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Abstract: This paper formulates a novel expression for entropy inspired in the properties
of Fractional Calculus. The characteristics of the generalized fractional entropy are tested
both in standard probability distributions and real world data series. The results reveal that
tuning the fractional order allow an high sensitivity to the signal evolution, which is useful
in describing the dynamics of complex systems. The concepts are also extended to relative
distances and tested with several sets of data, confirming the goodness of the generalization.
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1. Introduction

During the last decades the scientific community paid considerable attention to the generalization
of concepts such as information, entropy [1–4] and differentiation [5–8]. Entropy was introduced
in thermodynamics by Clausius and Boltzmann and was later adopted by Shannon and Jaynes in
information theory [9–11]. Fractional Calculus (FC) was introduced by Leibniz in mathematics and
found application in the areas of biology, physics and engineering [12–18]. The progress motivated
the formulation of novel entropy indices and fractional operators, often relaxing some properties and
allowing their application in complex dynamical systems [19–21].

The generalized concepts motivate further developments and new research avenues emerge. Bearing
these ideas in mind, the present study combines both concepts and is organized as follows. Section 2
introduces entropy and fractional calculus in order to formulate the new generalized fractional entropy.
Section 3 applies the new index in several types of data, namely two mathematical induced series, the
digits of number π [22] and the Weierstrass function, two financial time series, the Dow Jones Industrial
Average and the Europe Brent Spot Price [23,24], and one genomic series, the Human chromosome
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Y [25]. The results are analysed and distinct entropy formulations, for several fractional orders,
compared. Section 4 expands the proposed index towards the concepts of distance. The Kullback-Leibler
and Jensen-Shannon divergence measures are revisited and rewritten in the light of the fractional
perspective. The performance of the index is tested with two sets of data, namely 13 irrational numbers
and the whole 24 Human chromosomes, adopting the fractional order that reveals higher sensitivity.
Finally, Section 5 outlines the main conclusions.

2. Fractional Generalization of Entropy

Information theory was developed by Claude Shannon in 1948 [26,27] and has been applied in many
scientific areas. The fundamental cornerstone is the information content of some event having probability
of occurrence pi:

I (pi) = − ln pi (1)

The expected value, called Shannon entropy [28,29], becomes:

S = E (− ln p) =
∑
i

(− ln pi)pi (2)

where E (·) denotes the expected value operator.
Expression (2) obeys the four Khinchin axioms [30,31] and several generalizations of entropy have

been proposed, obeying only a sub-set of them.
Recently Ubriaco brought together information theory and FC and proposed [32] the expression:

Sq = E [(− ln p)q] =
∑
i

(− ln pi)
qpi (3)

where 0 ≤ q ≤ 1 denotes the “order” so that q = 1 yields Expression (2). This formulation obeys
the same properties as the Shannon entropy except additivity and is the expected value of information
content given by:

Iq (pi) = (− ln pi)
q (4)

It is well known in FC the adoption of a power function for obtaining intermediate values, that is, for
“fractionating” classical integer operators. In brief, the Laplace transform of the fractional derivative of
order α ∈ R of a signal x (t) with zero initial conditions is given by:

L{0Dαx (t)} = sαL{x (t)} (5)

where t represents time, and L{·} and s denote the Laplace operator and variable, respectively.
This property motivated the approximation of fractional derivatives by expanding the factor sα both

with the Fourier and the Z transforms [33,34]. However, the adoption by means of a power function is
related with transforms and we can design a distinct fractional approach for information and entropy. In
fact, we can think of Shannon information I (pi) = − ln pi between the cases D−1I (pi) = pi (1− ln pi)

and D1I (pi) = − 1
pi

, which, in the perspective of FC, leads to the proposal of information and entropy
of order α ∈ R given by [35]:

Iα (pi) = DαI (pi) = − p−αi
Γ (α + 1)

[ln pi + ψ (1)− ψ (1− α)] (6)
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Sα =
∑
i

{
− p−αi

Γ (α + 1)
[ln pi + ψ (1)− ψ (1− α)]

}
pi (7)

where Γ (·) and ψ (·) represent the gamma and digamma functions.
Expression (7) fails to obey some of the Khinchin axioms with exception of the case α = 0 that leads

to the classical Shannon entropy. This behaviour is in line with what occurs in FC, where fractional
derivatives fail to obey some of the properties of integer-order operators. By other words, in both cases,
by generalizing operators we loose some classical properties.

