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Abstract: We propose a numerical method to learn maximum entropy (MaxEnt)
distributions with spatio-temporal constraints from experimental spike trains. This is an
extension of two papers, [10] and [4], which proposed the estimation of parameters where
only spatial constraints were taken into account. The extension we propose allows one to
properly handle memory effects in spike statistics, for large-sized neural networks.
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1. Introduction

With the evolution of multi-electrode array (MEA) acquisition techniques, it is currently possible to
simultaneously record the activity of a few hundred neurons up to a few thousand [1]. Stevenson et al. [2]
reported that the number of recorded neurons doubles approximately every eight years. However, beyond
the mere recording of an increasing number of neurons, there is a need to extract relevant information
from data in order to understand the underlying dynamics of the studied network, how it responds to
stimuli and how the spike train response encodes these stimuli. In the realm of spike train analysis,
this means having efficient spike sorting techniques [3–6], but also efficient methods to analyze spike
statistics. The second aspect requires using canonical statistical models, whose parameters have to be
tuned (“learned”) from data.

The maximum entropy method (MaxEnt) offers a way of selecting canonical statistical models from
first principles. Having its root in statistical physics, MaxEnt consists of fixing a set of constraints,
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determined as the empirical average of features measured from the spiking activity. Maximizing the
statistical entropy given those constraints provides a unique probability, called a Gibbs distribution,
which approaches, at best, data statistics in the following sense: among all probability distributions that
match the constraints, this is the one that has the smallest Kullback-Leibler divergence with the data
([7]). Equivalently, it satisfies the constraints without adding additional assumption on the statistics [8].

Most studies have focused on properly describing the statistics of spatially-synchronized patterns
of neuronal activity without considering time-dependent patterns and memory effects. In this setting,
pairwise models [9,10] or extensions with triplets and quadruplets interactions [11–13] were claimed to
correctly fit ≈ 90 to 99% of the information. However, considering now the capacity of these models to
correctly reproduce spatio-temporal spike patterns, the performances drop-off dramatically, especially in
the cortex [14,15] or in the retina [16].

Taking into account spatio-temporal patterns requires introducing memory in statistics, described as
a Markov process. MaxEnt extends easily to this case (see Section 2.2 and the references therein for
a short description) producing Gibbs distributions in the spatio-temporal domain. Moreover, rigorous
mathematical methods are available to fit the parameters of the Gibbs distribution [16]. However, the
main drawback of these methods is the huge computer memory they require, preventing their applications
to large-scale neural networks. Considering a model with memory depth D (namely, the probability of a
spike pattern at time t depends on the spike activity in the interval [t−D, t−1]), there are 2N(D+1) possible
patterns. The method developed in [16] requires one to handle a matrix of size 2N(D+1) × 2N(D+1).
Therefore, it becomes intractable for N(D + 1) > 20.

In this paper, we propose an alternative method to fit the parameters of a spatio-temporal Gibbs
distribution with larger values of the product, N(D + 1). We have been able to go up to N(D + 1)

(∼ 120) on a small cluster (64 processors AMD Opteron(tm) 2, 300 MHz). The method is based on
[17] and [18], who proposed the estimation of parameters in spatial Gibbs distributions. The extension
in the spatio-temporal domain is not straightforward, as we show, but it carries over to the price of
some modifications. Combined with parallel Monte Carlo computing developed in [19], this provides a
numerical method, allowing one to handle Markovian spike statistics with spatio-temporal constraints.

The paper is organized as follow. In Section 2, we recall the theoretical background for spike trains
with a Gibbs distribution. We discuss both the spatial and spatio-temporal case. In the next section, 3, we
explain the method to fit the parameters of MaxEnt distributions. As we mathematically show, the convex
criterion used by [17] still applies for spatio-temporal constraints. However, the method used by [18] to
avoid recomputing the Gibbs distribution at each parameters change cannot be directly used and has to
be adapted using a linear response scheme. In the last section, 4, we show benchmarks evaluating the
performance of this method and discuss the computational obstacles that we encountered. We made tests
with both synthetic and real data. Synthetic data were generated from known probability distributions
using a Monte Carlo method. Real data correspond to spike trains obtained from retinal ganglion cells
activity (courtesy of M.J. Berry and O. Marre). The method shows a satisfying performance in the case
of synthetic data. Real data analysis is not systematic, but instead used as an illustration and comparison
with the paper of Schneidman et al. 2006 ([9]). As we could see in the example, the performance on real
data, although satisfying, is affected by the large number of parameters in the distribution, a consequence
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of the choice to work with canonical models (Ising, pairwise with memory). This effect is presumably
not related to our method, but to a standard problem in statistics.

Some of our notations might not be usual to some readers. Therefore, we added a list of symbols at
the end of the paper.

2. Gibbs Distributions in the Spatio-Temporal Domain

2.1. Spike Trains and Observables

2.1.1. Spike Trains

We consider the joint activity of N neurons, characterized by the emission of action potentials
(“spikes”). We assume that there is a minimal time scale, δ, set to one without loss of generality, such
that a neuron can at most fire a spike within a time window of size δ. This provides a time discretization
labeled with an integer time, n. Each neuron activity is then characterized by a binary variable. We use
the notation, ω, to differentiate our binary variables ∈ { 0, 1 } to the notation, σ or S, used for “spin”
variables ∈ {−1, 1 }. ωk(n) = 1 if neuron k fires at time n, and ωk(n) = 0, otherwise.

The state of the entire network in time bin n is thus described by a vector ω(n)
def
= [ωk(n) ]Nk=1, called

a spiking pattern. A spike block is a consecutive sequence of spike patterns, ωn2
n1

, representing the activity
of the whole network between two instants, n1 and n2.

ωn2
n1

= {ω(n) }{n1≤n≤n2} .

The time-range (or “range”) of a block, ωn2
n1

, is n2−n1 +1, the number of time steps from n1 to n2. Here
is an example of a spike block with N = 4 neurons and range R = 3:

0 1 1

0 0 1

1 0 1

1 1 1


A spike train or raster is a spike block, ωT0 , from some initial time, zero, to some final time, T . To
alleviate the notations, we simply write ω for a spike train. We note Ω, the set of spike trains.

2.1.2. Observables

An observable is a function, O, which associates a real number, O(ω), to a spike train. In the realm
of statistical physics, common examples of observables are the energy or the number of particles (where
ω would correspond, e.g., to a spin configuration). In the context of neural networks examples are the
number of neuron firing at a given time, n,

∑N
k=1 ωk(n), or the function ωk1(n1)ωk2(n2), which is one if

neuron k1 fires at time n1 and neuron k2 fires at time n2, and is zero, otherwise.
Typically, an observable does not depend on the full raster, but only on a sub-block of it. The

time-range (or “range”) of an observable is the minimal integer R > 0, such that, for any raster, ω,
O(ω) = O

(
ωR−1

0

)
. The range of the observable

∑N
k=1 ωk(n) is one; the range of ωk1(n1)ωk2(n2) is

n2 − n1 + 1. From now on, we restrict to observables of range R, fixed and finite. We set D = R− 1.
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An observable is time-translation invariant if, for any time n > 0, we have O
(
ωn+D
n

)
≡ O

(
ωD0
)

whenever ωn+D
n = ωD0 . The two examples above are time-translation invariant. The observable

λ(n1)ωk1(n1)ωk2(n2), where λ is a real function of time, is not time-translation invariant. Basically,
time-translation invariance means that O does not depend explicitly on time. We focus on such
observables from now on.

2.1.3. Monomials

Prominent examples of time-translation invariant observables with range R are products of the form:

mp1,...,pr(ω)
def
=

r∏
u=1

ωku(nu). (1)

where pu, u = 1 . . . r are pairs of spike-time events (ku, nu), ku = 1 . . . N being the neuron index and
nu = 0 . . . D being the time index. Such an observable, called monomial, takes therefore values in
{ 0, 1 } and is one, if and only if ωku(nu) = 1, u = 1 . . . r (neuron k1 fires at time n1, . . . ; neuron kr fires
at time nr). A monomial is therefore a binary observable that represents the logic-AND operator applied
to a prescribed set of neuron spike events.

