation of such a relationship appears in the study of the effects of microscopic external
noise (noise imposed on the microscopic variables of the system) on the observed collective motion
(macroscopic variables) of a globally coupled map [9]. These effects are quantified in terms of the
complexity of the collective motion. Furthermore, it turns out that noise at a microscopic level reduces
the complexity of the macroscopic motion, which in turn is characterized by the number of effective
degrees of freedom of the system.

The investigation of the macroscopic behavior of complex systems in terms of the underlying
statistical structure of its microscopic degrees of freedom also reveals effects due to the presence of
microcorrelations [10]. In this article we first show which macro-states should be considered in a
Gaussian statistical model in order to have a reduction in time of the Information Geometry Complexity.
Then, dealing with correlated bivariate and trivariate Gaussian statistical models, the ratio between the
IGC in the presence and in the absence of microcorrelations is explicitly computed, finding an intriguing,
even though non yet deep understood, connection with the phenomenon of geometric frustration [11].

The layout of the article is as follows. In Section 2 we introduce a general statistical model discussing
its geometry and describing both its dynamics and information geometry complexity. In Section 3,
Gaussian statistical models (up to a trivariate model) are considered. There, we compute the asymptotic
temporal behaviors of their IGCs. Finally, in Section 4 we draw our conclusions by outlining our findings
and proposing possible further investigations.

2. Statistical Models and Information Geometry Complexity

Given n real-valued random variables X1, . . . , Xn defined on the sample space Ω with joint
probability density p : Rn → R satisfying the conditions

p(x) ≥ 0 (∀x ∈ Rn) and
∫
Rn
dx p(x) = 1, (1)
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let us consider a family P of such distributions and suppose that they can be parametrized using m

real-valued variables (θ1, . . . , θm) so that

P = {pθ = p(x|θ)|θ = (θ1, . . . , θm) ∈ Θ}, (2)

where Θ ⊆ Rm is the parameter space and the mapping θ → pθ is injective. In such a way, P is an
m-dimensional statistical model on Rn.

The mapping ϕ : P → Rm defined by ϕ(pθ) = θ allows us to consider ϕ = [θi] as a coordinate system
for P . Assuming parametrizations which are C∞, we can turn P into aC∞ differentiable manifold (thus,
P is called statistical manifold) [5].

The values x1, . . . , xn taken by the random variables define the micro-state of the system, while the
values θ1, . . . , θm taken by parameters define the macro-state of the system.

Let P = {pθ|θ ∈ Θ} be an m-dimensional statistical model. Given a point θ, the Fisher information
matrix of P in θ is the m×m matrix G(θ) = [gij], where the (i, j) entry is defined by

gij(θ) :=

∫
Rn
dxp(x|θ)∂i log p(x|θ)∂j log p(x|θ), (3)

with ∂i standing for ∂
∂θi

. The matrix G(θ) is symmetric, positive semidefinite and determines a
Riemannian metric on the parameter space Θ [5]. Hence, it is possible to define a Riemannian statistical
manifoldM := (Θ, g), where g = gijdθ

i ⊗ dθj (i, j = 1, . . . ,m) is the metric whose components gij
are given by Equation (3) (throughout the paper we use the Einstein sum convention).

Given the Riemannian manifold M = (Θ, g), it is well known that there exists only one
linear connection ∇(the Levi–Civita connection) on M that is compatible with the metric g and
symmetric [12]. We remark that the manifold M has one chart, being Θ an open set of Rm, and the
Levi-Civita connection is uniquely defined by means of the Christoffel coefficients

Γkij =
1

2
gkl
(∂glj
∂θi

+
∂gil
∂θj
− ∂gij
∂θl

)
, (i, j, k = 1, . . . ,m) (4)

where gkl is the (k, l) entry of the inverse of the Fisher matrix G(θ).
The idea of curvature is the fundamental tool to understand the geometry of the manifoldM = (Θ, g).

