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Abstract: Divergence is a discrepancy measure between two objects, such as functions,
vectors, matrices, and so forth. In particular, divergences defined on probability distributions
are widely employed in probabilistic forecasting. As the dissimilarity measure, the
divergence should satisfy some conditions. In this paper, we consider two conditions: The
first one is the scale-invariance property and the second is that the divergence is approximated
by the sample mean of a loss function. The first requirement is an important feature for
dissimilarity measures. The divergence will depend on which system of measurements we
used to measure the objects. Scale-invariant divergence is transformed in a consistent way
when the system of measurements is changed to the other one. The second requirement is
formalized such that the divergence is expressed by using the so-called composite score. We
study the relation between composite scores and scale-invariant divergences, and we propose
a new class of divergences called Hölder divergence that satisfies two conditions above. We
present some theoretical properties of Hölder divergence. We show that Hölder divergence
unifies existing divergences from the viewpoint of scale-invariance.

Keywords: divergence; scale invariance; composite score; Hölder inequality; reverse
Hölder inequality

1. Introduction

Nowadays, divergence measures are ubiquitous in the field of information sciences. The divergence
is a discrepancy measure between two objects, such as functions, vectors, matrices, and so forth. In
particular, divergences defined on the set of probability distributions are widely used for probabilistic
forecasting such as weather and climate prediction [1,2], computational fiance [3], and so forth. In many
statistical inferences, statistical models are prepared to estimate the probability distribution generating
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observed samples. A divergence measure between the true probability and the statistical model is
estimated based on observed samples, and the probability distribution in the statistical model that
minimizes the divergence measure is chosen as the estimator. A typical example is the maximum
likelihood estimator based on the Kullback-Leibler divergence [4].

Dissimilarity measures for statistical inference should satisfy some conditions. In this paper, we focus
on two conditions. The first one is the scale-invariance property, and the second one is that the divergence
should be represented by using the so-called composite score [5], that is an extension of scores [6].

The first requirement is the scale-invariance. Suppose that the divergence is used to measure the
dissimilarity between two objects, then the divergence will depend on the system of measurements we
used to measure the objects. The scale-invariant divergence has a favorable property such that it is
transformed in a consistent way when the system of measurements is changed to the other one. For
example, the measured value between two objects depends on the unit of length. Typically, measured
values in different units are transformed to each other by multiplying an appropriate positive constant.
The Kullback-Leibler divergence that is one of the most popular divergences has the scale-invariance
property for the measurement of training samples [7].

As the second requirement, dissimilarity measures should be expressed as the form of composite
scores. This is a useful property, when the divergence is employed for the statistical inference of the
probability densities. When the divergence D(f, g) is calculated through the expectation with respect to
the probability density f , the sample mean over the observations works to approximate the divergence.
The score [2,5,6,8–10] is the class of dissimilarity measures that are calculated through the sample mean
of the observed data. The characterization of the score is studied by [6,10], and the deep connection
between scores and divergences were revealed.

In the present paper, we propose composite scores as an extension of scores, and study the relation
between composite scores and scale-invariant divergences. We propose a new class of divergences called
Hölder divergence, that is defined through a class of composite scores. We show that Hölder divergence
unifies existing divergences from the viewpoint of the scale-invariance. The Hölder divergence with
the one-dimension parameter γ is defined from a function φ. Partially, the Hölder divergence with
non-negative γ was proposed in [5]. Here, we extend the previous result to any real number γ.

The remainder of the article is as follows: In Section 2, some basic notions such as divergence,
scale-invariance and score are introduced. In Section 3, we propose the Hölder divergence. Some
theoretical properties of Hölder divergence are investigated in Section 4. In Section 5, we close this
article with a discussion of the possibility of the newly introduced divergences. Technical calculations
and proofs are found in the appendix.

Let us summarize the notations to be used throughout the paper. Let R be the set of all real numbers,
R+ be the set of all non-negative real numbers, and R++, and the set of all positive real numbers. For a
real-valued function f : Ω → R defined on a domain Ω in the Euclidean space, let 〈f〉 be the integral∫

Ω
f(x)dx. In most arguments of the current paper, Ω is the closed interval [0, 1] in R. Extension of the

theoretical results to any compact set in the multi-dimensional Euclidean space is straightforward.
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2. Preliminaries

In this section, we show definitions of some basic concepts.

2.1. Divergences and Scores

Let us introduce scores and divergences. Below, positive-valued functions are defined on the
compact set Ω. The score is defined as the real-valued functional S(f, g) in which f(x) and g(x) are
positive-valued functions on Ω.

Let D(f, g) be

D(f, g) = S(f, g)− S(f, f).

The functional D(f, g) is called the divergence, if D(f, g) ≥ 0 holds with equality if and only if
f = g. Suppose that the score S(f, g) induces a divergence. Then, clearly the score should satisfy
S(f, g) ≥ S(f, f) with equality only when f = g. The divergence does not necessarily satisfy the
definition of the distance, because neither the symmetry nor triangle inequality holds in general.

Bregman divergence [11] and Csiszár ϕ-divergence [12,13] are important classes of divergences. Here
we focus on the Bregman divergence, since they are frequently employed in various statistical inferences.
See [6,11] for details.

Definition 1 (Bregman divergence; Bregman score). For positive-valued function f : Ω → R++, let
G(f) be a strictly convex functional and G∗f (x) be the functional derivative of G at f , i.e., G∗f (x) is
determined from the equality

d

dε
G(f + εh)

∣∣
ε=0

=

∫
Ω

G∗f (x)h(x)dx = 〈G∗fh〉

for any h such that f + εh is a positive-valued function for sufficiently small ε. Then, the Bregman
divergence is defined as

D(f, g) = G(f)−G(g)− 〈G∗g(f − g)〉.