We allow the extension of the definition (1) to the case where the set of pairs p1, . . . , pr is empty,
and we set m∅ = 1. For a number, N , of neurons and a time range, R, there are, thus, 2N R such
possible products. Any observable of rangeR can be represented as a linear combination of products (1).
Monomials constitute therefore a canonical basis for observable representation. To alleviate notations,
instead of labeling monomials by a list of pairs, as in (1), we shall label them by an integer index, l.

2.1.4. Potential

Another prominent example of an observable is the function called “energy” or potential in the realm
of the MaxEnt. Any potential of range R can be written as a linear combination of the 2NR possible
monomials (1):

Hλ =
2NR∑
l=1

λlml, (2)

where some coefficients, λl, in the expansion may be zero. Therefore, by analogy with spin
systems, monomials somewhat constitute spatio-temporal interactions between neurons: the monomial∏r

u=1 ωku(nu) contributes to the total energy, Hλ(ω), of the raster, ω, if and only if neuron k1 fires at
time n1, . . . , and neuron kr fires at time nr in the raster, ω. The number of pairs in a monomial (1)
defines the degree of an interaction: Degree 1 corresponds to “self-interactions”, Degree 2 to pairwise,
and so on. Typical examples of such potentials are the Ising model [9,10,20]:

HIsing (ω(0) ) =
∑
i

λiωi(0) +
∑
ij

λijωi(0)ωj(0), (3)

where considered events are individual spikes and pairs of simultaneous spikes. Another example is the
Ganmor–Schneidman–Segev (GSS) model [11,12]:

HGSS (ω(0) ) =
∑
i

λiωi(0) +
∑
ij

λijωi(0)ωj(0) +
∑
ijk

λijkωi(0)ωj(0)ωk(0), (4)
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where, additionally to 3, simultaneous triplets of spikes are considered (we restrict the form (4) to a
triplet, although Ganmor et al. were also considering quadruplets). In these two examples, the potential
is a function of the spike pattern at a given time. Here, we choose this time equal to zero, without loss
of generality, since we are considering time-translation invariant potentials. More generally, the form
(2) affords the consideration of spatio-temporal neurons interactions: this allows us to introduce delays,
memory and causality in spike statistics estimation. A simple example is a pairwise model with delays,
such as:

HPR

(
ωD0
)

=
∑
i

λiωi(D) +
D∑
s=0

∑
ij

λsijωi(0)ωj(s), (5)

where ‘PR’ stands for ‘pairwise with range R’, which takes into account the events where neuron i fires
s time steps after a neuron, j, with s = 0 . . . D.

2.2. The Maximum Entropy Principle

Assigning equal probabilities (uniform probability distribution) to possible outcomes goes back to
Laplace and Bernoulli ([21]) (“principle of insufficient reason”). Maximizing the statistical entropy
without constraints is equivalent to this principle. In general, however, one has some knowledge about
data, typically characterized by the empirical average of the prescribed observables (e.g., for spike trains,
firing rates, the probability that a fixed group of neurons fire at the same time, the probability that K
neurons fire at the same time [22]); this constitutes a set of constraints. The maximum entropy principle
(MaxEnt) is a method to obtain, from the observation of a statistical sample, a probability distribution that
approaches, at best, the statistics of the sample, taking into account these constraints without additional
assumptions [8]. Maximizing the statistical entropy given those constraints provides a distribution as far
as possible from the uniform one and as close as possible to the empirical distribution. For instance,
considering the empirical mean and variance of the sample of a random variable as constraints results in
a Gaussian distribution.

Although some attempts have been made to extend MaxEnt to non-stationary data [23–26], it is mostly
applied in the context of stationary statistics: the average of an observable does not depend explicitly on
time. We shall work with this hypothesis. In its simplest form, the MaxEnt also assumes that the sample
has no memory: the probability of an outcome at time t does not depend on the past. We first discuss
the MaxEnt in this context in the next section, before considering the case of processes with memory in
Section 2.2.2.

2.2.1. Spatial Constraints

In our case, the natural constraints are represented by the empirical probability of occurrence of
characteristic spike events in the spike train or, equivalently, by the average of specific monomials.
Classical examples of constraints are the probability that a neuron fires at a given time (firing rate) or
the probability that two neurons fire at the same time. For a raster, ω, of length T , we note π(T )

ω , the
empirical distribution, and π(T )

ω [ O ], the empirical average of the observable, O, in the raster, ω. For
example, the empirical firing rate of neuron i is π(T )

ω [ ωi ] = 1
T

∑T−1
n=0 ωi(n); the empirical probability

that two neurons, i, j, fire at the same time is π(T )
ω [ ωiωj ] = 1

T

∑T−1
n=0 ωi(n)ωj(n); and so on. Given a
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set of L monomials, ml, their empirical average, π(T )
ω [ ml ], measured in the raster, ω, constitute a set of

constraints shaping the sought for probability distribution. We consider here monomials corresponding
to events occurring at the same time, i.e., ml(ω) ≡ ml (ω(0) ), postponing to Section 2.2.2 the general
case of events occurring at distinct times.

In this context, the MaxEnt problems is stated as follows. Find a probability distribution, µ, that
maximizes the entropy:

S [µ ] = −
∑
ω(0)

µ [ω(0) ] log µ [ω(0) ] , (6)

(where the sum holds on the 2N possible spike patterns, ω(0)), given the constraints:

µ [ml ] = π(T )
ω [ ml ] , l = 1 . . . L. (7)

The average of monomials, predicted by the statistical model, µ (noted here as µ [ml ]), must be equal
to the average, π(T )

ω [ ml ], measured in the sample. There is, additionally, the probability normalization
constraint: ∑

ω(0)

µ [ω(0) ] = 1 (8)

This provides a variational problem:

µ = arg max
ν∈M

S [ ν ] + λ0

∑
ω(0)

ν [ω(0) ]− 1

+
L∑
l=1

λl
(
ν [ml ]− π(T )

ω [ ml ]
) (9)

where M is the set of (stationary) probabilities on spike trains. One searches, among all stationary
probabilities ν ∈ M, for the one which maximizes the right hand side of (9). There is a unique such
probability, µ = µλ, provided N is finite and λl > −∞. This probability depends on the parameters, λ.

Stated in this form, the MaxEnt is a Lagrange multipliers problem. The sought probability distribution
is the classical Gibbs distribution:

µλ [ω(0) ] =
1

Zλ

eHλ[ω(0) ], (10)

where Zλ =
∑

ω(0) e
Hλ[ω(0) ] is the partition function, whereas Hλ [ω(0) ] =

∑L
l=1 λlml [ω(0) ]. Note

that the time index (here, zero) does not play a role, since we have assumed µλ to be stationary
(time-translation invariant).

The value of λls is fixed by the relation:

µλ(ml) =
∂ logZλ

∂λl
= π(T )

ω [ ml ] , l = 1 . . . L. (11)

Additionally, note that the matrix ∂2 logZλ

∂λl ∂λl′
is positive. This ensures the convexity of the problem and the

uniqueness of the solution of the variational problem.
Note that we do not expect, in general, µλ to be equal to the (hidden) probability shaping the observed

sample. It is only the closest one satisfying the constraints (7) [7]. The notion of closeness is related to
the Kullback-Leibler divergence, defined in the next section.
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It is easy to check that the Gibbs distribution (10) obeys:

µλ

[
ωn2
n1

]
=

n2∏
n=n1

µλ [ω(n) ] , (12)

for any spike block, ωn2
n1

. Indeed, the potential of the spike block, ωn2
n1

, is Hλ

(
ωn2
n1

)
=∑n2

n=n1
Hλ (ω(n) ), whereas the partition function on spike blocks ωn2

n1
is Zn2−n1 =

∑
ω
n2
n1
eHλ[ωn2

n1 ] =

Zn2−n1
λ . Equation (12) expresses that spiking patterns occurring at different times are independent

under the Gibbs distribution (10). This is expected: since the constraints shaping µλ take only into
account spiking events occurring at the same time, we have no information on the causality between
spike generation or on memory effects. The Gibbs distributions obtained when constructing constraints
only with spatial events leads to statistical models where spike patterns are renewed at each time step,
without reference to the past activity.