Actually, it is the basic geometric invariant and the intrinsic way to obtain it is by means of geodesics. It
is well-known, that given any point θ ∈M and any vector v tangent toM at θ, there is a unique geodesic
starting at θ with initial tangent vector v. Indeed, within the considered coordinate system, the geodesics
are solutions of the following nonlinear second order coupled ordinary differential equations [12]

d2θk

dτ 2
+ Γkij

dθi

dτ

dθj

dτ
= 0, (5)

with τ denoting the time.
The recipe to compute some curvatures at a point θ ∈M is the following: first, select a 2-dimensional

subspace Π of the tangent space to M at θ; second, follow the geodesics through θ whose initial
tangent vectors lie in Π and consider the 2-dimensional submanifolds SΠ swiped out by them inheriting a
Riemannian metric fromM; finally, compute the Gaussian curvature of SΠ at θ, which can be obtained
from its Riemannian metric as stated in the Theorema Egregium [13]. The number K(Π) found in
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such manner is called the sectional curvature ofM at θ associated with the plane Π. In terms of local
coordinates, to compute the sectional curvature we need the curvature tensor,

Rh
ijk =

∂Γhjk
∂θi
− ∂Γhik

∂θj
+ ΓljkΓ

h
il − ΓlikΓ

h
jl. (6)

For any basis (ξ, η) for a 2-plane Π ⊂ TθM, the sectional curvature at θ ∈M is given by [12]

K(ξ, η) =
R(ξ, η, η, ξ)

|ξ|2|η|2 − 〈ξ, η〉
, (7)

whereR is the Riemann curvature tensor which is written in coordinates asR = Rijkldθ
i⊗dθj⊗dθk⊗dθl

with Rijkl = glhR
h
ijk and 〈·, ·〉 is the inner product defined by the metric g.

The sectional curvature is directly related to the topology of the manifold; along this direction
the Cartan-Hadamard Theorem [13] is enlightening by stating that any complete, simply connected
n-dimensional manifold with non positive sectional curvature is diffeomorphic to Rn.

We can consider upon the statistical manifold M = (Θ, g) the macro-variables θ as accessible
information and then derive the information dynamical Equation (5) from a standard principle of least
action of Jacobi type [3]. The geodesic Equations (5) describe a reversible dynamics whose solution is
the trajectory between an initial and a final macrostate θinitial and θfinal, respectively. The trajectory can be
equally traversed in both directions [10]. Actually, an equation relating instability with geometry exists
and it makes hope that some global information about the average degree of instability (chaos) of the
dynamics is encoded in global properties of the statistical manifolds [7]. The fact that this might happen
is proved by the special case of constant-curvature manifolds, for which the Jacobi-Levi-Civita equation
simplifies to [7]

d2J i

dτ 2
+KJ i = 0, (8)

where K is the constant sectional curvature of the manifold (see Equation (7)) and J is the geodesic
deviation vector field. On a positively curved manifold, the norm of the separating vector J does not
grow, whereas on a negatively curved manifold, the norm of J grows exponentially in time, and if the
manifold is compact, so that its geodesic are sooner or later obliged to fold, this provide an example of
chaotic geodesic motion [14].

Taking into consideration these facts, we single out as suitable indicator of dynamical (temporal)
complexity, the information geometric complexity defined as the average dynamical statistical
volume [15]

ṽol
[
D(geodesic)

Θ (τ)
]

:=
1

τ

∫ τ

0

dτ ′vol
[
D(geodesic)

Θ (τ ′)
]
, (9)

where
vol
[
D(geodesic)

Θ (τ ′)
]

:=

∫
D(geodesic)

Θ (τ ′)

√
det(G(θ)) dθ, (10)

with G(θ) the information matrix whose components are given by Equation (3). The integration space
D(geodesic)

Θ (τ ′) is defined as follows

D(geodesic)
Θ (τ ′) :=

{
θ = (θ1, . . . , θm) : θk(0) ≤ θk ≤ θk(τ ′)

}
, (11)

where θk ≡ θk(s) with 0 ≤ s ≤ τ ′ such that θk(s) satisfies (5). The quantity vol
[
D(geodesic)

Θ (τ ′)
]

is the
volume of the effective parameter space explored by the system at time τ ′. The temporal average has
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been introduced in order to average out the possibly very complex fine details of the entropic dynamical
description of the system’s complexity dynamics.

Relevant properties, concerning complexity of geodesic paths on curved statistical manifolds, of the
quantity (10) compared to the Jacobi vector field are discussed in [16].