The score associated with the Bregman divergence is called the Bregman score, that is defined as

S(f, g) = −G(g)− 〈G∗g(f − g)〉.

The functional G is referred to as the potential of the Bregman divergence, and it satisfies the equality
G(f) = −S(f, f).

The rigorous definition of G∗f requires the dual space of Banach space. See [14] (Chapter 4) for
sufficient conditions of the existence of G∗f . To avoid technical difficulties, we assume the existence of
the functional derivative in the above definition.

The remarkable property of Bregman divergence is that associated score S(f, g) is represented as
the linear function of f . This is a nice property for statistical inference, since one can substitute the
empirical distribution directly into f . In other words, the sample-based approximation of the Bregman
score is obtained by the sample-mean of a function depending on the model g. For this reason, the
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Bregman divergences have a wide range of applications in statistics, machine learning, data mining, and
so forth [15–17].

Though Bregman divergence is a popular class of divergences, the computation of the potential may
be a hard task. The separable Bregman divergence is an important subclass of Bregman divergences.
In many applications of statistical forecasting, the separable Bregman divergences are used due to the
computational tractability.

Definition 2 (separable Bregman divergence). Let J : R+ → R be a strictly convex differentiable
function. The separable Bregman score is defined as

S(f, g) = −
∫

Ω

{J(g(x)) + J ′(g(x))(f(x)− g(x))} dx = −〈J(g) + J ′(g) (f − g)〉,

where J ′ is the derivative of J . The separable Bregman divergence is

D(f, g) = S(f, g)− S(f, f) = 〈J(f)− J(g)− J ′(g)(f − g)〉.

The potential of the separable Bregman divergence is G(f) = 〈J(f)〉.

Due to the convexity of J , the non-negativity of the separable Bregman divergence is guaranteed.
Moreover, the strict convexity of J ensures that the equality D(f, g) = 0 holds only if f = g. Some
examples of divergences are shown below.

Example 1 (Kullback-Leibler divergence). One of the most popular divergences in information sciences
is the Kullback-Leibler(KL) divergence [4]. Let us define the KL score for positive-valued functions f
and g as

SKL(f, g) = 〈−f log g + g〉.

The associated divergence is called the KL divergence, that is defined as

DKL(f, g) = SKL(f, g)− SKL(f, f) =

〈
f log

f

g
− f + g

〉
.

This is represented as the separable Bregman divergence with the potentialG(f) = 〈f log f−f〉 defined
from J(z) = z log z − z.

Example 2 (Itakura-Saito distance). The Itakura-Saito (IS) distance was originally used to measure
the dissimilarity between two power spectrum densities [18]. Though IS distance does not satisfy the
mathematical condition of the distance, the term “distance” is conventionally used. For positive-valued
functions f, g on Ω, IS score is defined as

SIS(f, g) =

〈
f

g
+ log g

〉
,

and the IS distance is defined as

DIS(f, g) = SIS(f, g)− SIS(f, f) =

〈
f

g
− log

f

g
− 1

〉
.
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The non-negativity of DIS(f, g) is guaranteed by the inequality of z − log z − 1 ≥ 0 for z > 0. The IS
distance is the separable Bregman divergence with the potential G(f) = −〈log f + 1〉. The IS distance
is scale-invariant, i.e., DIS(af, ag) = DIS(f, g) holds for any positive real number a. This invariance
ensures that the low energy components have the same relative importance as high energy ones. This is
especially important in short-term audio spectra [19,20].

Example 3 (density-power divergence). The density-power divergence is a one-parameter extension of
the KL-divergence. The density-power score is defined as

S(γ)
power(f, g) =

〈
1

1 + γ
g1+γ − 1

γ
fgγ
〉

for γ ∈ R \ {0,−1}, and the density power divergence is defined as

D(γ)
power(f, g) = S(γ)

power(f, g)− S(γ)
power(f, f) =

〈
1

1 + γ
g1+γ − 1

γ
fgγ +

1

γ(1 + γ)
f 1+γ

〉
.

The density-power divergence is employed in the robust parameter estimation [21,22]. The limit γ → 0

of the density-power divergence yields the KL-divergence, and the limit γ → −1 yields the IS-distance.
Though originally the density-power divergence is defined for positive γ [21], the above definition works
for any real number γ. The density-power divergence is expressed as the separable Bregman divergence
with the potential G(f) = 1

γ(1+γ)
〈g1+γ〉.

Example 4 (pseudo-spherical divergence; γ divergence). The pseudo-spherical divergence [6,23] is
defined as

D
(γ)
sphere(f, g) =

1

γ
〈f 1+γ〉1/(1+γ) − 〈fgγ〉

γ〈g1+γ〉γ/(1+γ)
, γ 6= 0,−1,

that is derived from the pseudo-spherical score

S
(γ)
sphere(f, g) = − 〈fgγ〉

γ〈g1+γ〉γ/(1+γ)
.

The pseudo-spherical divergence does note satisfy the definition of the divergence in the present paper,
since D(γ)

sphere(f, g) = 0 holds for linearly dependent functions f and g. On the set of probability density
functions, however, the equality D(γ)

sphere(p, q) = 0 leads to p = q. Thus, pseudo-spherical divergence
is still useful in statistical inference, though it is not divergence on the set of positive-valued functions.
The γ divergence [24] is defined as − log(−S(γ)

sphere(f, g)) + log(−S(γ)
sphere(f, f)), and the first term of the

γ divergence is used for robust parameter estimation. The pseudo-spherical divergence is represented
as the non-separable Bregman divergence with the potential G(f) = 1

γ
〈f 1+γ〉1/(1+γ). This potential is

strictly convex on the set of probability densities. The parameter γ can take both positive and negative
real numbers.