2.2.2. Spatio-Temporal Constraints

On the opposite side, one expects that spike train generation involves causal interactions between
neurons and memory effects. We would therefore like to construct Gibbs distributions taking into
account information on the spatio-temporal interactions between neurons and leading to a statistical
model, not assuming anymore that successive spikes patterns are independent. Although the notion of
the Gibbs distribution extends to processes with infinite memory [27], we shall concentrate here on Gibbs
distributions associated with Markov processes with finite memory depth D; that is, the probability of
having a spike pattern, ω(n), at time n, given the past history of spikes reads P

[
ω(n)

∣∣ωn−1
n−D

]
. Note

that those transition probabilities are assumed not to depend explicitly on time (stationarity assumption).
Such a family of transition probabilities, P

[
ω(n)

∣∣ωn−1
n−D

]
, defines a homogeneous Markov chain.

Provided P
[
ω(n)

∣∣ωn−1
n−D

]
> 0 (this is a sufficient, but not a necessary condition. In the remainder of

the paper, we shall work with this assumption) for all ωnn−D, there is a unique probability, µ, called the
invariant probability of the Markov chain, such that:

µ
[
ωD1
]

=
∑
ωD−1
0

P
[
ω(D)

∣∣ωD−1
0

]
µ
[
ωD−1

0

]
. (13)

In a Markov process, the probability of a block, ωn2
n1

, for n2 − n1 + 1 > D, is:

µ
[
ωn2
n1

]
=

n2∏
n=n1+D

P
[
ω(n)

∣∣ωn−1
n−D

]
µ
[
ωn1+D−1
n1

]
, (14)

the Chapman–Kolmogorov relation [28]. To determine the probability of ωn2
n1

, one has to know the
transition probabilities and the probability, µ

[
ωn1+D−1
n1

]
. When attempting to construct a Gibbs

distribution obeying (14) from a set of spatio-temporal constraints, one has therefore to determine
simultaneously the family of transition probabilities and the invariant probability. Remark that setting:

φ(ωD0 ) = logP
[
ω(D)

∣∣ωD−1
0

]
, (15)

we may write (14) in the form:

µ
[
ωn2
n1
|ωn1+D−1

n1

]
= e

∑n2
n=n1+D φ(ωn+D

n ). (16)
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The probability of observing the spike pattern, ωn2
n1

, given the past ωn1+D−1
n1

of depthD has an exponential
form, similar to (10). Actually, the invariant probability of a Markov chain is a Gibbs distribution in the
following sense.

In view of (14), probabilities must be defined as whatever, even if n2 − n1 is arbitrarily large.
In this setting, the right objects are probabilities on infinite rasters [28]. Then, the entropy rate (or
Kolmogorov–Sinai entropy) of µ is:

S [µ ] = − lim sup
n→∞

1

n+ 1

∑
ωn
0

µ [ωn0 ] log µ [ωn0 ] , (17)

where the sum holds over all possible blocks, ωn0 . This reduces to (6) when µ obeys (12).
The MaxEnt takes now the following form. We consider a set of L spatio-temporal spike events

(monomials), whose empirical average value, π(T )
ω [ ml ], has been computed. We only restrict to

monomials with a range at most equal to R = D + 1, for some D > 0. This provide us a set of
constraints of the form (7). To maximize the entropy rate (17) under the constraints (7), we construct a
range-R potential Hλ =

∑L
l=1 λlml. The generalized form of the MaxEnt states that there is a unique

probability measure µλ ∈M, such that [29]:

P [λ ] = sup
ν∈M

(S [ ν ] + ν [Hλ) ] ) = S [µλ ] + µλ [Hλ ] . (18)

This is the extension of the variational principle (9) to Markov chains. It selects, among all possible
probability, ν, a unique probability, µλ, which realizes the supremum. µλ is called the Gibbs distribution
with potentialHλ.

The quantity, P [λ ], is called topological pressure or free energy density. For a potential of the form
(2) [30,31]:

∂P [λ ]

∂λl
= µλ [ml ] . (19)

This is the analog of (11), which allows one to tune the parameters, λl. Thus, P [λ ] plays the
role of logZλ in (10). Actually, it is equal to logZλ when restricting to the memoryless case (In
statistical physics, the free energy is −kT logZ. The minus sign comes from the minus sign in
the Hamiltonian). P [λ ] is strictly convex thanks to the assumption P

[
ω(n)

∣∣ωn−Dn−1

]
> 0, which

guarantees the uniqueness of µλ.
Note that µλ has not the form (10) for D > 0. Indeed a probability distribution, e.g., of the form

µλ(ωn−1
0 ) = 1

Zn
eHλ(ωn−1

0 ) with:

Hλ(ωn−1
0 ) ≡

n−D−1∑
r=0

Hλ(ωr+Dr ) =
∑
l

λl

n−D−1∑
r=0

ml(ω
r+D
r ), (20)

the potential of the block ωn−1
0 , and:

Zn [λ ] =
∑
ωn−1
0

eHλ(ωn−1
0 ), (21)

the “n-time steps” partition function does not obey the Chapman–Kolmogorov relation (14).
However, the following holds [29,32–34].
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1. There exist A,B > 0, such that, for any block, ωn−1
0 :

A ≤
µλ

[
ωn−1

0

]
e−(n−D)P[λ ]eHλ(ωn−1

0 )
≤ B. (22)

2. We have:
P [λ ] = lim

n→∞

1

n
logZn [λ ] . (23)

In the spatial case, Zn [λ ] = Zn [λ ] and P [λ ] = logZ [λ ], whereas A = B = 1 in
(22). Although (23) is defined by a limit, it is possible to compute P [λ ] as the log of the
largest eigenvalue of a transition matrix constructed from Hλ (Perron–Frobenius matrix) [35].
Unfortunately, this method does not apply numerically as soon as NR > 20.

These relations are crucial for the developments made in the next section.

To recap, a Gibbs distribution in the sense of [18] is the invariant probability distribution of a
Markov chain. The link between the potential Hλ and the transition probabilities P

[
ω(D)

∣∣ωD−1
0

]
(respectively, the potential [15]) is given by: φ(ωD0 ) = H(ωD0 )−G(ωD0 ), where G, called a normalization
function, is a function of the right eigenvector of a transition matrix built from H, and a function of
P [λ]. G reduces to logZλ = P [λ ] when D = 0 [2].

To finish this section, let us introduce the Kullback-Leibler divergence, dKL(ν, µ), which provides a
notion of similarity between two probabilities, ν, µ. We have dKL(ν, µ) ≥ 0 with equality, if and only
if µ = ν. The Kullback-Leibler divergence between an invariant probability ν ∈ M and the Gibbs
distribution, µλ, with potential Hλ is given by dKL ( ν, µλ ) = P [λ ] − ν [Hλ ] − S [ ν ], [29]. When
ν = π

(T )
ω , we obtain the divergence between the “model (µλ)” and the “empirical probability (π(T )

ω )”:

dKL
(
π(T )
ω , µλ

)
= P [λ ] − π(T )

ω [Hλ ] − S
[
π(T )
ω

]
. (24)

3. Inferring the Coefficients of a Potential from Data

Equation (11) or (19) provides an analytical way to compute the coefficients of the Gibbs distribution
from data. However, they require the computation of the partition function or of the topological pressure,
which becomes rapidly intractable as the number of neurons increases. Thus, researchers have attempted
to find alternative methods to compute reliably and efficiently the λls. An efficient method has been
introduced in [17] and applied to spike trains in [18]. Although these papers are restricted to Gibbs
distributions of the form (10) (models without memory), we show in this section how their method can
be extended to general Gibbs distributions.

3.1. Bounding the Kullback-Leibler Divergence Variation

3.1.1. The Spatial Case

The method developed in [17] by Dudik et al. is based on the so-called convex duality principle,
used in mathematical optimization theory. Due to the difficulty in maximizing the entropy (which is a
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concave function), one looks for a convex function that easier to investigate. Dudik et al. showed that,
for spatially constrained MaxEnt distributions, finding the Gibbs distribution amounts to finding the
minimum of the negative log likelihood (we have adapted [17] to our notations. Moreover, in our case,
π

(T )
ω corresponds to the empirical average on a raster, ω, whereas π in [17] corresponds to an average

over independent samples):
L
π
(T )
ω

(λ) = −π(T )
ω [ log µλ ] . (25)

Indeed, in the spatial case, the Kullback-Leibler divergence between the empirical measure, π(T )
ω , and

the Gibbs distribution at µλ is:

dKL(π(T )
ω , µλ) = π(T )

ω

[
log π

(T )
ω

log µλ

]
= π(T )

ω

[
log π(T )

ω

]
− π(T )

ω [ log µλ ] , (26)

so that, from (24):
L
π
(T )
ω

(λ) = P [λ ]− π(T )
ω [ Hλ ] ,

where we used S
[
π

(T )
ω

]
= −π(T )

ω

[
log(π

(T )
ω )
]
.