3. The Gaussian Statistical Model

In the following we devote our attention to a Gaussian statistical model P whose element are
multivariate normal joint distributions for n real-valued variables X1, . . . , Xn given by

p(x|θ) =
1√

(2π)n detC
exp

[
−1

2
(x− µ)tC−1(x− µ)

]
, (12)

where µ =
(
E(X1), . . . ,E(Xn)

)
is the n-dimensional mean vector and C denotes the n× n covariance

matrix with entries cij = E(XiXj) − E(Xi)E(Xj), i, j = 1, . . . , n. Since µ is a n-dimensional real
vector and C is a n× n symmetric matrix, the parameters involved in this model should be n + n(n+1)

2
.

Moreover C is a symmetric, positive definite matrix, hence we have the parameter space given by

Θ := {(µ,C)|µ ∈ Rn, C ∈ Rn×n, C > 0}. (13)

Hereafter we consider the statistical model given by Equation (12) when the covariance matrix C has
only variances σ2

i = E(X2
i ) − (E(Xi))

2 as parameters. In fact we assume that the non diagonal entry
(i, j) of the covariance matrix C equals ρσiσj with ρ ∈ R quantifying the degree of correlation.

We may further notice that the function fij(x) := ∂i log p(x|θ)∂j log p(x|θ), when p(x|θ) is given by
Equation (12), is a polynomial in the variables xi (i = 1, . . . , n) whose degree is not grater than four.
Indeed, we have that

∂i log p(x|θ) =
1

p(x|θ)
∂ip(x|θ) = ∂i

1√
(2π)n detC

+ ∂i

[
−1

2
(x− µ)tC−1(x− µ)

]
, (14)

and, therefore, the differentiation does not affect variables xi. With this in mind, in order to compute the
integral in (3), we can use the following formula [17]

1√
(2π)n detC

∫
dxfij(x) exp

[
−1

2
(x− µ)tC−1(x− µ)

]
= exp

[
1

2

n∑
h,k=1

chk
∂

∂xh

∂

∂xk

]
fij|x=µ, (15)

where the exponential denotes the power series over its argument (the differential operator).

3.1. The monovariate Gaussian Statistical Model

We now start to apply the concepts of the previous section to a Gaussian statistical model of
Equation (12) for n = 1. In this case, the dimension of the statistical Riemannian manifoldM = (Θ, g)

is at most two. Indeed, to describe elements of the statistical model P given by Equation (12), we
basically need the mean µ = E(X) and variance σ2 = E(X − µ)2. We deal separately with the cases
when the monovariate model has only µ as macro-variable (Case 1), when σ is the unique macro-variable
(Case 2), and finally when both µ and σ are macro-variables (Case 3).
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3.1.1. Case 1

Consider the monovariate model with only µ as macro-variable by setting σ = 1. In this case the
manifoldM is trivially the real flat straight line, since µ ∈ (−∞,+∞). Indeed, the integral in (3) is

equal to 1 when the distribution p(x|θ) reads as p(x|µ) =
exp
[
− 1

2
(x−µ)2

]
√

2π
; so the metric is g = dµ2.

Furthermore, from Equations (4) and (5) the information dynamics is described by the geodesic µ(τ) =

A1τ + A2, where A1, A2 ∈ R. Hence, the volume of Equation (10) results vol
[
D(geodesic)

Θ (τ ′)
]

=
∫
dµ =

A1τ + A2; since this quantity must be positive we assume A1, A2 > 0. Finally, the asymptotic behavior
of the IGC (9) is

ṽol
[
D(geodesic)

Θ (τ)
]
≈
(A1

2

)
τ. (16)

This shows that the complexity linearly increases in time meaning that acquiring information about µ
and updating it, is not enough to increase our knowledge about the micro state of the system.

3.1.2. Case 2

Consider now the monovariate Gaussian statistical model of Equation(12) when µ = E(X) = 0 and

the macro-variable is only σ. In this case the probability distribution function reads p(x|σ) =
exp
[
− x2

2σ2

]
√

2πσ

while the Fisher–Rao metric becomes g = 2
σ2dσ

2. Emphasizing that also in this case the manifold is
flat as well, we derive the information dynamics by means of Equations (4) and (5) and we obtain the
geodesic σ(τ) = A1 exp

[
A2τ

]
. The volume in Equation (10) then results

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫ √
2

σ
dσ =

√
2 log

[
A1 exp

[
A2τ

]]
. (17)

Again, to have positive volume we have to assume A1, A2 > 0. Finally, the (asymptotic) IGC (9)
becomes

ṽol
[
D(geodesic)

Θ (τ)
]
≈
(√2A2

2

)
τ. (18)

This shows that also in this case the complexity linearly increases in time meaning that acquiring
information about σ and updating it, is not enough to increase our knowledge about the micro-state
of the system.

