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Abstract: This paper considers the problem of the chaos suppression for the Permanent 

Magnet Synchronous Motor (PMSM) system via the finite-time control. Based on Lyapunov 

stability theory and the finite-time controller are developed such that the chaos behaviors of 

PMSM system can be suppressed. The effectiveness and accuracy of the proposed methods 

are shown in numerical simulations. 
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1. Introduction 

The PMSM system had been appealing to more and more industry engineers for many AC motor 

applications. Recently, there have been many researches presenting numerous kinds of control 

methods for PMSM systems [1–3]. The permanent magnet synchronous motor (PMSM) plays an 

important role in industrial applications due to its simple structure, high power density, low 

maintenance cost, and high efficiency [4–7]. In these two decades, the dynamic characteristics and 

stability analysis of PMSM had emerged as a new and attractive research field, such as bifurcation, 

chaos, and limit cycle dynamic behaviors [8–13], etc. Among chaos phenomenon which is a 

deterministic nonlinear dynamical system that has been generally developed over the past two decades, 

in fields such as engineering science, medical science, biological engineering, and secure communication. 

Chaotic systems are very complex, dynamic nonlinear systems and their response possesses intrinsic 

characteristics such as broadband noise-like waveforms, prediction difficulty, and sensitivity to initial 

condition variations, etc. Moreover, many profound theories and methodologies [14–18] have been 

developed to deal with this issue. For the chaos suppression of permanent magnet synchronous motor 
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systems, some kinds of control design and determination of stability have been conferred [19–28]. 

Some control methods had been studied to stabilize PMSM systems, such as optimal Lyapunov 

exponents placement [19], passive control [20], fuzzy control [21–23], impulsive control [24,25], 

sensorless control [26,27], and the cascade adaptive approach [28]. Therefore, chaos suppression aimed at 

eliminating the undesired chaotic behavior has become an important issue in the field of nonlinear 

control. From the viewpoint of control theory, chaos suppression can be considered as a stability 

problem. Recently, secure communication has received a lot attention with regards to the internet and 

personal information. An increasing number of studies have addressed secure communication via the 

chaos theory. In past research reports, chaos systems have been an attractive topic for their potential 

applications in secure communication [29–32]. In recent years, digital chaos signals have been 

extensively used in commercial applications, such as multimedia systems, mobile and wireless 

communications [33–35]. In [36], by using XOR logic operation, a chaotic watermark was obtained 

between the binary watermark and the binary chaotic image, and then the chaotic watermark was 

embedded into an order less image of each block of the least significant bit. 

On the other hand, based on its unique powerful advantages, a particular property of asymptotic 

stability, finite-time stability has received a lot attention recently. It is surely more useful for some 

problems or applications to obtain the finite-time stable element than convergence within infinity time. 

Moreover, the finite-time control techniques have demonstrated better robustness and disturbance 

rejection properties. Based on proposed fractional controllers, the finite-time stability and the settling 

time can be guaranteed and computed [37–49]. However, few studies have focused on the finite-time 

suppression chaos of permanent magnet synchronous motor (PMSM) systems. 

Motivated by the above discussion, this paper aims to achieve the finite-time chaos suppression for 

the permanent magnet synchronous motor (PMSM) system by the proposed controllers. Based on  

finite-time stability theory, the chaos suppression of PMSM is analyzed. Finally, an example is given 

to illustrate the usefulness of the obtained results. 

2. Preliminaries 

In order to derive the main results, the following definition and lemma are needed: 

Definition [46]: Consider the nonlinear dynamical system modeled by:  

)(xgx  , (1)

where the system state variable nRx . If there exists a constant 0T  (may depend on the initial 
system state )0(x ), such that: 

0||)(||lim 


tx
Tt

, (2)

and 0||)(|| tx , if Tt  , then system )(xgx   is finite-time stable. 