Since P is convex and π(T )
ω [ Hλ ] linear in λ, L

π
(T )
ω

(λ) is convex. Its unique minimum is given by
(11).

Moreover, we have:

L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) = P [λ′ ]− P [λ ]− π(T )
ω [ ∆Hλ ] , (27)

with ∆Hλ = Hλ′ −Hλ. From (10):

Z [λ′ ]

Z [λ ]
=

1

Z [λ ]

∑
ω(0)

eHλ′ (ω(0))

=
∑
ω(0)

e∆Hλ(ω(0))µλ [ω(0)) ]

= µλ

[
e∆Hλ

]
, (28)

and since P [λ] = logZ[λ] in the spatial case:

P [λ′ ]− P [λ ] = log µλ

[
e∆Hλ

]
. (29)

Therefore:
L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) = log µλ

[
e∆Hλ

]
− π(T )

ω [ ∆Hλ ] . (30)

The idea proposed by Dudik et al. is then to bound this difference by an easier-to-compute convex
quantity, with the same minimum as L

π
(T )
ω

(λ), and to reach this minimum by iterations on λ. They
proposed a sequential and a parallel method. Let us summarize first the sequential method. The goal
here is not to rewrite their paper [17], but to explain some crucial elements that are not directly appliable
to the spatio-temporal case.

In the sequential case, one updates λ as λ′ = λ + δel, for some l, where el is the canonical basis
vector in direction l, so that ∆Hλ = δml, and:

L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) = log µλ

[
eδml

]
− δπ(T )

ω [ ml ] .



Entropy 2014, 16 2254

Using the following property:
eδx ≤ 1 + (eδ − 1)x, (31)

for x ∈ [0, 1], and since ml ∈ {0, 1}, we have:

log µλ

[
eδml

]
≤ log

(
1 + (eδ − 1)µλ[ml]

)
. (32)

This bound, proposed by Dudik et al., is remarkably clever. Indeed, it replaces the computation
of the average µλ

[
eδml

]
, which is computationally hard, by the computation of µλ [ml ], which is

computationally easy. Finally,

L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) ≤ −δπ(T )
ω [ ml ] + log

(
1 + (eδ − 1)µλ [ ml ]

)
. (33)

In the parallel case, the computation and results differ. One now updates λ as λ′ = λ +
∑L

l=1 δlel.
Moreover, one has to renormalize the mls in m′l = ml

L
in order that Equation (34) below holds. We have,

therefore, ∆Hλ =
∑L

l=1 δlm
′
l.

Thus,

L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) = log µλ

[
e
∑L

l=1 δlm
′
l

]
−

L∑
l=1

δlπ
(T )
ω [ m′l ] .

Using the following property [36]:

e
∑L

l=1 δlm
′
l ≤ 1 +

L∑
l=1

m′l
(
eδl − 1

)
, (34)

for δl ∈ R and m′l ≥ 0,
∑L

l=1 m
′
l ≤ 1, we have:

log µλ

[
e
∑L

l=1 δlm
′
l

]
≤ log

(
1 +

L∑
l=1

(
eδl − 1

)
µλ[m′l]

)
.

Since log(1 + x) ≤ x for x > −1, Dudick et al. obtain:

log µλ

[
e
∑L

l=1 δlm
′
l

]
≤

L∑
l=1

(
eδl − 1

)
µλ[m′l],

provided
∑L

l=1

(
eδl − 1

)
µλ[m′l] > −1. (this constraint has to be checked during iterations). Finally,

using the definition of m′l:

L
π
(T )
ω

(λ′)− L
π
(T )
ω

(λ) ≤ 1

L

[
−

L∑
l=1

δlπ
(T )
ω [ ml ] +

L∑
l=1

(
eδl − 1

)
µλ[ml]

]
. (35)

To be complete, let us mention that Dudik et al. consider the case where some error, εl, is allowed in
the estimation of the coefficient, λl. This relaxation on the parameters alleviates the overfitting.

In this case, the bound on the right-hand side in (33) (sequential case) becomes:

Fl(λ, δ) = −δπ(T )
ω [ ml ] + log

(
1 + (eδ − 1)µλ [ml ]

)
+ εl ( |λl + δ | − |λl | ) . (36)
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whereas the right-hand side in (35) becomes
∑L

l=1 Gl(λ, δ) with:

Gl(λ, δ) =
1

L

[
−δlπ(T )

ω [ ml ] +
(
eδl − 1

)
µλ[ml]

]
+ εl ( |λl + δ | − |λl | ) , (37)

The minimum of these functions is easy to find, and one obtains, for a given λ, the variation, δ, required
to lower bound the log-likelihood variation. The authors have shown that both the sequential and parallel
method produce a sequence, λ(k), which converges to the minimum ofL

π
(T )
ω

as k → +∞. Note, however,
that one strong condition in their convergence theorem is εl > 0. This requires a sharp estimate of the
error, εl, which cannot be solely based on the central limit theorem or on Hoeffding inequality in our
case, because when the empirical average, π(T )

ω (ml), is too small, the minima of F , computed in [18],
may not be defined.

3.1.2. Extension to the Spatio-Temporal Case

We now show how to extend these computations to the spatio-temporal case, provided one replaces
the log-likelihood, L

π
(T )
ω

, by the Kullback-Leibler divergence (24). The main obstacle is that the Gibbs

distribution does not have the form, e
H

Z
. We obtain, thus, a convex criterion to minimize Kullback-Leibler

divergence variation, hence reaching the minimum, π(T )
ω .

Replacing ν in Equation (24) by π(T )
ω , the empirical measure, one has:

dKL(π(T )
ω , µλ′)− dKL(π(T )

ω , µλ) = P [λ′ ] − P [λ ] − π(T )
ω [ ∆Hλ ] , (38)

because the entropy, S
[
π

(T )
ω

]
, cancels. This is the analog of (27). The main problem now is to compute

P [λ′ ] − P [λ ].
From (22), we have:

Ae−(n−D)P[λ ]
∑
ωn−1
0

eHλ(ωn−1
0 )e∆Hλ(ωn−1

0 )

≤
∑
ωn−1
0

µλ

[
ωn−1

0

]
e∆Hλ(ωn−1

0 )

≤ Be−(n−D)P[λ ]
∑
ωn−1
0

eHλ(ωn−1
0 )e∆Hλ(ωn−1

0 )

so that:

lim
n→∞

1

n

 logA− (n−D)P [λ ] + log

(∑
ωn−1
0

eHλ(ωn−1
0 )e∆Hλ(ωn−1

0 )

)
≤ lim

n→∞

1

n
log

(∑
ωn−1
0

µλ

[
ωn−1

0

]
e∆Hλ(ωn−1

0 )

)
(39)

≤ lim
n→∞

1

n

 logB − (n−D)P [λ ] + log

(∑
ωn−1
0

eHλ(ωn−1
0 )e∆Hλ(ωn−1

0 )

) .
SinceHλ′(ω

n−1
0 ) = Hλ(ωn−1

0 ) + ∆Hλ(ωn−1
0 ), from (23):

lim
n→∞

1

n
log
∑
ωn−1
0

eHλ(ωn−1
0 )e∆Hλ(ωn−1

0 ) = P [λ′ ] .
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Therefore:
P [λ′ ]− P [λ ] = lim

n→∞

1

n
log
∑
ωn−1
0

µλ

[
ωn−1

0

]
e∆Hλ(ωn−1

0 ). (40)

This is the extension of (29) to the spatio-temporal case. In the spatial case, it reduces to (29) from (12).
This equation is obviously numerically intractable, but it has two advantages: on the one hand, it allows
one to extend the bounds, (33) (sequential case) and (35) (parallel case), and on the other hand, it can be
used to get a δ-power expansion of P [λ′ ]− P [λ ]. This last point is used in Section 3.2.3.