Example 5 (α-divergence). For positive-valued functions f, g, the α-divergence [25,26] is defined as

D
(α)
alpha(f, g) =

1

α(α− 1)
〈fαg1−α − αf − (1− α)g〉
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for α ∈ R\{0, 1}. Generally, α-divergence is not included in Bregman divergence, since the term fαg1−α

is not linear in f . The limit α → 1 and α → 0 yield the KL-divergence DKL(f, g) and DKL(g, f),
respectively. We show that the α-divergence has the invariance property. Let c(x) be a one-to-one
differentiable mapping from x ∈ Rd to c(x) ∈ Rd, and c′(x) ∈ Rd be the gradient vector. For the
transformation f(x) 7→ fc(x) = |c′(x)|f(c(x)), the equality D(α)

alpha(fc, gc) = D
(α)
alpha(f, g) holds. This

invariance is a common property of Csiszár’s ϕ-divergence [12,13].

2.2. Scale-Invariance of Divergences

Let us consider the scale-invariance of divergences. Suppose that f(x) is a density at the point
x ∈ Ω = [0, 1]. Here, not only the probability density but also the mass density or spectrum density
is considered. Hence, the density is not necessarily normalized, but should be finite measures. For
density functions, the total mass does not change under the variable transformation of the coordinate x.
Especially, for the scale-transformation x 7→ y = x/σ with σ > 0, the density f(x) in the x-coordinate
should be transformed to σf(σy) in the y-coordinate. In addition, under the scale-transformation of the
function value, the density f(x) is transformed to af(x) with some positive constant a. For the density
function, we allow the combination of the above two transformations,

f(x) 7−→ fa,σ(x) = aσf(σx), a, σ > 0. (1)

The support of f is also properly transformed to that of fa,σ. The transformation Equation (1) is
induced by changing the unit of systems of the measurement. On multi-dimensional space, the density
fa,σ(x) with the positive constant a and invertible matrix σ is defined as a|detσ|f(σx), in which detσ

is the determinant of the matrix σ. In most arguments in the paper, one-dimensional case is considered,
since the extension to the multi-dimensional domain is straightforward.

As a natural requirement, the divergence measure should not be essentially affected by systems of
measurement. More concretely, the relative nearness between two densities should be preserved under
the transformation Equation (1). This requirement is formalized as the relative invariance for the scale
transformation, i.e., there exists a function κ(a, σ) such that the equality

D(fa,σ, ga,σ) = κ(a, σ)D(f, g) (2)

holds for any pair of densities f, g and any transformation f 7→ fa,σ. The divergence satisfying
Equation (2) is referred to as the scale-invariant divergence. Some popular divergences satisfy
the scale-invariance; κ(a, σ) = a for KL-divergence and α-divergence, κ(a, σ) = σ−1 for
IS-distance, κ(a, σ) = a1+γσγ for density-power divergence, and κ(a, σ) = aσγ/(1+γ) for
pseudo-spherical divergence.

2.3. Divergence for Statistical Inference

The divergence D(f, g) or score S(f, g) is widely applied in statistical inference. The discrepancy
between two probability densities are measured by the divergence or score. Typically, the true probability
density p and the model probability density q are substituted into the divergence D(p, q), and D(p, q) is
minimized with respect to the model q in order to estimate the probability density p. This is the same as
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the minimization of the score S(p, q). Usually, one cannot directly access the true probability density.
However, the true probability p can be replaced with the empirical probability density of observed
samples, when the samples are observed from p. Given the empirical probability density p̃, the empirical
score S(p̃, q) is expected to approximate S(p, q). The estimator is obtained by minimizing S(p̃, q) with
respect to the model density q.

Generally, one cannot directly substitute the empirical probability density p̃ into p of the score S(p, q),
since p̃ is expressed by the sum of Dirac’s delta function. Suppose that the score depends on p through
the expectation of a random variable with respect to p. Then, one can substitute the empirical distribution
p̃ into p. Let us introduce the composite score into which one can substitute the empirical distributions.

Definition 3 (composite score). For positive-valued functions f and g on Ω, the score expressed as

S(f, g) = ψ(〈fU(g)〉, 〈V (g)〉)

is called the composite score, where ψ is a real-valued function on R2 and U and V are real-valued
functions. The integrals 〈fU(g)〉 and 〈V (g)〉 denote

∫
Ω
f(x)U(g(x))dx and

∫
Ω
V (g(x))dx, respectively.

The composite score was introduced in [5]. The function ψ is arbitrary in the above definition.
When we impose some constraints on the composite scores, the form of ψ will be restricted. Concrete
expressions of ψ are presented in Section 3. For the purpose of statistical inference, it is sufficient to
define scores on the set of probability densities. However, the scores defined for positive-valued functions
are useful to investigate theoretical properties; see [10] for details.

Separable Bregman divergences are represented by using composite scores. Indeed, the separable
Bregman divergence with the potential G(g) = 〈J(g)〉 is obtained by setting U(g) = −J ′(g),

V (g) = J ′(g)g − J(g) and ψ(a, b) = a + b in the composite score. Hence, the KL-divergence,
Itakura-Saito distance, density-power divergence are represented by using the composite score. Though
the pseudo-spherical divergence over the set of probability densities is a non-separable Bregman
divergence, it is expressed by the composite score as shown in Section 3.