Figure 1 shows the locus of Iq versus (q, p), 0 ≤ q ≤ 1, and Iα versus (α, p),−1 ≤ α ≤ 1. We observe
that Iq has a smaller amplitude excursion than Iα. Moreover, we verify that Iα takes not only positive, but
also negative values for α > 0. Therefore, Expression (6) assumes also the assumption that we can have
negative information, that, for a given value of α > 0, can be interpreted as derived from “misleading
events”. While exploring the concept of “deception” is not the objective of the present paper, we should
note that related ideas were addressed, in abstract terms, in the scope of negative probabilities [36–41]
and, in practical terms, in the scope of robotics [42]. In short, we can say that the parameter α allows
us to tune the level of confidence of the information varying from positive (trustworthy) up to negative
(deceptive) information.

Figure 1. Variation of information: Iq versus (q, p), 0 ≤ q ≤ 1 (left) and Iα versus (α, p),
−1 ≤ α ≤ 1 (right).
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In order to illustrate the behaviour of the new index and to compare the two approaches Figure 2
depicts the entropies Sq and Sα for the uniform, Poisson (α = 2), geometric (p = 0.3), binomial
(p = 0.3), and Benford probability distributions. We verify that Sq has a much smaller variation with
q than Sα with α. There is a large similarity between the shape of the curves for 0 < q ≤ 1 and
−0.5 < α ≤ 0. This is natural since Sq tends to the traditional entropy when q → 1, while Sα tends to
the traditional entropy when α → 0. Furthermore, we verify that Sα has maxima for 0.07 < α < 0.23

and reaches null values for 0.62 < α < 0.68. Therefore, in a practical application we can adopt values
for α in the first range if information is reliable, or we can consider values of α in the second range if
data contains misleading information.
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Figure 2. Entropy variation for the uniform, Poisson (α = 2), geometric (p = 0.3), binomial
(p = 0.3), Benford probability distributions: Sbinq versus q (left) and Sbinα versus α (right).
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Usually it is of interest to investigate the evolution for a binary distribution, that in our case leads to
the expressions:

Sbinq = p (− ln p)q + (1− p) [− ln (1− p)]q (8)

Sbinα = p

{
− pα

Γ (α + 1)
[ln (p) + ψ (1)− ψ (1− α)]

}
+ (1− p)

{
− (1− p)α

Γ (α + 1)
[ln (1− p) + ψ (1)− ψ (1− α)]

}
(9)

Figure 3 shows the locus of Sq and Sα versus (p, q), 0 ≤ q ≤ 1, and (α, p),−1 ≤ α ≤ 1, respectively.
In both cases we have a symmetrical variation relatively to p = 0.5, but Sq is less sensitive than Sα to
the variation of the order. In the case of Sα we observe that the chart passes from convex to concave in
the region of α = 0.5.

3. Application of the Generalized Entropy

This section applies Sq and Sα to the mathematical constant π, the Weierstrass function, the Dow
Jones Industrial Average (closing values) and the Europe Brent Spot Price (USD per barrel) financial
time series, and one genomic series, the Human chromosome Y. The mathematical constant π is
expanded in base 10, and each digit is considered separately in the series. In the Weierstrass function,
f (ξ) =

∑∞
n=0 a

n cos (bnπξ) are adopted the parameters a = 0.5, b = 3 and the range −2 ≤ ξ ≤ 2.
The two financial series correspond to daily values during the period 18 May 1987 up to 14 March 2014.
In the four cases we adopt a total of L = 7000 data values. For the calculation of the histograms of
relative frequency a non-overlapping sliding time window of W = 100 points is adopted, producing
a total of k = 1, · · · , 70 samples. In the case of the genomic series we have four bases denoted
{A,C,T,G} that are sampled in groups of 3 producing histograms with 43 bins. A small percentage
of triplets involving the symbol N (considered as “not useful” in genomics) are not analysed. Therefore,
a sequence of size L = 872 · 104 is adopted and two distinct non-overlapping sliding windows, of
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W1 = 10, 000 and W2 = 124, 571 points each, are considered producing a total of k = 1, · · · , 872

and k = 1, · · · , 70 samples, respectively.

Figure 3. Variation of entropy: Sbinq versus (q, p), 0 ≤ q ≤ 1 (left) and Sbinα versus (α, p),
−1 ≤ α ≤ 1 (right).
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Figures 4 and 5 represent Sq versus (q, p), and Sα versus (α, p), for the π series and the Weierstrass
function, respectively. We observe that Sq has a low sensitivity to the dynamics of the series exhibiting
significant variations only for q close to one, that is, when it reduces to the Shannon entropy. On the other
hand, Sα detects clearly dynamical variations, being particularly sensitive in the region 0 < α < 0.6.