To get the analog of (33) in the sequential case where ∆Hλ(ωn−1
0 ) = δ

∑n−D−1
r=0 ml(ω

r+D
r ), one may

still apply (31) which holds, provided:

ml(ω
n−1
0 ) ≡

n−1−D∑
r=0

ml(ω
r+D
r ) < 1 (41)

Therefore, compared to the spatial, we have to replace ml by ml

n−D in ∆Hλ(ωn−1
0 ). We have, therefore:

∑
ωn−1
0

µλ[ωn−1
0 ]e∆H(ωn−1

0 ) =
∑
ωn−1
0

µλ

[
ωn−1

0

]
eδ

1
n−D

ml(ω
n−1
0 )

≤ 1 + (eδ − 1)
1

n−D
∑
ωn−1
0

µλ

[
ωn−1

0

]
ml(ω

n−1
0 ).

From the time translation invariance of µλ, we have:

1

n−D
∑
ωn−1
0

µλ[ωn−1
0 ]ml(ω

n−1
0 ) =

1

n−D

n−D−1∑
r=0

∑
ωn−1
0

µλ[ωn−1
0 ]ml(ω

r+D
r )

=
1

n−D

n−D−1∑
r=0

µλ[ml]

= µλ[ml]

so that: ∑
ωn−1
0

µλ

[
ωn−1

0

]
eδ

1
n−D

ml(ω
n−1
0 ) ≤ 1 + (eδ − 1)µλ [ml ] .

At first glance this bound is not really useful. Indeed, from (40), we obtain:

P [λ′ ]− P [λ ] ≤ lim
n→∞

1

n
log
(

1 + (eδ − 1)µλ [ml ]
)

= 0.

Since this holds for any δ, this implies P [λ′ ] = P [λ ]. The reason for this is evident. Renormalizing
ml, as we did to match the condition imposed by the bound (31), is equivalent to renormalizing δ by
δ

n−D . As n → +∞, this perturbation tends to zero and λ′ = λ. Therefore, the clever bound (31) would
here be of no interest if we were seeking exact results. However, the goal here is to propose a numerical
scheme, where, obviously, n is finite. We replace, therefore, the limit n → +∞ by a fixed n in the
computation of P [λ′ ] − P [λ ]. Keeping in mind that ml must also be renormalized in π(T )

ω [ ∆Hλ ]

and using 1
n
< 1

n−D , the Kullback-Leibler divergence (38) obeys:

dKL(π(T )
ω , µλ′)− dKL(π(T )

ω , µλ) ≤ 1

n−D
[
−δπ(T )

ω [ ml ] + log
(

1 + (eδ − 1)µλ [ml ]
) ]
, (42)
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the analog of (33).
In the parallel case, similar remarks hold. In order to apply the bound (34), we have to renormalize the

mls in m′l = 1
L(n−D)

. As for the spatial case, we also need to check that
∑L

l=1

(
eδl − 1

)
µλ[m′l] > −1.

(this constraint is not a guarantee and has to be checked during iterations). One obtains finally:

dKL(π(T )
ω , µλ′)− dKL(π(T )

ω , µλ) ≤ 1

L(n−D)

[
−

L∑
l=1

δlπ
(T )
ω [ ml ] +

L∑
l=1

(
eδl − 1

)
µλ[ml]

]
, (43)

the analog of (35).
Compared with the spatial case, we see, therefore, that n must not be too large to have a reasonable

Kullback-Leibler divergence variation. It must not be too small, however, to get a good approximation
of the empirical averages.

3.2. Updating the Target Distribution when the Parameters Change

When updating the parameters, λ, one has to compute again the average values, µλ [ml ], since the
probability, µλ, has changed. This has a huge computational cost. The exact computation (e.g., from
(11, 19)) is not tractable for large N , so approximate methods have to be used, like Monte Carlo [19].
Again, this is also CPU time consuming, especially if one recomputes it again at each iteration, but at
least it is tractable.

In this spirit, Broderick et al. [18] propose generating a Monte Carlo raster distributed according to
µλ and to use it to compute µλ′ when ‖λ′−λ‖ is sufficiently small. We explain their method, limited to
the spatial case, in the next section, and we explain why it is not applicable in the spatio-temporal case.
We then propose an alternative method.

3.2.1. The Spatial Case

The average of ml is obtained by the derivative of the topological pressure, P [λ ]. In the spatial case,
where P(λ) = logZλ, we have:

µλ′ [ml ] =
∂P(λ′)

∂λ′j

=
1

Z [λ′ ]

∑
ω(0)

ml(ω(0))eHλ′ (ω(0))

=
Z [λ ]

Z [λ′ ]

∑
ω(0)

ml(ω(0))e∆Hλ(ω(0))µλ [ω(0)) ] (44)

Using (28), one finally obtains:

µλ′ [ml ] =
µλ

[
ml(ω(0)) e∆Hλ(ω(0))

]
µλ [ e∆Hλ(ω(0)) ]

, (45)

which is Equation (18) in [18]. Using this formula, one is able to compute the average of ml with respect
to the new probability, µλ′ , only using the old one, µλ.
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3.2.2. Extension to the Spatio-Temporal Case

We now explain why the Broderick et al. method does not extend to the spatio-temporal case. The
main problem is that if one tries to obtain the analog of the equality (45), one obtains, in fact, an
inequality:

A

B
µλ′ [ml ] ≤ lim

n→∞

1

n

µλ

[
ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )
]

µλ

[
e∆Hλ(ωn−1

0 )
] ≤ B

A
µλ′ [ml ] , (46)

where A,B are the constants in (22). They are not known in general (they depend on the potential), and
they are different. However, in the spatial case A = B = 1, whereas µλ

[
ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )
]

=

µλ

[
ml (ω(0) ) e∆Hλ(ω(0))

]
, because the potential has range one. Then, one recovers (45). Let us now

explain how we obtain (46).
The averages of quantities are obtained by the derivative of the topological pressure (Equation (19)).

We have:

µλ′ [ml ] =
∂P
∂λ′l

=
∂ limn→∞

1
n

logZn [λ′ ]

∂λ′l
. (47)

Assuming that the limit and the derivative commute (see, e.g., [37]), gives:

µλ′ [ml ] = lim
n→∞

1

n

1

Zn [λ′ ]

∑
ωn−1
0

ml

(
ωn−1

0

)
eHλ′ (ω

n−1
0 )

= lim
n→∞

1

n

1

Zn [λ′ ]

∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 ) (48)

= lim
n→∞

1

n

∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 )∑

ωn−1
0

e∆Hλ(ωn−1
0 )eHλ(ωn−1

0 )
.

From (22):
Ae−(n−D)P[λ ]

∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 )

≤
∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )µλ

[
ωn−1

0

]
(49)

≤ B e−(n−D)P[λ ]
∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 )

and:

Ae−(n−D)P[λ ]
∑
ωn−1
0

e∆Hλ(ωn−1
0 )eHλ(ωn−1

0 )

≤
∑
ωn−1
0

e∆Hλ(ωn−1
0 )µλ

[
ωn−1

0

]
≤ B e−(n−D)P[λ ]

∑
ωn−1
0

e∆Hλ(ωn−1
0 )eHλ(ωn−1

0 ).

Therefore:
A

B

∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 )∑

ωn−1
0

e∆Hλ(ωn−1
0 )eHλ(ωn−1

0 )
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≤
∑

ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )µλ

[
ωn−1

0

]∑
ωn−1
0

e∆Hλ(ωn−1
0 )µλ

[
ωn−1

0

]
≤ B

A

∑
ωn−1
0

ml

(
ωn−1

0

)
e∆Hλ(ωn−1

0 )eHλ(ωn−1
0 )∑

ωn−1
0

e∆Hλ(ωn−1
0 )eHλ(ωn−1

0 )
.

Now, from [29,31], (49) gives (46).

3.2.3. Taylor Expansion of the Pressure

The idea is here to use a Taylor expansion of the topological pressure. This approach is very much in
the spirit of [38], but extended here to the spatio-temporal case. Since λ′ = λ+ δ, we have:

µλ′ [ml ] = µλ [ml ] +
L∑
j=1

∂µλ [ml ]

∂λj
δj +

1

2

L∑
j,k=1

∂2µλ [ml ]

∂λj∂λk
δjδk + . . .