Scale-invariant divergences defined from composite scores are useful for statistical inference.
Suppose thatD(f, g) = S(f, g)−S(f, f) is the scale-invariant divergence. Then, the statistical inference
using the score S(f, g) does not essentially depend on the systems of measurement in the observations.
Let q̂ be the estimator based on the sample x, and (̂q1,σ) be the estimator based on the transformed sample
σx with the model q1,σ, where q1,σ(x) = σq(σx). If the estimator is obtained as the optimal solution of
the score that induces the scale-invariant divergence, we obtain (̂q1,σ) = ( q̂ )1,σ. Such estimator is called
the equivariant estimator [27]. The estimation result based on the equivariant estimator is transformed
in the consistent way, when the systems of the measurement is changed.

Let us define the equivalence class among scores. The two scores are said to be equivalent if a
score is transformed to the other score by a strictly increasing function, i.e., for any monotone increasing
function ξ, two scores, S(f, g) and ξ(S(f, g)), are equivalent. The statistical inference is often conducted
by minimizing the score. Hence, the equivalent scores provide the same estimator. If a equivalence
class includes a score that leads to a scale-invariant divergence, all scores in the class provide the
equivariant estimator.
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In sequel sections, we introduce the Hölder score that is a class of composite scores with the
scale-invariance property. Then, we investigate theoretical properties of the Hölder score.

3. Hölder Divergences

Let us define a class of scale-invariant divergences expressed by the composite score. The divergence
is called the Hölder divergence. The name comes from the fact that the Hölder inequality or its reverse
variant is used to prove the non-negativity of the divergence. The Hölder divergence unifies existing
divergences from the viewpoint of the scale-invariance.

Definition 4 (Hölder score; Hölder divergence). The Hölder score is defined from a real number γ ∈ R
and a function φ : R+ → R as follows:

• For γ 6= 0,−1 and s ∈ {1,−1}, the Hölder score is defined as

Sγ(f, g) = φ

(
〈fgγ〉
〈g1+γ〉

)
〈g1+γ〉s. (3)

The parameter s is set to s = 1 for γ > 0 or γ < −1, and s = −1 for 0 > γ > −1. The function
φ satisfies φ(1) = −1 and φ(z) ≥ −zs(1+γ) for z ≥ 0, and the equality holds only when z = 1.

• For γ = 0, the Hölder score is defined as S0(f, g) = 〈−f log g+g+cf〉, where c is a real number.

• For γ = −1, the Hölder score is defined as S−1(f, g) = 〈f/g + log g + cf〉, where c is a
real number.

The Hölder divergence is defined as

Dγ(f, g) = Sγ(f, g)− Sγ(f, f)

for γ ∈ R.

The Hölder divergence with the non-negative γ is defined in [5]. For γ < 0, γ 6= −1, it is sufficient to
define the function φ(z) for z > 0, since the computation of φ(0) does not required for such γ under the
condition that the integral in the divergence is finite. The characterization of the Hölder score is shown in
Section 4.3. The Hölder score (divergence) defined from the parameters γ and the function φ is denoted
as Sγ (Dγ) with φ, or Sφγ (Dφ

γ ). It is clear that Hölder score is a composite score. We show that Hölder
divergence satisfies the conditions of the divergence.

Theorem 1. For positive-valued functions f, g, the Hölder divergence Dγ(f, g) satisfies the inequality
Dγ(f, g) ≥ 0 with equality if and only if f = g.

Proof. The Hölder divergences D0 and D−1 coincide with the KL-divergence and IS distance,
respectively. Hence, Dγ with γ = 0 or −1 is the divergence.

For positive-valued functions f and g, the Hölder inequality 〈fg〉 ≤ 〈fα〉1/α〈gβ〉1/β holds for
1/α + 1/β = 1 with α, β > 1, and the reverse Hölder inequality 〈fg〉 ≥ 〈fα〉1/α〈gβ〉1/β holds for
1/α + 1/β = 1 with 1 > α > 0 > β.
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For γ 6∈ [−1, 0], the Hölder inequality or its reverse variant leads to 〈fgγ〉1+γ ≤ 〈f 1+γ〉〈g1+γ〉γ .
Hence, we have

Sγ(f, g) ≥ −
(
〈fgγ〉
〈g1+γ〉

)(1+γ)

〈g1+γ〉 ≥ −〈f 1+γ〉 = Sγ(f, f),

in which the first inequality comes from φ(z) ≥ −z1+γ and the second inequality is derived from
the (reverse) Hölder inequality. When the first and second inequalities become equality, we have
〈fgγ〉/〈g1+γ〉 = 1 and the linearly dependence of f and g. As a result, the equality Sγ(f, g) = Sγ(f, f)

gives f = g.
For γ ∈ (−1, 0), the reverse Hölder inequality for positive-valued functions f and g is expressed as

〈fgγ〉1+γ ≥ 〈f 1+γ〉〈g1+γ〉γ . Hence, we have

Sγ(f, g) ≥ −
(
〈g1+γ〉
〈fgγ〉

)1+γ
1

〈g1+γ〉
≥ − 1

〈f 1+γ〉
= Sγ(f, f)

in which the first inequality comes from φ(z) ≥ −z−(1+γ) and the second inequality is derived from the
reverse Hölder inequality. The same argument in the case of γ 6∈ [−1, 0] works to show that the equality
Sγ(f, g) = Sγ(f, f) leads to f = g.

The Hölder divergences have the scale-invariance. The following calculation is straightforward.