3.1.3. Case 3

The take home message of the previous cases is that we have to account for both mean µ and variance
σ as macro-variables to look for possible non increasing complexity. Hence, consider the probability
distribution function is given by,

p(x1, x2|µ, σ) =
exp

[
− 1

2
(x−µ)2

σ2

]
σ
√

2π
. (19)

The dimension of the Riemannian manifoldM = (Θ, g) is two, where the parameter space Θ is given
by Θ = {(µ, σ)|µ ∈ (−∞,+∞), σ > 0} and the Fisher–Rao metric reads as g = 1

σ2dµ
2 + 2

σ2dσ
2.

Here, the sectional curvature given by Equation (7) is a negative function and despite the fact that is not
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constant, we expect a decreasing behavior in time of the IGC. Thanks to Equation (4), we find that the
only non negative Christoffel coefficients are Γ1

12 = − 1
σ

, Γ2
11 = 1

2σ
and Γ2

22 = − 1
σ

. Substituting them
into Equation (5) we derive the following geodesic equations

d2µ(τ)
dτ2 − 2

σ
dσ
dτ

dµ
dτ

= 0,

d2σ(τ)
dτ2 − 1

σ

(
dσ
dτ

)2

+ 1
2σ

(
dµ
dτ

)2

= 0.

(20)

The integration of the above coupled differential equations is non-trivial. We follow the method
described in [10] and arrive at

σ(τ) =
2σ0 exp

[
σ0|A1|√

2
τ
]

1 + exp
[

2σ0|A1|√
2
τ
] , µ(τ) = − 2σ0

√
2A1

|A1|
(

1 + exp
[

2σ0|A1|√
2
τ
]) , (21)

where σ0 and A1 are real constants. Then, using (21), the volume of Equation (10) results

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫ √
2

σ2
dσdµ =

√
2A1

|A1|
exp

[
− σ0|A1|√

2
τ
]
. (22)

Since the last quantity must be positive, we assume A1 > 0. Finally, employing the above expression
into Equation (9) we arrive at

ṽol
[
D(geodesic)

Θ (τ)
]
≈
( 2

σ0A1

)1

τ
. (23)

We can now see a reduction in time of the complexity meaning that acquiring information about both µ
and σ and updating them allows us to increase our knowledge about the micro state of the system.

Hence, comparing Equations (16), (18) and (23) we conclude that the entropic inferences on a
Gaussian distributed micro-variable is carried out in a more efficient manner when both its mean and
the variance in the form of information constraints are available. Macroscopic predictions when only
one of these pieces of information are available are more complex.

3.2. Bivariate Gaussian Statistical Model

Consider now the Gaussian statistical model P of the Equation (12) when n = 2. In this case the
dimension of the Riemannian manifoldM = (Θ, g) is at most four. From the analysis of the monovariate
Gaussian model in Section 3.1 we have understood that both mean and variance should be considered.
Hence the minimal assumption is to consider E(X1) = E(X2) = µ and E(X1−µ)2 = E(X2−µ)2 = σ2.
Furthermore, in this case we have also to take into account the possible presence of (micro) correlations,
which appear at the level of macro-states as off-diagonal terms in the covariance matrix. In short, this
implies considering the following probability distribution function

p(x1, x2|µ, σ) =
exp

[
− 1

2σ2(1−ρ2)

(
(x1 − µ)2 − 2ρ(x1 − µ)(x2 − µ) + (x2 − µ)2

)]
2πσ2

√
1− ρ2

, (24)

where ρ ∈ (−1, 1).
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Thanks to Equation (15) we compute the Fisher-Information matrix G and find g = g11dµ
2 + g22dσ

2

with,

g11 =
2

σ2(ρ+ 1)
; g22 =

4

σ2
. (25)

The only non trivial Christoffel coefficients (4) are Γ1
12 = − 1

σ
, Γ2

11 = 1
2σ(ρ+1)

and Γ2
22 = − 1

σ
. In this

case as well, the sectional curvature (Equation (7)) of the manifoldM is a negative function and so we
may expect a decreasing asymptotic behavior for the IGC. From Equation (5) it follows that the geodesic
equations are, 

d2µ(τ)
dτ2 − 2

σ
dσ
dτ

dµ
dτ

= 0

d2σ(τ)
dτ2 − 1

σ

(
dσ
dτ

)2

+ 1
2(1+ρ)σ

(
dµ
dτ

)2

= 0,

(26)

whose solutions are,

σ(τ) =
2σ0 exp

[
σ0|A1|√
2(1+ρ)