= µλ [ml ] +
L∑
j=1

∂2P [λ ]

∂λj∂λl
δj +

1

2

L∑
j,k=1

∂3P [λ ]

∂λj∂λk∂λl
δjδk + . . . (50)

The second derivative of the pressure is given by [29,32–34]:

∂2P [λ ]

∂λj∂λl
=

+∞∑
n=−∞

Cjl(n) ≡ χjl [λ ] , (51)

where:
Cjl(n) = µλ [mjml ◦ σn ]− µλ [mj ]µλ [ml ] , (52)

is the correlation function between ml,mk at time n, computed with respect to µλ. (51) is a version of
the fluctuation-dissipation theorem in the spatio-temporal case. σn is the time shift applied n times. The
third derivatives can be computed, as well, by taking the derivative (51) and using (47). This generates
terms with third order correlations, and so on [37]. Up to second order, we have:

µλ′ [ml ] = µλ [ml ] +
L∑
j=1

χjl [λ ] δj + . . . (53)

Since the observable are monomials, they only take the values zero or one, and the computation of
χjl is straightforward, reducing to counting the occurrence of time pairs, t, t + n, such that mj(t) = 1

and ml(t+ n) = 1.
On practical grounds, we introduce a parameter ∆ = ‖λ′ − λ‖, which measures the variation in the

parameters after updating. If ∆ is small enough (smaller than some ∆c), the terms of order three in
the Taylor expansion are negligible; then, we can use (53). Otherwise, if ∆ is big, we compute a new
Monte Carlo estimation of µ′λ (as described in [19]). We explain in Section 4.2 how ∆c was chosen
in our data. Then, we use the following trick. If ‖δ‖ > ∆c, we compute the new value µλ′ [mj ]. If
∆c > ‖δ‖ > ∆c

10
, we use the linear response approximation (53) of µλ′ . Finally, if ‖δ‖ < ∆c

10
, we use

µλ [ml ] instead of µλ′ [ml ] in the next iteration of the method. Thus, in the case, ‖δ‖ < ∆c, we use
the Gibbs distribution computed at some time step, say n, to infer the values at the next iteration. If we
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do that several successive time steps, the distance to the original value, λn, of the parameters increases.
Therefore, we compute the norm ‖λn−λn+k‖ at each time step, k, and we do not compute a new raster
until this norm is larger than ∆c.

3.3. The Algorithms

We have two algorithms, sequential and parallel, which are very similar to Dudik et al. Especially,
the convergence of their algorithms, proven in their paper, extends to our case, since it only depends on
the shape of the cost functions (36, 37). We describe here the algorithms coming out from the presented
mathematical framework, in a sequential and parallel version. We iterate the algorithms until the distance
η = d

(
µλ, π

(T )
ω

)
is smaller than some ηc. We use the Hellinger distance:

d
(
µλ, π

(T )
ω

)
=

1√
2

√√√√ L∑
l=1

(√
π

(T )
ω (ml)−

√
µλ(ml)

)2

(54)

3.3.1. Sequential Algorithm

Algorithm 1: The sequential algorithm.

Input: The features’ empirical probabilities, π(T )
ω [ ml ]

Output: The vector of parameters, λ,
initialization: λl = 0 for every l, ∆ = 0

while η > ηc do
(δ, l) = arg minl,δ Fl(λ, δ)

λl ← λl + δ

∆←
√

∆2 + δ2

if ∆ > ∆c then
Compute a new Gibbs sample using the Monte Carlo method [19]

else
Compute the new features probabilities using the Taylor expansion (Equation 53)

end
end
.
δ is the learning rate by which we change the value of a parameter, λl. η is the convergence criterion

(54)). ∆ is the parameter allowing us to decide whether we update the parameter change by computing
a new Gibbs sample or by the Taylor expansion. Fl is given by Equation (36)
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3.4. Parallel Algorithm

Algorithm 2: The parallel algorithm. Gl is given by (37).

Input: The features’ empirical probabilities, π(T )
ω [ ml ]

Output: parameters λl
initialization: λl = 0 for every l, ∆ = 0

while η > ηc do
for l← 1 to L do

δl = arg minδ Gl(λ, δ)

end
λ← λ+ δ

∆←
√

∆2 +
∑L

l=1 δ
2
l

if ∆ > ∆c then
Compute a new Gibbs sample using the Monte Carlo method [19]

else
Compute the new features probabilities using the Taylor expansion (Equation 53)

end
end

The implementation of those algorithms consists of an important part in software developed at INRIA
(Institut National de Recherche en Informatique et en Automatique) and called EnaS (Event Neural
Assembly Simulation). The executable is freely available at [39].

4. Results

In this section, we perform several tests on our method. We first consider synthetic data generated
with a known Gibbs potential and recover its parameters. This step also allows us to tune the parameter,
∆c, in the algorithms. Then, we consider real data analysis, where the Gibbs potential form is unknown.
This last step is not a systematic study that would be out of the scope of this paper, but simply provided
as an illustration and comparison with the paper of Schneidman et al. 2006 [9].

4.1. Synthetic Data

Synthetic data are obtained by generating a raster distributed according to a Gibbs distribution, whose
potential (2) is known. We consider two families of Gibbs potentials. For each family, there are
L > N monomials, whose range belongs to { 1, . . . , R }. Among them, there are N “rate monomials”
ωi(D), i = 1 . . . N , whose average gives the firing rate of neuron i, denoted ri; the L − N other
monomials, with degree k > 1, are chosen at random with a probability law ∼ e−k, which favors,
therefore, pairwise interactions. The difference between the two families comes from the distribution of
coefficients, λl.
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1. “Dense” raster family. The coefficients are drawn with a Gaussian distribution with mean zero
and variance 1

L
to ensure a correct scaling of the coefficients dispersion as L increases (Figure

1(a)). This produces typically a dense raster (Figure 1(b)) with strong multiple correlations.

Figure 1. The dense family.

(a) Example of the coefficient distribution in the dense raster family.

(b) Dense spike train.

2. “Sparse” raster family. The rate coefficients in the potential are very negative: the coefficient, hi,
of the rate monomial, ωi(D), is hi = log

(
ri

1−ri

)
, where ri ∈ [0 : 0.01] with a uniform probability

distribution. Other coefficients are drawn with a Gaussian distribution with mean 0.8 and variance
one (Figure 2(a)). This produces a sparse raster (Figure 2(b)) with strong multiple correlations.
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Figure 2. The sparse family.

(a) Example of the coefficient distribution in the sparse raster family.

(b) Sparse spike train.

4.2. Tuning ∆c

For small N,R (NR ≤ 20), it is possible to exactly compute the topological pressure using the
transfer matrix technique [16]. We have therefore a way to compare the Taylor expansion (51) and the
exact value.

If we perturb λ by an amount, δ, in the direction, l, this induces a variation on µλ [ml ], l = 1 . . . L,
given by the Taylor expansion (53). To the lowest order µλ′ [ml ] = µλ [ml ] +O(1), so that:

ε(1) =
1

L

L∑
l=1

|µλ′ [ml ]− µλ [ml ] |
|µλ′ [ml ] |

is a measure of the relative error when considering the lowest order expansion.
In the same way, to the second order:

µλ′ [ml ] = µλ [ml ] +
L∑
j=1

χjl [λ ] δj +O(2),

so that:

ε(2) =
1

L

L∑
l=1

∣∣∣µλ′ [ml ]− µλ [ml ]−
∑L

j=1 χjl [λ ] δj

∣∣∣
|µλ′ [ml ] |

,

is a measure of the relative error when considering the next order expansion.
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In Figure 3, we show the relative errors, ε(1), ε(2) (in percent), as a function of δ. For each point, we
generate 25 potentials, with N = 5, R = 3, L = 12. For each of these potentials, we randomly perturb
the λjs, with a random sign, so that the norm of the perturbation ‖δ‖ is fixed. The linear response, χ, is
computed from a raster of length T = 100, 000.

Figure 3. Error on the average µλ′ [ml ] as a function of the perturbation amplitude, δ. First
order corresponds to ε(1) and second order to ε(2) (see the text). The curves correspond to
N = 5, R = 3, L = 12. (Left) The dense case; (right) the sparse case.
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These curves show a big difference between the dense and sparse case. In the dense case, the second
order error is about 5% for ∆c = 1, whereas we need a ∆c ∼ 0.03 to get the same 5% in the sparse case.
We choose to align on the sparse case, and in typical experiments, we take ∆c = 0.1, corresponding to
about 10% of the error on the second order.