Lemma [44]: Assume that a continuous, positive-definite function )(tV  satisfies the following 

differential inequality: 

)()( tVtV  , 0tt  , 0)( 0 tV  (3)

where 0  and 10    are two constants. Then, for any given 0t , )(tV  satisfies the following inequality: 
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0)( tV , rtt  , with rt  given by:  
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3. Problem Formulation and Main Results 

Based on d-q axis, the dynamic model of a permanent synchronous motor with a smooth air gap can 

be described by the following differential equation [8]: 

Lq

qdq
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d

Twi
dt
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di
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  (6)

where di , qi , and w  are state variables, which denote d , q  axis stator currents, w  is the motor 

angular speed, respectively. LT
~

, du~ , and qu~  are the external load torque, the direct- and quadrature 

axis stator voltage components of the motor, respectively.   and   are system operating parameters. 

In this paper, we only consider the case that the system is unforced. This case can be thought of as that, 

after an operating period of the system, the external inputs are set to zero, namely, 0~~~  qdL uuT . 

Then, the system (6) becomes:  
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or: 
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where dix 1 , qix 2 , wx 3 . 

This paper aims at proposing a controller to suppression chaotic oscillation for PMAM in finite 

time, we add the single control )(tu  to system (8) and then the controlled PMSM system can be 

expressed by: 

)]()([)(

)()()()()()(

)()()()(

323

33122

3211

txtxtx

tutxtxtxtxtx

txtxtxtx













 (9)



Entropy 2014, 16 2237 

 

 

To achieve this aim, we propose the main results based on the finite-time stability theory 

(Definition). According to the Lyapunov stability theorem and the Lemma, if there is a feedback 

controller such that )(tVV   where   ))()()((
2

1 2
3

2
2

2
1 txtxtxtV   is the defined Lyapunov 

function and 0  and 10    are two real constants, the system’s state variables converging to 

zero reaching in finite-time can be obtained. Therefore, the proposed controller )(tu  is designed as: 

  )()()()()()(()(sgn)()()( 32
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1
1 tx
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(10)

where   is gain which is positive constant. 

Theorem 1. Based on the proposed designed controller in Equation (10), the system’s state variables in 

(9) will converge to zero in finite-time and the finite-time suppression chaotic oscillation for PMAM 

can be achieved. 

Proof. Define the Lyapunov function: 

  )(
2

1 2
3

2
2

2
1 xxxtV  , (11)

where  tV  is a legitimate Lyapunov function candidate, the time derivatives of  tV , along the 

trajectories of system (9) with (10) satisfy:  
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By substituting the feedback controller (10), one can obtain: 

111
1 )()()()(

    tetetxtV zy
  (12)

From the above equation, we can obtain: 
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Therefore, we can get: 
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 tVtV  (18)

From the Definition and Lemma, )(1 tx , )(2 tx  and )(3 tx  can converge to zero in finite-time. The 

finite-time suppression chaotic oscillation for PMAM is guaranteed, completing the proof. 

Remark: In order to avoid chattering, ))(sgn( tx  is replaced by 
)(

)(

tx

tx
 in the simulation, where   is 

an appropriate minimal value.  

4. Numerical Simulation and Analysis 

In this section, a numerical example is presented to demonstrate and verify the performance of the 

proposed results. Finite-time chaos suppression on PMSM via the finite-time stability theory will be 

conducted. Typical chaotic attractors behavior of PMSM is shown in Figures 1 and 2 with parameters 
given by 20 , 46.5  [8]. 

Figure 1. The state variables of the PMSM system. 
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Figure 2. The chaotic attractor of the PMSM system. 
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The simulation was done with a four order Runge-Kutta integration algorithm in Matlab 7 with the 

control parameters are set as 2.0  and 7.0 ; the initial conditions  Tx 1105)0(  . The 

system state responses trajectory of the controller design shown in Figure 3 depicts the time responses 

of the control input of u(t). 

Figure 3. The state responses of the controlled PMSM system. 
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Figure 3. Cont. 

 

It is seen clearly that the PMSM state reaches the desired goal in finite-time chaos suppression. 

From the simulation results, the effectiveness of the proposed method and the designed controller is shown. 

5. Conclusions 

In conclusion, the finite-time control of chaos suppression for PMSM systems was presented. Based 

on finite-time stability theory, the proposed control law is very effective according to the theoretical 

method and simulation results. The proposed controller is simple and easy to implement. This study 

should prove helpful to maintain industrial servo driven systems’ secure operation and applies chaos 

control methods to the plant. Numerical simulation displayed the feasibility and usefulness of the 

central discussion. 