Figures 6 and 7 depict the plots of Sq and Sα for the Dow Jones Industrial Average and Europe Brent
Spot Price, respectively. We verify a behaviour similar to the one pointed out previously.

Figure 4. Entropy variation for the π series: Sq versus (q, p), 0 ≤ q ≤ 1 (left) and Sα versus
(α, p), −1 ≤ α ≤ 1 (right).
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Figure 5. Entropy variation for the Weierstrass function: Sq versus (q, p), 0 ≤ q ≤ 1 (left)
and Sα versus (α, p), −1 ≤ α ≤ 1 (right).
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Figure 6. Entropy variation for the Dow Jones Industrial Average time series: Sq versus
(q, p), 0 ≤ q ≤ 1 (left) and Sα versus (α, p), −1 ≤ α ≤ 1 (right).
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Finally, Figures 8 and 9 show Sq and Sα for the Human chromosome Y, with the only difference being
the size and number of sliding windows. As previously the higher sensitivities occur for q = 1 with Sq
and for α = 0.5 with Sα. The sliding window W1 is more appropriate for highlighting dynamical
evolutions than window W2 that is considerable large and leads to an “averaging” of the information
content of the chromosome series.

It is interesting to note that the average entropy over the complete data series characterizes the type of
embedded information. In fact, the maxima values are (α, Savα ) = (0.225, 2.52), (α, Savα ) = (0.375, 4.08)

and (α, Savα ) = (0.40, 0.217), for the {π}, {Weierstrass, Dow Jones Industrial Average, Europe Brent
Spot Price} and {Human chromosome Y} (both windows) data series, respectively. The results remain
identical for other numerical constants and chromosomes to be discussed in the next section.
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Figure 7. Entropy variation for the Europe Brent Spot Price time series: Sq versus (q, p),
0 ≤ q ≤ 1 (left) and Sα versus (α, p), −1 ≤ α ≤ 1 (right).
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Figure 8. Entropy variation for the Human chromosome Y, W1 = 10, 000: Sq versus (q, p),
0 ≤ q ≤ 1 (left) and Sα versus (α, p), −1 ≤ α ≤ 1 (right).

0 0.5 1

q

200

400

600

800

k

0

0.05

0.1

0.15

0.2

0.25

−1 −0.5 0 0.5 1

α

200

400

600

800

k

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 9. Entropy variation for the Human chromosome Y, W2 = 124, 571: Sq versus (q, p),
0 ≤ q ≤ 1 (left) and Sα versus (α, p), −1 ≤ α ≤ 1 (right).
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4. Application of the Generalized Entropy

In this section we explore further the concept of generalized fractional information and entropy.
We start by recalling the Kullback-Leibler divergence of Q from P defined as [43–47]:

DKL (P ‖ Q) =
∑
i

pi ln
pi
qi

(10)

The Jensen-Shannon divergence JSD (P ‖ Q) is defined as:

JSD (P ‖ Q) =
1

2
[DKL (P ‖M) +DKL (P ‖M)] (11)

where M = P+Q
2

.
Alternatively, we can calculate JSD (P ‖ Q) as:

JSD (P ‖ Q) =
1

2

[∑
i

pi ln pi +
∑
i

qi ln qi

]
−
∑
i

mi lnmi (12)

Having in mind Expressions (4), (6) and (12), the fractional JSD can be written as:

JSDq (P ‖ Q) =
1

2

∑
i

pi (− ln pi)
q +

1

2

∑
i

qi (− ln qi)
q −

∑
i

mi (− lnmi)
q (13)

JSDα (P ‖ Q) =
1

2

∑
i

pi

{
− p−αi

Γ (α + 1)
[ln pi + ψ (1)− ψ (1− α)]

}
+

1

2

∑
i

qi

{
− q−αi

Γ (α + 1)
[ln qi + ψ (1)− ψ (1− α)]

}
−
∑
i

mi

{
− m−αi

Γ (α + 1)
[lnmi + ψ (1)− ψ (1− α)]

}
(14)

In order to illustrate the fractional-order distance we consider two examples, namely the set A of
n = 13 irrational numbers and the set B of n = 24 Human chromosomes. Set A consists of the
numbers Pi (π = 3.141 · · · ), Nepper (e = 2.718 · · · ), Euler-Mascheroni (γ = 0.577 · · · ), Catalan
(G = 0.915 · · · ), Hilbert or Gelfond-Schneider (2