4.3. Computation of the Kullback-Leibler Divergence

To compute the Kullback-Leibler divergence between the empirical distribution, π(T )
ω , and the fitted

predicted distribution, µλ, we need to know the value of the pressure, P [λ ], the empirical probability
of the potential, π(T )

ω [Hλ ], and the entropy, S
[
π

(T )
ω

]
. For small networks, we can compute the

pressure using the Perron–Frobenius theorem ([16]). However, for large scales, since we cannot compute
the pressure, computing the Kullback-Leibler divergence is not direct and exact. We compute an
approximation using the following technique. From Equation (18) and (24), we can write:

dkl(π
(T )
ω , µλ) = µλ [Hλ ] + S [µλ ]− π(T )

ω [Hλ ]− S
[
π(T )
ω

]
(55)

=
∑
l

λl
(
µλ[ml]− π(T )

ω [ ml ]
)

+ S [µλ ]− S
[
π(T )
ω

]
From the parameters, λ, we compute a spike train distributed as µλ using the Monte Carlo method

([19]). From this spike train, we compute the monomials averages, µλ[ml], and the entropy, S [µλ ],
using the method of Strong et al. ([40]). π(T )

ω [ ml ] and S[π
(T )
ω ] are computed directly on the empirical

data set.
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4.4. Performances on Synthetic Data

Here, we test the method on synthetic data, where the shape of the sought potential is known: only
the λls have to be estimated. Experiments were designed according to the following steps:

• We start from a potential Hλ∗ =
∑

l∈L λ
∗
lml. The goal is to estimate the coefficient values, λ∗l ,

knowing the set, L, of monomials spanning the potential.

• We generate a synthetic spike train (ωs) distributed according to the Gibbs distribution ofHλ∗ .

• We take a potential Hλ =
∑

l∈L λlml with random initial coefficients λl. Then, we fit the
parameters, λl, to the synthetic spike train, ω(T )

s .

• We evaluate the goodness of fit.

For the last step (goodness of fit), we have used three criteria. The first one simply consists of
computing the L1 error d1 = 1

L

∑L
l=1

∣∣∣λ∗l − λ(est)
l

∣∣∣, where λ(est)
k is the final estimated value. d1 is

then averaged on 10 random potentials. Figure 4 shows the committed error in the case of sparse and
dense potentials. The method showed a good performance, both in the dense and sparse case, for large
N ×R ∼ 60.

Figure 4. The distance between the exact value of coefficients and the estimated value,
averaged on the set of 10 random potentials for NR = 60. (a) Dense spike trains; (b) sparse
spike trains.

(a) (b)

The main advantage of this criterion is that it provides an exact estimation of the error made on
coefficient estimation. Its drawback is that we have to know the shape of the potential that generated
the raster: this is not the case anymore for real neural network data. We therefore used a second
criterion: confidence plots. For each spike block, ωD0 , appearing in the raster, ωs, we draw a point in
a two-dimensional diagram with, on abscissa, the observed empirical probability, π(T )

ωs

[
ωD0

]
, and, on

ordinate, the predicted probability, µλ

[
ωD0
]
. Ideally, all points should align on the diagonal y = x

(equality line). However, since the raster is finite, there are finite-sized fluctuations ruled by the
central limit theorem. For a block, ωD0 , generated by a Gibbs distribution, µλ, and having an exact
probability, µλ

[
ωD0
]
, the empirical probability, π(T )

ωs

[
ωD0

]
, is a Gaussian random variable with mean

µλ

[
ωD0
]

and mean-square deviation σ =

√
µλ[ωD

0 ]( 1−µλ[ωD
0 ] )

√
T

. The probability that π(T )
ωs

[
ωD0

]
∈
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[
µλ

[
ωD0
]
− 3σ, µλ

[
ωD0
]

+ 3σ
]

is therefore of about 99, 6%. This interval is represented by confidence
lines spreading around the diagonal. As a third criterion, we have used the Kullback-Leibler divergence
(55).

We have plotted two examples in Figures 5 and 6 for sparse data types:

1. Spatial case, 40 neurons, (NR = 40): Ising model (3). Figure 5.

2. Spatio-temporal, 40 neurons, R = 2 (NR = 80): Pairwise model with delays (5). Figure 6

Figure 5. Data were generated with an Ising distribution. After fitting with an Ising model,
we show the comparison between observed and predicted probabilities of monomials in (a).
(b,c,d) The comparison of predicted and observed probabilities of patterns of Depths 1, 2
and 3, respectively. In the four plots, the x-axis represents the observed probabilities and the
y-axis the predicted probabilities. The estimated Kullback-Leibler divergence is 0.0107.

(a) Monomial averages. (b) Patterns of Depth 1.

(c) Patterns of Depth 2. (d) Patterns of Depth 3.

4.5. The Performance on Real Data

Here, we show the inferring of the MaxEnt distribution on real spike trains. We analyzed a data set
of 20 and 40 neurons with spatial and spatio-temporal constraints (data courtesy of M. J. Berry and O.
Marre, 40 is the maximal number of neurons in this data set). Data are binned at 20 ms. We show the
confidence plots and an example of convergence curves using the Hellinger distance. The goal here is to
check the goodness of fit, not only for spatial patterns (as done in [9–12]), but also for spatio-temporal
patterns.
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Figure 6. Data were generated with a pairwise distribution of range R = 2. After
fitting with a pairwise model of range R = 2, we show the comparison between observed
and predicted probabilities of monomials in (a). (b,c,d) The comparison of predicted and
observed probabilities of patterns of Depths 1, 2 and 3, respectively. In the four plots, the
x-axis represents the observed probabilities and the y-axis the predicted probabilities. The
estimated Kullback-Leibler divergence is 0.0174.

(a) Monomial averages. (b) Patterns of Depth 1.

(c) Patterns of Depth 2. (d) Patterns of Depth 3.

Figure 7 shows the evolution of the Hellinger distance during the parameter update both in the parallel
and sequential update process.

After estimating the parameters of an Ising and pairwise model of rangeR = 2 on a set of 20 neurons,
we evaluate the confidence plots. Figures 8 and 9 show, respectively, the confidence plots for patterns of
Ranges 1, 2 and 3 after fitting with an Ising model and the pairwise model of range R = 2. Our results
on 20 neurons confirm the observations made in [16] for N = 5, R = 2: a pairwise model with memory
performs quite better than an Ising model to explain spatio-temporal patterns.
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Figure 7. Evolution of the Hellinger distance during the parallel (a) and the sequential (b)
update in the case of modeling a real data set with a pairwise model of range R = 2. The
parallel update provides a fast convergence; however, it is steady after a hundred iterations.
The,n we iterate the sequential algorithm.

(a) Convergence during the parallel update. (b) Convergence during the parallel update.

Figure 8. A 20-neuron data set binned at 20 ms with an Ising model. After fitting, we
show the comparison between observed (in the real spike train) and predicted average values
of monomials in (a). (b,c,d) The comparison of predicted and observed probabilities for
patterns of Ranges 1, 2 and 3, respectively. In (a), (b), (c) and (d), the x-axis represents
the observed probabilities and the y-axis the predicted probabilities. The computation time
is equal to 18 hours on a small cluster of 64 processors (around 5 min per iteration). The
estimated Kullback-Leibler divergence is 0.307.

(a) Monomials. (b) Patterns of Range 1.

(c) Patterns of Range 2. (d) Patterns of Range 3.
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Figure 9. A 20-neuron data set binned at 20 ms with a pairwise model of Range 2. After
fitting, we show the comparison between observed (in the real spike train) and predicted
average values of monomials in (a). (b,c,d) The comparison of predicted and observed
probabilities for patterns of Ranges 1, 2 and 3, respectively. In (a), (b), (c) and (d), the
x-axis represents the observed probabilities and the y-axis the predicted probabilities. The
computation time is equal to 40 hours on a small cluster of 64 processors (around 12 min per
iteration). The estimated Kullback-Leibler divergence is 0.281.

(a) Monomial averages. (b) Patterns of Range 1.

(c) Patterns of Range 2. (d) Patterns of Range 3.