Acknowledgments 

The author thanks the Ministry of Science and Technology, Taiwan for supporting this work under 

Grant NSC 102-2622-E-269-003-CC3 and NSC 102-2221-E-269-021. The author also wishes to thank the 

anonymous reviewers for providing constructive suggestions. 

Conflicts of Interest 

The author declares no conflict of interest. 

References 

1. Krishnan, R. Electric Motor Drives, Modeling, Analysis, and Control; Prentice Hall, Inc.: Upper 

Saddle River, NJ, USA 2001. 

2. Luo, Y.; Chen, Y.Q.; Pi, Y.G. Cogging effect minimization in PMSM position servo system using 

dual high-order periodic adaptive learning compensation. ISA Trans. 2010, 49, 479–488. 

3. Accetta, A.; Cirrincione, M.; Pucci, M. TLS EXIN based neural sensorless control of a high 

dynamic PMSM. Control Eng. Practice 2012, 20, 725–732.  

4. Babak, N.M.; Farid, M.T.; Sargos, F.M. Mechanical Sensorless Control of PMSM with Online 

Estimation of Stator Resistance. IEEE Trans. Ind. Appl. 2004, 40, 457–471. 

5. Bolognani, S.; Zigliotto, M.; Zordan, M. Extended-Range PMSM Sensorless Speed Drive Based 

on Stochastic Filtering. IEEE Trans. Power Electron. 2001, 16, 110–117. 

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

8

Time (sec)

x3



Entropy 2014, 16 2241 

 

 

6. Xu, Z.; Faz Rahma, M. Direct torque and flux regulation of an ipm synchronous motor drive 

using variable structure control approach. IEEE Trans. Power Electron. 2007, 22, 2487–2498. 

7. Rossi, C.; Tonielli, A. Robust control of permanent magnet motors: Vss techniques lead to simple 

hardware implementations. IEEE Trans. Ind. Electron. 1994, 41, 451–460. 

8. Li, Z.; Park, J.B.; Joo, Y.H.; Zhang, B.; Chen, G.R. Bifurcation and chaos in a permanent magnet 

synchronous motor. IEEE Trans. Circuits Syst. I, Fundam. Theory. 2002, 49, 383–387. 

9. Wei, D.Q.; Luo, X.S.; Wang, B.H.; Fang, J.Q. Robust adaptive dynamic surface control of chaos 

in permanent magnet. Phys. Lett. A 2007, 363, 71–77. 

10. Wei, D.; Luo, X.; Fang, J.; Wang, B. Controlling chaos in permanent magnet synchronous motor 

based on the differential geometry methods. Acta Phys. Sin. 2006, 55, 54–59. 

11. Luo, Y. Current rate feedback control of chaos in permanent magnet synchronous motor. Proc. 

CSU-EPSA 2006, 18, 31–34. 

12. Ren, H.; Liu, D. Nonlinear feedback control of chaos in permanent magnet synchronous motor. 

IEEE Trans. Circuits Syst. II, Exp. Briefs. 2006, 53, 45–50. 

13. Li, J.; Ren, H. Partial decoupling control of chaos in permanent magnet synchronous motor. IET 

Contr. Theory Appl. 2005, 22, 637–640. 

14. Salarieh, H.; Alasty, A. Adaptive synchronization of two chaotic systems with stochastic 

unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 508–519. 

15. Liu, C.; Li, C.; Li, C. Quasi-synchronization of delayed chaotic systems with parameters 

mismatch and stochastic perturbation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4108–4119. 

16. Hu, A.; Xu, Z. Stochastic linear generalized synchronization of chaotic systems via robust control. 

Phys. Lett. A 2008, 372, 3814–3818. 

17. Sun, Y.; Cao, J.; Wang, Z. Exponential synchronization of stochastic perturbed chaotic delayed 

neural networks. Neurocomputing 2007, 70, 2477–2485. 

18. Tang, Y.; Qiu, R.; Fang, J.A.; Miao, Q.; Xia, M. Adaptive lag synchronization in unknown 

stochastic chaotic neural networks with discrete and distributed time-varying delays. Phys. Lett. A 

2008, 372, 4425–4433. 