τ
]

1 + exp
[

2σ0|A1|√
2(1+ρ)

τ
] , µ(τ) = −

2σ0

√
2(1 + ρ)A1

|A1|
(

1 + exp
[

2σ0|A1|√
2(1+ρ)

τ
]) . (27)

Using (27) in Equation (10) gives the volume,

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫
2
√

2√
1 + ρ σ2

dσdµ =
4A1

|A1|
exp

[
− σ0|A1|√

2(1 + ρ)
τ
]
. (28)

To have it positive we have to assume A1 > 0. Finally, employing (28) in (9) leads to the IGC,

ṽol
[
D(geodesic)

Θ (τ)
]
≈
( 4
√

2

σ0A1

)√1 + ρ

τ
, (29)

with ρ ∈ (−1, 1). We may compare the asymptotic expression of the ICGs in the presence and in the
absence of correlations, obtaining

Rstrong
bivariate(ρ) :=

ṽol
[
D(geodesic)

Θ (τ)
]

ṽol
[
D(geodesic)

Θ (τ)
]
ρ=0

=
√

1 + ρ, (30)

where “strong” stands for the fully connected lattice underlying the micro-variables. The ratio Rstrong
bivariate(ρ)

results a monotonic increasing function of ρ.
While the temporal behavior of the IGC (29) is similar to the IGC in (23), here correlations play a

fundamental role. From Equation (30), we conclude that entropic inferences on two Gaussian distributed
micro-variables on a fully connected lattice is carried out in a more efficient manner when the two
micro-variables are negatively correlated. Instead, when such micro-variables are positively correlated,
macroscopic predictions become more complex than in the absence of correlations.

Intuitively, this is due to the fact that for anticorrelated variables, an increase in one variable implies
a decrease in the other one (different directional change): variables become more distant, thus more
distinguishable in the Fisher–Rao information metric sense. Similarly, for positively correlated variables,
an increase or decrease in one variable always predicts the same directional change for the second
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variable: variables do not become more distant, thus more distinguishable in the Fisher–Rao information
metric sense. This may lead us to guess that in the presence of anticorrelations, motion on curved
statistical manifolds via the Maximum Entropy updating methods becomes less complex.

3.3. Trivariate Gaussian Statistical Model

In this section we consider a Gaussian statistical model P of the Equation (12) when n = 3.
In this case as well, in order to understand the asymptotic behavior of the IGC in the presence of
correlations between the micro-states, we make the minimal assumption that, given the random vector
X = (X1, X2, X3) distributed according to a trivariate Gaussian, then E(X1) = E(X2) = E(X3) = µ

and E(X1 − µ)2 = E(X2 − µ)2 = E(X2 − µ)2 = σ2. Therefore, the space of the parameters of P is
given by Θ = {(µ, σ)|µ ∈ R, σ > 0}.

The manifold M = (Θ, g) changes its metric structure depending on the number of correlations
between micro-variables, namely, one, two, or three . The covariance matrices corresponding to these
cases read, modulo the congruence via a permutation matrix [17],

C1 = σ2

 1 ρ 0

ρ 1 0

0 0 1

 , C2 = σ2

 1 ρ ρ

ρ 1 0

ρ 0 1

 , C3 = σ2

 1 ρ ρ

ρ 1 ρ

ρ ρ 1

 . (31)

3.3.1. Case 1

First, we consider the trivariate Gaussian statistical model of Equation (12) when C ≡ C1. Then
proceeding like in Section 3.2 we have g = g11dµ

2 + g22dσ
2, where g11 = 3+ρ

(1+ρ)σ2 and g22 = 6
σ2 . Also in

this case we find that the sectional curvature of Equation (7) is a negative function. Hence, as we state
in Section 2, we may expect a decreasing (in time) behavior of the information geometry complexity.
Furthermore, we obtain the geodesics

σ(τ) =
2σ0 exp

[
σ0

√
A(ρ) τ

]
1 + exp

[
2σ0

√
A(ρ) τ

] , µ(τ) = − 2σ0A1√
A(ρ)