Theorem 2. For the Hölder divergence, the equality

Dγ(fa,σ, ga,σ) = (a1+γσγ)sDγ(f, g), γ ∈ R \ {0,−1}

holds for a, σ > 0.

In addition, we have D0(fa,σ, ga,σ) = aD0(f, g) and D−1(fa,σ, ga,σ) = σ−1D−1(f, g). There is
no Hölder divergence such that the equality Dγ(fa,σ, ga,σ) = Dγ(f, g) holds for arbitrary a, α > 0.
Moreover, the theorem in Section 4.3 ensures that there is no scale-invariant divergence based on the
composite score such that the scale function, κ(a, σ), is constant.

The class of Hölder divergences includes some popular divergences that are used in statistics and
information theory. Some examples are shown below.

Example 6 (density-power divergence and Hölder divergence). The Hölder score with γ 6∈ [−1, 0] and
φ(z) = −(1 + γ)z + γ is equivalent with the density-power score in Example 3 with the same γ. For
γ ∈ (−1, 0), the Hölder score with φ(z) = −1/((1+γ)z−γ) is equivalent with the density-power score
with the same γ.

Example 7 (pseudo-spherical divergence and Hölder divergence). The pseudo-spherical score is
equivalent with the score Equation (3) with φ(z) = −zs(1+γ), where s = 1 for γ 6∈ [−1, 0] and s = −1

for γ ∈ (−1, 0). In our definition of the Hölder score, setting φ(z) = −zs(1+γ) is not allowed.

Example 8 (Bregman-Hölder divergence). For γ 6= 0,−1 and κ 6= 0, 1, let us define the potential
Gγ,κ(f) as

Gγ,κ(f) =

〈f 1+γ〉κ/(1+γ) γ > 0, κ > 1 or γ < 0, κ < 0,

−〈f 1+γ〉κ/(1+γ) γ < 0, 0 < κ < 1.
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For γ < 0, the reverse Minkowski inequality ensures that −〈f 1+γ〉1/(1+γ) is convex in f . For
γ > 0, κ > 1 or γ < 0, κ < 0, the corresponding Bregman divergence is given as

D(f, g) = 〈f 1+γ〉κ/(1+γ) + 〈g1+γ〉κ/(1+γ)

(
(κ− 1)− κ 〈fg

γ〉
〈g1+γ〉

)
.

For the parameter γ < 0 and 0 < κ < 1, the divergence is the negative of the above. The parameter
κ = 1 + γ yields the density-power divergence, and the parameter κ = 1 does the pseudo-spherical
divergence. In this paper, this divergence is denoted as the Bregman-Hölder divergence, and the
divergence with positive γ is considered in [5]. The Bregman-Hölder divergence is characterized by
the intersection of Bregman divergence and Hölder divergence. This fact is proved in Theorem 3.

Example 9 (α-divergence and Hölder divergence). The α-divergence with α 6= 0, 1 in Example 5 is
represented by using the Hölder divergence, though it is not a member in the class of the composite
scores. Indeed, using the density-power divergence in Example 3, we have

D
(α)
alpha(f, g) =

α− 1

α
D(1/α−1)

power (fα, gα)

for α 6= 0, 1.

4. Theoretical Properties of Hölder Divergences

In this section, we present some theoretical properties of Hölder divergence.

4.1. Conjugate Relation

Let us consider the conjugate relation among Hölder divergences. Firstly, we point out that the KL
divergence and IS distance are related to each other by the equality,

DIS(f, g) = DKL(1, f/g),

i.e., for Hölder divergence, the equality D−1(f, g) = D0(1, f/g) holds. This relation is extended to
Hölder divergences.

Suppose γ 6= 0,−1, and let Dφ
γ (f, g) be the Hölder divergence with γ and φ. Let γ∗ = −1 − γ

and φ∗(z) be zsφ(1/z), in which s ∈ {1,−1} is determined from γ as shown in Definition 4. Since
γ∗ ∈ (−1, 0) for γ ∈ (−1, 0) and γ∗ 6∈ [−1, 0] for γ 6∈ [−1, 0] hold, we define s∗ = s. We find that
φ(z) ≥ −zs(1+γ) guarantees the inequality φ∗(z) ≥ −zs∗(1+γ∗). It is straightforward to confirm that
the equality

Dφ∗

γ∗ (f, g) = Dφ
γ (f−γ/(1+γ), f 1/(1+γ)g−1),

or equivalently,

Dφ∗

−1−γ(f
−1−1/γ, f−1/γg−1) = Dφ

γ (f, g),

holds. Let ι be the transformation

ι : (γ, φ, f, g) −→ (γ∗, φ∗, f−1−1/γ, f−1/γg−1).
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Then, ι ◦ ι is the identity map. This implies that the Hölder divergences, Dφ
γ and Dφ∗

γ∗ , are connected
by the conjugate relation. In the current setup, though the IS-distance D−1 is represented by the
KL-divergence D0, the representation of D0(f, g) by using D−1 is not properly defined.

4.2. Bregman Divergence and Hölder Divergence

Since the Hölder divergence Dγ(f, g) is not necessarily convex in f , the Hölder divergence is not
always represented as the form of a Bregman divergence. Let us identify the equivalence class of the
intersection of Bregman divergences and Hölder divergences.

Theorem 3. Let Dγ(f, g) = Sγ(f, g)− Sγ(f, f) with φ be a Hölder divergence.

• If Sγ is equivalent with the score S that induces the Bregman divergence D(f, g) =

S(f, g)− S(f, f). Then, D(f, g) is the Bregman-Hölder divergence in Example 8.