√
2 = 2.665 · · · ), Khinchin (K0 = 2.685 · · · ), Golden

ratio (ϕ = 1+
√
5

2
= 1.618 . . .), ln 2, ln 3, ln 5,

√
2,
√

3 and
√

5 labelled in the sequel as {Pi, Nep,
Eul, Cat, Hil, Khi, Gol, Ln2, Ln3, Ln5, St2, St3, St5}. Set B consists of the whole set of Human
chromosomes labelled in the sequel as {Hu1, ..., Hu22, HuX, HuY}. The irrational numbers are
expanded up to 7000 digits and, for each one, groups of two digits feed 102 bins of histograms of relative
frequency of occurrence. On the other hand, the chromosome bases are read in triplets feeding 43 bins of
histograms of relative frequency of occurrence. In both cases, a comparison n × n symmetrical matrix
D of element to element relative distances is constructed, adopting the indices JSDq and JSDα. For
simplifying comparisons all distances were converted to the interval between zero (minimum distance)
and one (maximum distance). The results are visualized by means of Phylip [48,49] (plots using
options “neighbor” and “drawtree”), a package of programs for inferring phylogenies. These algorithms
produces a tree based on matrix D, trying to accommodate the distances into the two dimensional space.
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Figures 10 and 11 show the trees for sets A and B based of distances (13) and (14). We verify
that not only the charts are qualitatively of the same type, but also that the generalization leads to
results compatible with those produced by distinct methods [50–52] which confirms the goodness of
the proposed concept.

Figure 10. Tree (Phylip with algorithm “neighbor” and visualization by “drawtree”) of the
set A of 13 irrational numbers, compared by means of the indices Iq, q = 1 (left) and Iα,
α = 0.5 (right).
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Figure 11. Tree (Phylip with algorithm “neighbor” and visualization by “drawtree”) of the
set B of 24 Human chromosomes compared by means of the indices Iq, q = 1 (left) and Iα,
α = 0.5 (right).
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5. Conclusions

This paper presented a generalization of the concept of entropy inspired in the properties of Fractional
Calculus. The novel index follows the recent trend in expanding the scope of application of both
mathematical tools, by relaxing some properties and allowing their application in new scientific areas.
The generalized fractional entropy was first adopted with several typical probability distributions.
In a second phase the index was also applied to several types of data, namely of mathematical, financial
and biological nature. It was verified that the proposed entropy leads to an higher sensitivity to the
signal evolution being useful in describing the dynamics of complex systems. Furthermore, the proposed
generalization embeds the concept of positive and negative information, that is, with data either reliable
or misleading, allowing the extension of entropy for deceptive cases. The new formulation is then
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extended for measuring relative distances and tested with two distinct sets of data. The results reveal
the goodness of the generalized fractional information concept.

Acknowledgments

The author thanks the anonymous reviewers for their constructive comments.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Plastino, A.; Plastino, A.R. Tsallis entropy and Jaynes’ Information Theory formalism.
Braz. J. Phys. 1999, 29, 50–60.

2. Li, X.; Essex, C.; Davison, M.; Hoffmann, K.H.; Schulzky, C. Fractional diffusion, irreversibility
and entropy. J. Non-Equilib. Thermodyn. 2003, 28, 279–291.

3. Mathai, A.; Haubold, H. Pathway model, superstatistics, Tsallis statistics, and a generalized
measure of entropy. Physica A 2007, 375, 110–122.

4. Anastasiadis, A. Special issue: Tsallis entropy. Entropy 2012, 14, 174–176.
5. Oldham, K.; Spanier, J. The Fractional Calculus: Theory and Application of Differentiation and

Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974.
6. Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and

Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993.
7. Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential

Equations; Wiley: New York, NY, USA, 1993.
8. Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations;

North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204.
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40. Székely, G.J. Half of a Coin: Negative Probabilities. Wilmott Magazine 2005,

pp. 66–68.
41. Machado, J.T. Fractional coins and fractional derivatives. Abstr. Appl. Anal. 2013, 2013,

doi:10.1155/2013/205097.
42. Shim, J.; Arkin, R.C. A taxonomy of robot deception and its benefits in HRI. In Proceedings of the

2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16
October 2013; pp. 2328–2335.

43. Sibson, R. Information radius. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
1969, 14, 149–160.

44. Taneja, I.; Pardo, L.; Morales, D.; Ménandez, L. Generalized information measures and their
applications: A brief survey. Qüestiió 1989, 13, 47–73.
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