1

1 + exp
[
2σ0

√
A(ρ) τ

] , (32)

whereA(ρ) =
A2

1(3+ρ)

6(1+ρ)
andA1 ∈ R. We remark thatA(ρ) > 0 for all ρ ∈ (−1, 1). Then, the volume (10)

becomes

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫ √
6(3− 4ρ)

(1− 2ρ2)

1

σ2
dσdµ =

6A1

|A1|
exp

[
− σ0

√
A(ρ) τ

]
, (33)

requiring A1 > 0 for its positivity. Finally, using (33) in (9) we arrive at the asymptotic behavior of the
IGC

ṽol
[
D(geodesic)

Θ (τ)
]
≈
( 6
√

6

σ0A1

)√1 + ρ

3 + ρ

1

τ
. (34)

Comparing (34) in the presence and in the absence of correlations yields

Rweak
trivariate(ρ) :=

ṽol
[
D(geodesic)

Θ (τ)
]

ṽol
[
D(geodesic)

Θ (τ)
]
ρ=0

=
√

3

√
1 + ρ

3 + ρ
, (35)

where “weak” stands for low degree of connection in the lattice underlying the micro-variables
Notice that Rweak

trivariate(ρ) is a monotonic increasing function of the argument ρ ∈ (−1, 1).
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3.3.2. Case 2

When the trivariate Gaussian statistical model of Equation (12) has C ≡ C2, the condition C > 0

constraints the correlation coefficient to be ρ ∈ (−
√

2
2
,
√

2
2

). Proceeding again like in Section 3.2 we have
g = g11dµ

2 + g22dσ
2, where g11 = 3−4ρ

(1−2ρ2)σ2 and g22 = 6
σ2 . The sectional curvature of Equation (7) is

a negative function as well and so we may apply the arguments of Section 2 expecting a decreasing in
time of the complexity. Furthermore, we obtain the geodesics

σ(τ) =
2σ0 exp

[
σ0

√
A(ρ) τ

]
1 + exp

[
2σ0

√
A(ρ) τ

] , µ(τ) = − 2σ0A1√
A(ρ)

1

1 + exp
[
2σ0

√
A(ρ) τ

] , (36)

where A(ρ) =
A2

1(3−4ρ)

6(1−2ρ2)
and A1 ∈ R. We remark that A(ρ) > 0 for all ρ ∈ (−

√
2

2
,
√

2
2

). Then, the
volume (10) becomes

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫ √
6(3− 4ρ)

(1− 2ρ2)

1

σ2
dσdµ =

6A1

|A1|
exp

[
− σ0

√
A(ρ) τ

]
. (37)

We have to setA1 > 0 for the positivity of the volume (37), and using it in (9) we arrive at the asymptotic
behavior of the IGC

ṽol
[
D(geodesic)

Θ (τ)
]
≈
( 6
√

6

σ0A1

)√1− 2ρ2

3− 4ρ

1

τ
. (38)

Then, comparing (38) in the presence and in the absence of correlations yields

Rmildly weak
trivariate (ρ) :=

ṽol
[
D(geodesic)

Θ (τ)
]

ṽol
[
D(geodesic)

Θ (τ)
]
ρ=0

=
√

3

√
1− 2ρ2

3− 4ρ
, (39)

where “mildly weak” stands for a lattice (underlying micro-variables) neither fully connected nor with
minimal connection.

This is a function of the argument ρ ∈ (−
√

2
2
,
√

2
2

) that attains the maximum
√

3
2

at ρ = 1
2
, while in

the extrema of the interval (−
√

2
2
,
√

2
2

) it tends to zero.

3.3.3. Case 3

Last, we consider the trivariate Gaussian statistical model of the Equation (12) when C ≡ C3. In this
case, the condition C > 0 requires the correlation coefficient to be ρ ∈ (−1

2
, 1). Proceeding again like in

Section 3.2 we have g = g11dµ
2 + g22dσ

2, where g11 = 3
(1+2ρ)σ2 and g22 = 6

σ2 . We find that the sectional
curvature of Equation (7) is a negative function; hence, we may expect a decreasing (in time) behavior
of the complexity. It follows the geodesics

σ(τ) =
2σ0 exp

[
σ0

√
A(ρ) τ

]
1 + exp

[
2σ0

√
A(ρ) τ

] , µ(τ) = − 2σ0A1√
A(ρ)