• If Sγ is equivalent with the score S that induces the separable Bregman divergence D(f, g) =

S(f, g)− S(f, f). Then, D(f, g) is the density-power divergence.

For γ > 0, the theorem was proved in [5]. We present the proof for γ < 0. The proof is found in
Appendix A.

Amari [28] studied the intersection between Bregman divergence and Csiszár f -divergence under the
power-representation of probability distributions. There are some attempts to define the divergence that
connects the density-power divergence and the pseudo-spherical divergence [22]. The Bregman-Hölder
divergence is different from the existing one.

4.3. Characterization of Hölder Scores

In Section 3, we showed that the Hölder divergence is defined from the composite score and have
the scale-invariance property. Conversely, we show that these properties characterize the class of Hölder
divergences. Some technical assumptions are introduced in the below.

Assumption 1. Let D(f, g) = S(f, g)−S(f, f) be the divergence for the positive-valued functions f, g
on the compact support Ω.

(a) D(f, g) satisfies the scale-invariance property Equation (2), and S(f, g) is expressed as the
composite score ψ(〈fU(g)〉, 〈V (g)〉).

(b) The functions U, V and ψ are differentiable. The two-dimensional gradient vector of ψ does not
vanish on any point x ∈ R2 that is expressed as x = (〈fU(f)〉, 〈V (f)〉) for a positive-valued
function f .

Theorem 4. Suppose that the divergence D(f, g) = S(f, g)− S(f, f) satisfies Assumption 1. Then, the
composite score S(f, g) is equivalent with the Hölder score.

We use the following lemmas to prove Theorem 4.



Entropy 2014, 16 2622

Lemma 1. Suppose that D(f, g) is the divergence defined from the composite score,
S(f, g) = ψ(〈fU(g)〉, 〈V (g)〉). We assume the condition (b) in Assumption 1. Then, V ′(z) = czU ′(z)

holds with a non-zero constant c ∈ R.

Lemma 2. Under Assumption 1, the functions U(z) and V (z) are given by one of followings:

• U(z) = zγ + c and V (z) = z1+γ for γ 6= 0,−1.

• U(z) = − log z + c and V (z) = z and c ∈ R.

• U(z) = 1/z + c and V (z) = log z and c ∈ R.

The proof of Lemma 1 is shown in Lemma C.1 of [5], and hence, we omit the proof. Lemma 2 for
positive γ is also proved in [5] under slightly different conditions. The proof of Lemma 2 is shown
in Appendix B. Some involved argument is required to specify the expression of the function ψ of the
composite score. The detailed proofs are found in Appendix C.

For the probability densities f and g defined on a non-compact support Rd, Kanamori and
Fujisawa [5] specified the expression of divergence D(f, g) having the affine invariance for the
coordinate x. In such case, the Hölder divergence with negative γ such as the Itakura-Saito distance
is excluded, since they are not defined for functions on the non-compact support. In the present paper,
we consider the divergences for the positive-valued functions on the compact support Ω.

Separable Bregman divergences are derived from composite scores. Hence, we obtain the
following result.

Corollary 5. Suppose that the separable Bregman divergence is scale-invariant. Then, the divergence
should be the density-power divergence.

Different invariance property provides different divergences. Indeed, the invariance under any
invertible and differentiable data transformation leads to the Csiszár ϕ-divergence [7,29], and a different
type of the scale-invariance leads to the pseudo-spherical divergence [24].

5. Conclusions

We proposed Hölder divergence as defined from the composite score, and showed that the Hölder
divergence has the scale-invariance property. In addition, we proved that the composite score satisfying
the scale-invariance property leads to the Hölder divergence. Hölder divergence is determined by a
real number γ and a function φ. In the previous work [5], the Hölder divergence with a positive γ
was proposed from the affine-invariance, and it was used to the robust parameter estimation. In this
paper, we extended the previous work to Hölder divergence, having even negative parameter γ. As a
result, the density-power divergence with a negative parameter and Itakura-Saito distance were unified
under the Hölder divergence. The Hölder divergence with a non-negative γ can be used to measure
the discrepancy between two non-negative functions on a non-compact support. On the other hand, the
Hölder divergence defined from any real number γ is available to measure the degree of nearness between
two non-negative functions on a compact domain. Technically, the reverse Hölder inequality and the
reverse Minkowski inequality were used to prove the non-negativity of the divergence. Functions with a
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compact support are also useful in statistical data analysis, though most of frequently-used densities are
defined on non-compact set such as the normal distribution. Indeed, the power spectrum densities are
defined on the compact set [−π, π], and the IS-distance is used to measure the discrepancy between two
power spectrum densities.

We presented a method of constructing the scale-invariant divergences from the (reverse) Hölder
inequality. This is a new approach for introducing a class of divergences. We expect that the new class
of divergences open up a new applications in the field of information sciences.
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Appendix

A. Proof of Theorem 3

Proof of case 1. Let G(g) be the potential of the Bregman divergence D(f, g). Suppose that there exists
a strictly monotone increasing function ξ such that

−G(g)− 〈G∗g(f − g)〉 = ξ(Sγ(f, g)) (4)

holds for the Hölder score Sγ . Substituting f into g, we have G(g) = −ξ(−〈g1+γ〉) for γ 6∈ [−1, 0] and
G(g) = −ξ(−1/〈g1+γ〉) for γ ∈ (−1, 0). We prove the case of γ 6∈ [−1, 0]. The same proof works for
the other case. Let x = 〈g1+γ〉 and z = 〈fgγ〉/〈g1+γ〉. Then, the Equation (4) is rewritten as

−ξ(−x)− (1 + γ)ξ′(−x)(xz − x) = ξ(φ(z)x).