We then made the same analysis for 40 neuron. Figures 10 and 11 show, respectively, the confidence
plots for patterns of Ranges 1, 2 and 3 after fitting with an Ising model and the pairwise model of range
R = 2. In this case, we were not able to obtain a good convergence for N = 40, R = 2. This is
presumably due to the insufficient length of the data set, which does not allow us to estimate accurately
the probability of some monomials. This aspect is discussed in the next section.
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Figure 10. A 40-neuron data set binned at 20 ms with an Ising model. After fitting, we
show the comparison between observed (in the real spike train) and predicted average values
of monomials in (a). (b,c,d) The comparison of predicted and observed probabilities for
patterns of Ranges 1, 2 and 3, respectively. In (a), (b), (c) and (d), the x-axis represents the
observed probabilities and the y-axis the predicted probabilities. The computation time is
equal to three days on a small cluster of 64 processors (around 21 min per iteration). The
estimated Kullback-Leibler divergence is 0.930.

(a) Monomial averages. (b) Patterns of Range 1.

(c) Patterns of Range 2. (d) Patterns of Range 3.

5. Discussion and Conclusion

The method shows better performances for synthetic data than for real data, although we did not make
extensive studies of real data. The main reason, we believe, is that in the second case, we do not know the
form of the potential. As a consequence, we stick to existing canonical forms of potentials, e.g., Ising and
pairwise. The main problem with this approach is that the number of parameters to estimate dramatically
grows with NR. The increase is moderate for the Ising model (N rates + N(N−1)

2
symmetric pairwise

couplings), but it becomes prohibitively large even for pairwise range R models. On the opposite, our
analysis of synthetic data used a relatively small number of parameters to fit.

The large number of parameters has two drawbacks: the increasing of the computation time and
errors in the estimation. Let us comment on the second problem. It is not intrinsic to our method, nor is
it intrinsic to MaxEnt; this is a well-known problem, which arises already when doing linear regression
analysis. Increasing the number of parameters may eventually lead to catastrophic estimations, where
the addition of a degree of freedom can seriously hinder the resolution.
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Figure 11. A 40-neuron data set binned at 20 ms with a pairwise model of Range 2. After
fitting, we show the comparison between observed (in the real spike train) and predicted
average values of monomials in (a). (b,c,d) The comparison of predicted and observed
probabilities for patterns of Ranges 1, 2 and 3, respectively. In (a), (b), (c) and (d), the
x-axis represents the observed probabilities and the y-axis the predicted probabilities. The
computation time is equal to seven days on a small cluster of 64 processors (around 47 min
per iteration). The estimated Kullback-Leibler divergence is 0.983.

(a) Monomial averages. (b) Patterns of Range 1.

(c) Patterns of Range 2. (d) Patterns of Range 3.

In the case of MaxEnt, the situation can be described as follows. We generate a finite raster, ωT0 , from
a known distribution, µλ∗ , with a potential of the form (2). Denote µλ∗ [ m ] as the vector with entries
µλ∗ [ml ] and π(T )

ω [ m ] as the vector with entries π(T )
ω [ ml ]. From (19), we have µλ∗ [ m ] = ∇λ∗P .

This exact solution is obtained when the Gibbs distribution, µλ∗ , can be exactly sampled, namely, for an
infinite raster. For a finite raster, if T is large enough to apply the central limit theorem, the empirical
distribution, π(T )

ω [ m ], is Gaussian with mean µλ [ m ] and covariance 1
T
χ given by (51). We have,

therefore, π(T )
ω [ m ] = µλ∗ [ m ] + β, where β is a centered Gaussian with covariance 1

T
χ. Solving (19),

where the exact probability, µλ∗ , is replaced by the empirical one, π(T )
ω , one obtains an approximate

solution of λ, λ∗ with: λ = λ∗ + ε, where: ∇λP = π
(T )
ω [ m ] . Therefore, ∇λP = µλ∗ [ m ] + β =

∇λ∗+εP = ∇λ∗P + εχ+O(‖ε‖2). Hence, ε = χ−1β. χ is invertible, since P is convex.
The fluctuations of the estimated solution, λ, around the exact solution, λ∗, are therefore Gaussian,

centered, with covariance E [ ε.ε̃ ] = E
[
χ−1.β.β̃.χ̃−1

]
. Since χ is symmetric, we have E [ ε.ε̃ ] =

χ−1.E
[
β.β̃

]
.χ−1 = 1

T
χ−1. We arrive, therefore, at the conclusion that the fluctuations on the estimated

coefficients, λ, are highly constrained by the convexity of the pressure, as expected. Mathematically,
everything goes nicely, since P is convex. However, it may happen that P is quite flat in some
directions/monomials. Then, small errors will be largely amplified. Therefore, when considering
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potentials of the form (2), it is expected that some terms (monomials) not only are irrelevant, but
also dramatically deteriorate the estimation problem, introducing almost zero eigenvalues in χ. This
is presumably what happened in Figure 11, where we were not able to obtain a good convergence for
monomial averages.

At this stage, the main question is therefore: can we have an idea of the potential shape from data
before fitting the parameters? This question is not only related to the goodness of fit, but it is also a
question of concept. Is is useful to represent a pairwise distribution for 40 neurons with nearly 2,000
parameters? The idea would then be to filter irrelevant monomials. For that, a feature selection method is
useful and should complement this work. There are many directions we can take in favor of the feature
selection; for instance, selecting the features on the threshold ([41,42]), using a χ2 method ([43]), as
well as the incremental feature selection algorithm ([44], [45]). Other methods based on periodic orbit
sampling ([46]) and information geometry ([47,48]) are under current investigation.

We have presented a method to fit the parameters of the MaxEnt distribution with spatio-temporal
constraints. In the process of exploring the dynamics of neural data, we hypothesize the model, fit it
and, finally, judge the quality of the suggested model. Hence, this work is positioned as an important
intermediate step in neural coding using the MaxEnt framework, opening the door for analyzing the
dynamics of large networks, not being limited to spatial and/or traditional MaxEnt models.

Finally, we would like to highlight two points that should be investigated in further studies:

• The effect of binning. In many experimental studies, data is binned. Basically, binning was used
in order to account for time spiking sensitivity, which is not the same for all the biological neural
networks. For instance, [9] used 20 ms of binning for retinal spike trains. In the present paper,
we have used the same as these authors, but we have not considered the effect of binning on our
statistical estimations. This is certainly a matter of further investigations, especially because, to
our best knowledge, no systematic study on the binning effects on statistics has been done. In
particular, three distinct dimensions should be considered:

– The statistical dimension: how does binning biases statistics? Could binning introduce
spurious effects, such as, e.g., creating fallacious long-range correlations?

– The computational dimension: how does the performance of the algorithm change with the
bin size?

– The biological dimension: cross-correlograms are not the same in all brain areas. Therefore,
the optimal bin size is expected to depend on the investigated area.

• Maximum entropy: There are several methods now in use to model the spatio-temporal
correlations in ensembles of neurons. The generalized linear model (GLM) approach uses the
maximum likelihood and point-process to assess connectivity (e.g., [10]). Reverse correlation
methods can also work well (e.g., [49]). Finally, there are causality metrics, like Granger causality
or transfer entropy ([50]). Some of these methods have been compared in [51], but further
investigations should be helpful, starting from synthetic data, where statistics is under good
control. Especially, how does maximum entropy perform compared to these others methods?
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Our method allows one to investigate these two questions on numerical grounds although such an
investigation should be completed by mathematical insights, using the properties of spatio-temporal
Gibbs distributions.

6. List of symbols

ωi(n) Spike event
ω(n) Spike pattern
ωn2
n1

Spike block
ω Spike train
T Length (in time) of the spike train
N Number of neurons
R Model range
D Model memory (R = D − 1)
ml(ω) Monomial number l
m Vector of monomials
L Total number of parameters (monomials) in the model
λl Parameter number l
λ Parameters vector
H Gibbs potential
Zλ Partition function
S Entropy
P Topological pressure
π

(T )
ω Empirical probability measured on the spike train, ω, of length T
µλ Gibbs density with parameters λ
M Set of invariant probabilities
δl = λ′l − λl Learning rate or the value by which we update the parameters, λl
δ Vector of learning rates
dKL Kullback-Leibler divergence
Cjk Correlation between two monomials, j and k
χ Hessian matrix (second derivative of the pressure)
∆ Root sum square of the learning rates
β Fluctuations on the monomials averages
ε Fluctuations on the parameters (relaxation)
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