1

1 + exp
[
2σ0

√
A(ρ) τ

] , (40)

where A(ρ) =
A2

1

2(1+2ρ)
and A1 ∈ R. We note that A(ρ) > 0 for all ρ ∈ (−1

2
, 1). Using (40), we compute

vol
[
D(geodesic)

Θ (τ ′)
]

=

∫
3
√

2√
(1 + 2ρ)

1

σ2
dσdµ =

6
√

2A1

|A1|
exp

[
− σ0

√
A(ρ) τ

]
. (41)
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Also in this case we need to assume A1 > 0 to have positive volume. Finally, substituting Equation (41)
into Equation (9), the asymptotic behavior of the IGC results

ṽol
[
D(geodesic)

Θ (τ)
]
≈
( 12

σ0A1

)√
1 + 2ρ

1

τ
. (42)

The comparison of (42) in the presence and in the absence of correlations yields

Rstrong
trivariate(ρ) :=

ṽol
[
D(geodesic)

Θ (τ)
]

ṽol
[
D(geodesic)

Θ (τ)
]
ρ=0

=
√

1 + 2ρ, (43)

where “strong” stands for a fully connected lattice underlying the (three) micro-variables. We remark
the latter ratio is a monotonically increasing function of the argument ρ ∈ (−1

2
, 1).

The behaviors of R(ρ) of Equations (30), (35), (39) and (43) are reported in Figure 1.

Figure 1. Ratio R(ρ) of volumes vs. degree of correlations ρ. Solid line refers to Rstrong
bivariate(ρ);

Dotted line refers to Rweak
trivariate(ρ); Dashed line referes to Rmildly weak

trivariate (ρ); Dash-dotted refers to
Rstrong

trivariate(ρ).

−1 −0.5 0 0.5 1

ρpeak

ρ

R
(ρ

)

The non-monotonic behavior of the ratio Rmildly weak
trivariate (ρ) in Equation (39) corresponds to the information

geometric complexities for the mildly weak connected three-dimensional lattice. Interestingly,
the growth stops at a critical value ρpeak = 1

2
at which Rmildly weak

trivariate (ρpeak) = Rstrong
bivariate(ρpeak). From

Equation (30), we conclude that entropic inferences on three Gaussian distributed micro-variables
on a fully connected lattice is carried out in a more efficient manner when the two micro-variables
are negatively correlated. Instead, when such micro-variables are positively correlated, macroscopic
predictions become more complex that in the absence of correlations. Furthermore, the ratio Rstrong

trivariate(ρ)

of the information geometric complexities for this fully connected three-dimensional lattice increases
in a monotonic fashion. These conclusions are similar to those presented for the bivariate case.
However, there is a key-feature of the IGC to emphasize when passing from the two-dimensional to the
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three-dimensional manifolds associated with fully connected lattices: the effects of negative-correlations
and positive-correlations are amplified with respect to the respective absence of correlations scenarios,

Rstrong
trivariate(ρ)

Rstrong
bivariate(ρ)

=

√
1 + 2ρ

1 + ρ
, (44)

where ρ ∈ (−1
2
, 1).

Specifically, carrying out entropic inferences on the higher-dimensional manifold in the presence of
anti-correlations, that is for ρ ∈

(
−1

2
, 0
)
, is less complex than on the lower-dimensional manifold as

evident form Equation (44). The vice-versa is true in the presence of positive-correlations, that is for
ρ ∈ (0, 1).

4. Concluding Remarks

In summary, we considered low dimensional Gaussian statistical models (up to a trivariate model)
and have investigated their dynamical (temporal) complexity. This has been quantified by the volume
of geodesics for parameters characterizing the probability distribution functions. To the best of our
knowledge, there is no dynamic measure of complexity of geodesic paths on curved statistical manifolds
that could be compared to our IGC. However, it could be worthwhile to understand the connection, if
any, between our IGC and the complexity of paths of dynamic systems introduced in [20]. Specifically,
according to the Alekseev-Brudno theorem in the algorithmic theory of dynamical systems [21], a way
to predict each new segment of chaotic trajectory is obtained by adding information proportional to the
length of this segment and independent of the full previous length of trajectory. This means that this
information cannot be extracted from observation of the previous motion, even an infinitely long one! If
the instability is a power law, then the required information per unit time is inversely proportional to the
full previous length of the trajectory and, asymptotically, the prediction becomes possible.