By differentiating the both sides twice by z and setting z = 1, we have

xξ′(−x)φ′′(1) + x2(φ′(1))2ξ′′(−x) = 0.

The solution of the differential equation is given by ξ(x) = c0 + c1x
α, where c0, c1, α are constants.

Hence, the potential is represented as G(f) = c〈f 1+γ〉κ/(1+γ) where c and κ are constants. Due to the
convexity of G(f), the parameters c and κ are determined as shown in Example 8.

Proof of case 2. Since S(f, g) and Sγ(f, g) is equivalent, there exists a monotone function ξ such that

−〈J(g) + J ′(g)(f − g)〉 = ξ

(
φ

(
〈fgγ〉
〈g1+γ〉

)
〈g1+γ〉s

)
holds, where s ∈ {1,−1}. By setting g = f , we obtain ξ(〈f 1+γ〉s) = −〈J(f)〉. Setting f to be a
constant function f(x) = a, x ∈ [0, 1], we obtain J(a) = −ξ(a(1+γ)s). Thus, the equality

ξ(〈f 1+γ〉s) = 〈ξ(f (1+γ)s)〉
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should hold. Let f(x) on [0, 1] be the step function defined as f(x) = a > 0 for 0 ≤ x ≤ p and
f(x) = b > 0 for p < x ≤ 1, where p ∈ (0, 1). Then, the equality

ξ({pa1+γ + (1− p)b1+γ}s) = pξ(a(1+γ)s) + (1− p)ξ(b(1+γ)s)

holds for all p, a, b. This implies that ξ(zs) is an affine function with respect to z > 0. Therefore, we
obtain 〈J(f)〉 = c0 + c1〈f 1+γ〉. Due to the convexity of 〈J(f)〉 in f , we find c1 > 0 for −1 > γ and
c1 < 0 for 0 > γ > −1. As the result, only the separable Bregman score defined from J(z) = c1z

1+γ

is equivalent with the Hölder score. This is nothing but the density-power score extended to the negative
parameter γ.

B. Proof of Lemma 2

Suppose f and g be positive-valued functions defined on Ω = [0, 1]. Extension to the compact set in
the multi-dimensional space is straightforward.

Proof. Let us consider the transformation f(x) 7→ fa,1(x) = af(x) for a positive real number a > 0.
The scale-invariance property (2) leads to

h(a)D(fa,1, ga,1) = D(f, g),

where h(a) = 1/κ(a, 1). Let f(x) be a constant function, f(x) = 1 for x ∈ [0, 1], and v(x) be a function
such that supx∈[0,1] |v(x)| < 1. For any ε such that |ε| < 1, the scale-invariance property leads to

∂

∂a
h(a)D((f + εv)a,1, ga,1) = 0.

Therefore, we obtain

∂2

∂ε∂a
h(a)D((f + εv)a,1, ga,1)

∣∣∣∣
a=1,ε=0

= 0.

Some algebra yields that the above equation is expressed as∫ 1

0

{c0 + c1U(g(x)) + c2g(x)U ′(g(x))}v(x)dx = 0

for any function v(x), where c0, c1 and c2 are constants. Hence, we have

c0 + c1U(g(x)) + c2g(x)U ′(g(x)) = 0.

for any positive-valued function g(x). As a result, the function U(z) should satisfy the
differential equation

c0 + c1U(z) + c2zU
′(z) = 0

for z > 0. Up to a constant factor, the solution is given as U(z) = zγ + c or U(z) = log z + c for
γ, c ∈ R. Due to Lemma 1, we have V (z) = z1+γ for U(z) = zγ + c with γ 6= 0,−1, V (z) = log z

for U(z) = 1/z + c, and V (z) = z for U(z) = − log z + c up to a constant factor. As shown in [5], the
relative invariance under the transformation f(x) 7→ f1,σ(x) = σf(σx) provides the same solution.
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C. Proofs of Theorem 4

Proof for U(z) = − log z + c and V (z) = z. The composite score is given as

S(f, g) = ψ(〈−f log g + cf〉, 〈g〉).

For any pair of positive functions f, g, the inequality 〈−f log g+ cf〉+ 〈g〉 ≥ 〈−f log f + cf〉+ 〈f〉
holds, and the equality holds if and only if f = g. Hence, for the function ψ, the equality
ψ(x, y) = ψ(z, w) holds for x+y = z+w, and the inequality ψ(x, y) > ψ(z, w) holds for x+y > z+w.
Therefore, ψ(x, y) is expressed as ξ(x+y) by using a strictly increasing function ξ. As a result, the score
is given as S(f, g) = ξ(〈−f log g + g + cf〉) that is equivalent with the Hölder score with γ = 0 up to a
monotone transformation.

Proof for U(z) = 1/z + c and V (z) = log z. The composite score is given as

S(f, g) = ψ(〈f/g + cf〉, 〈log g〉).

Remember that 〈f/g + log g〉 − 〈1 + log f〉 is nothing but the Itakura-Saito distance. Hence, for any
pair of positive functions f, g, the inequality 〈f/g + cf〉 + 〈log g〉 ≥ 〈1 + cf〉 + 〈log f〉 holds, and the
equality holds if and only if f = g. Hence, for the function ψ, the equality ψ(x, y) = ψ(z, w) holds
for x + y = z + w, and the inequality ψ(x, y) > ψ(z, w) holds for x + y > z + w. Therefore, ψ(x, y)

is expressed as ξ(x + y) by using a strictly increasing function ξ. The score should be represented as
S(f, g) = ξ(〈f/g + cf + log g〉), that is equivalent with the Hölder score with γ = −1.