For the sake of completeness, we also point out that the relevance of volumes in quantifying the static
model complexity of statistical models was already pointed out in [22] and [23]: complexity is related to
the volume of a model in the space of distributions regarded as a Riemannian manifold of distributions
with a natural metric defined by the Fisher–Rao metric tensor. Finally, we would like to point out that
two of the Authors have recently associated Gaussian statistical models to networks [17]. Specifically,
it is assumed that random variables are located on the vertices of the network while correlations
between random variables are regarded as weighted edges of the network. Within this framework, a
static network complexity measure has been proposed as the volume of the corresponding statistical
manifold. We emphasize that such a static measure could be, in principle, applied to time-dependent
networks by accommodating time-varying weights on the edges [24]. This requires the consideration of
a time-sequence of different statistical manifolds. Thus, we could follow the time-evolution of a network
complexity through the time evolution of the volumes of the associated manifolds.

In this work we uncover that in order to have a reduction in time of the complexity one has to consider
both mean and variance as macro-variables. This leads to different topological structures of the parameter
space in (13); in particular, we have to consider at least a 2-dimensional manifold in order to have
effects such as a power law decay of the complexity. Hence, the minimal hypothesis in a multivariate
Gaussian model consists in considering all mean values equal and all covariances equal. In such a case,
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however, the complexity shows interesting features depending on the correlation among micro-variables
(as summarized in Figure 1). For a trivariate model with only two correlations the information geometric
complexity ratio exhibits a non monotonic behavior in ρ (correlation parameter) taking zero value at the
extrema of the range of ρ. In contrast to closed configurations (bivariate and trivariate models with all
micro-variables correlated each other) the complexity ratio exhibits a monotonic behavior in terms of the
correlation parameter. The fact that in such a case this ratio cannot be zero at the extrema of the range of
ρ is reminiscent of the geometric frustration phenomena that occurs in the presence of loops [11].

Specifically, recall that a geometrically frustrated system cannot simultaneously minimize all
interactions because of geometric constraints [11,18]. For example, geometric frustration can occur
in an Ising model which is an array of spins (for instance, atoms that can take states ±1) that are
magnetically coupled to each other. If one spin is, say, in the +1 state then it is energetically favorable
for its immediate neighbors to be in the same state in the case of a ferromagnetic model. On the contrary,
in antiferromagnetic systems, nearest neighbor spins want to align in opposite directions. This rule can
be easily satisfied on a square. However, due to geometrical frustration, it is not possible to satisfy it on
a triangle: for an antiferromagnetic triangular Ising model, any three neighboring spins are frustrated.
Geometric frustration in triangular Ising models can be observed by considering spin configurations
with total spin J = ±1 and analyzing the fluctuations in energy of the spin system as a function of
temperature. There is no peak at all in the standard deviation of the energy in the case J = −1, and a
monotonic behavior is recorded. This indicates that the antiferromagnetic system does not have a phase
transition to a state with long-range order. Instead, in the case J = +1, a peak in the energy fluctuations
emerges. This significant change in the behavior of energy fluctuations as a function of temperature in
triangular configurations of spin systems is a signature of the presence of frustrated interactions in the
system [19].

In this article, we observe a significant change in the behavior of the information geometric
complexity ratios as a function of the correlation coefficient in the trivariate Gaussian statistical models.
Specifically, in the fully connected trivariate case, no peak arises and a monotonic behavior in ρ

of the information geometric complexity ratio is observed. In the mildly weak connected trivariate
case, instead, a peak in the information geometric complexity ratio is recorded at ρpeak ≥ 0. This
dramatic disparity of behavior can be ascribed to the fact that when carrying out statistical inferences
with positively correlated Gaussian random variables, the maximum entropy favorable scenario is
incompatible with these working hypothesis. Thus, the system appears frustrated.

These considerations lead us to conclude that we have uncovered a very interesting information
geometric resemblance of the more standard geometric frustration effect in Ising spin models. However,
for a conclusive claim of the existence of an information geometric analog of the frustration effect, we
feel we have to further deepen our understanding. A forthcoming research project along these lines will
be a detailed investigation of both arbitrary triangular and square configurations of correlated Gaussian
random variables where we take into consideration both the presence of different intensities and signs of
pairwise interactions (ρij 6= ρik if j 6= k, ∀i).
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