In the above proof, the identity function ξ(z) = z leads to the Itakura-Saito distance, and ξ(z) = ez

with c = 0 also leads to another scale-invariant divergence.

Proof for U(z) = zγ + c and V (z) = z1+γ with γ 6= 0,−1. In the paper [5], the case of γ > 0 is proved.
Lemma C.2 of [5] showed that the scale-invariance of p 7→ p1,σ, leads to ψ(x, y) = φ((x−c)/y)ys, where
φ : R+ → R and s ∈ R. Even for 0 > γ 6= −1, we find that the proof works. As a result, we see that the
score with 0 > γ 6= −1 is expressed as

S(f, g) = φ

(
〈f(gγ + c)〉 − c〈f〉

〈g1+γ〉

)
〈g1+γ〉s = φ

(
〈fgγ〉
〈g1+γ〉

)
〈g1+γ〉s.

We prove that the above S(f, g) is equivalent with the Hölder score with γ < 0. Let g be g(x) = 1 for
x ∈ Ω = [0, 1]. Then, S(f, g) − S(f, f) = φ(〈f〉) − φ(1)〈f 1+γ〉s. If s = 0 or φ(1) = 0 holds, the
equality S(f, g) − S(f, f) = 0 holds for any f such that 〈f〉 = 1. This is the contradiction. Hence,
we have sφ(1) 6= 0. Hence, it is sufficient to consider the case of s = ±1 as the representative of the
equivalent class.

Let us consider the sign of sφ(1). Since S(f, g) defines the divergence D(f, g), the inequality

S(f, g)− S(f, f) =

{
φ

(
〈fgγ〉
〈g1+γ〉

)
〈g1+γ〉s

〈f 1+γ〉s
− φ(1)

}
〈f 1+γ〉s ≥ 0

holds. Let f and g be functions such that

1 =
〈fgγ〉
〈g1+γ〉

>

(
〈f 1+γ〉
〈g1+γ〉

)1/(1+γ)

(5)
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for γ < 0, i.e., the reverse Hölder’s inequality strictly holds for f and g such that 1 = 〈fgγ〉/〈g1+γ〉.
Such choice is possible. For example, for linearly independent functions f and g0 with 〈fgγ0 〉 6= 0,
let g be g0〈fgγ0 〉/〈g

1+γ
0 〉. For γ ∈ (−1, 0), we have 1 < 〈g1+γ〉/〈f 1+γ〉, and for γ < −1, we have

0 < 〈g1+γ〉/〈f 1+γ〉 < 1. For such f and g, the inequality

φ

(
〈fgγ〉
〈g1+γ〉

)
〈g1+γ〉s

〈f 1+γ〉s
− φ(1) = φ(1)

(
〈g1+γ〉s

〈f 1+γ〉s
− 1

)
≥ 0.

should hold. As a result, we have φ(1)s > 0 for γ ∈ (−1, 0) and φ(1)s < 0 for γ < −1.
We prove that S(f, g) = φ(〈fgγ〉/〈g1+γ〉)〈g1+γ〉s with γ < 0 and s = ±1 leads to the divergence

D(f, g) = S(f, g) − S(f, f) only when φ(z) enjoys (1 + γ)sφ(1) > 0 and φ(z) ≥ φ(1)z(1+γ)s. The
inequality (1 + γ)sφ(1) > 0 was proved in the above. Suppose that there exists z0 > 0 such that
φ(z0) < φ(1)z

(1+γ)s
0 . Choose f and g such that(

〈fgγ〉
〈g1+γ〉

)1+γ

=
〈f 1+γ〉
〈g1+γ〉

= z1+γ
0

holds. This is possible by choosing, say, g = f/z0 for some f . For such f and g, we have

S(f, g)− S(f, f) = φ(z0)〈g1+γ〉s − φ(1)〈f 1+γ〉s

< φ(1)z
(1+γ)s
0 〈g1+γ〉s − φ(1)〈f 1+γ〉s

= φ(1)
〈f 1+γ〉s

〈g1+γ〉s
〈g1+γ〉s − φ(1)〈f 1+γ〉s

= 0,

in which 〈g1+γ〉 > 0 is used. This is the contradiction. Therefore, the inequality φ(z) ≥ φ(1)z(1+γ)s

should hold for all z > 0.
For γ < −1 and s = −1, we have φ(1) > 0, and we obtain φ(z) ≥ φ(1)z−(1+γ) ≥ 0 for z ≥ 0.

the score Sγ(f, g) with s = −1 and φ(z) is equivalent with the score Sγ(f, g) with s = 1 and
−1/φ(z) ≥ −z1+γ/φ(1). As a result, for the score with γ < −1, the parameter s can be fixed to
s = 1. For 0 > φ(1) = −1, the score S(f, g) is equivalent with the Hölder score with the same γ.

In the same way, For γ ∈ (−1, 0) and s = 1, we have φ(1) > 0 due to (1 + γ)sφ(1) > 0. Then, we
obtain φ(z) ≥ φ(1)z1+γ ≥ 0 for z ≥ 0. Hence, for γ ∈ (−1, 0), the score Sγ(f, g) with s = 1 and φ(z)

is equivalent with the score Sγ(f, g) with s = −1 and −1/φ(z) ≥ −z−(1+γ)/φ(1). Therefore, for the
score with γ ∈ (−1, 0), the parameter s can be fixed to s = −1. When 0 > φ(1) = −1 holds, the score
S(f, g) is equivalent with the Hölder score with γ ∈ (−1, 0).
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