19. Ataei, M.; Kiyoumarsi, A.; Ghorbani, B. Control of chaos in permanent magnet synchronous 

motor by using optimal Lyapunov exponents placement. Physics Letters A 2010, 374, 4226–4230. 

20. Qi, D.L.; Wang, J.J.; Zhao, G.Z. Passive control of permanent magnet synchronous motor chaotic 

systems. J. Zhejiang Univ. Sci. A 2005, 6, 728–732. 

21. Elmas, C.; Ustun, O.; Sayan, H. A neuro-fuzzy controller for speed control of a permanent magnet 

synchronous motor drive. Expert Syst. Appl. 2008, 34, 657–664. 

22. Yu, J.; Chen, B.; Yu, H.S.; Gao, J.W. Adaptive fuzzy tracking control for the chaotic permanent 

magnet synchronous motor drive system via backstepping. Nonlinear Anal.-Real World Appl. 

2011, 12, 671–681. 

23. Kuo, C.; Hsu, C.; Tsai, C. Control of permanent magnet synchronous motor with a fuzzy  

slide-mode controller. Int. J. Adv. Manuf. Technol. 2007, 32, 757–763. 

24. Wei, Q.; Wang, X.Y.; Hu, X.P. Impulsive control in permanent magnet synchronous motor. Sci. 

Res. Essays 2013, 8, 670–675. 

25. Li, D.; Wang, S.L.; Zhang, X.H.; Yang, D. Impulsive control for permanent magnet synchronous 

motors with uncertainties: LMI approach. Chin. Phys. B 2010, 19, 010506. 



Entropy 2014, 16 2242 

 

 

26. Seok, J.K.; Lee, J.K.; Lee, D.C. Sensorless speed control of nonsalient permanent-magnet 

synchronous motors using rotor-position-tracking PI controller. IEEE Trans. Ind. Appl. 2006, 53, 

399–405. 

27. Wallmark, O.; Harnefors, L. Sensorless control of salient PMSM drives in the transition region. 

IEEE Trans. Ind. Appl. 2006, 53, 1179–1187. 

28. Wei, W.; Zou, M.; Jiang, T.Q.; Liu, Z.W. Control chaos in permanent magnet synchronous 

motors by cascade adaptive approach. Adv. Appl. Mech. 2011 96, 128–129. 

29. Huang, C.K.; Tsay, S.C.; Wu, Y.R. Implementation of chaotic secure communication systems 

based on OPA circuits. Chaos Solitons Fractals 2005, 23, 589–600. 

30. Li, Z.G.; Xu, D.L. A secure communication scheme using projective chaos synchronization. 

Chaos Solitons Fractals 2004, 22, 477–481. 

31. Liao, T.L.; Tsai, S.H. Adaptive synchronization of chaotic systems and its application to secure 

communications. Chaos Solitons Fractals 2000, 11, 1387–1396. 

32. Chen, H.C.; Chang, J.F.; Yan, J.J.; Liao, T.L. EP-based PID control design for chaotic 

synchronization with application in secure communication. Expert Syst. Appl. 2008, 34,  

341169–341177. 

33. Lau, F.C.M.; Tse, C.K. Chaos-Based Digital Communication Systems: Operating Principles, 

Analysis Methods and Performance Evaluation; Springer: Berlin, Germany, 2003. 

34. Sandhu, G.S.; Berber, S. Investigation on Operations of a Secure Communication System based 

on the Chaotic Phase Shift Keying Scheme. In Information Technology and Applications, 

Proceeding of the Third International Conference on Information Technology and Applications, 

Sydney, Australia, 4–7 July 2005; Vol. 2, pp. 584–587. 

35. Tam, W.M.; Lau, C.M.; Tse, C.K.; Lawrance, A.J. Exact Analytical Bit Error Rates for Multiple 

Access Chaos-Based Communication Systems. IEEE Trans. Circuits Syst. II, Exp. Briefs. 2004, 

51, 473–481. 

36. Chen, Y.L.; Yau, H.T.; Yang, G.J. A maximum entropy-based chaotic time-variant fragile 

watermarking scheme for image tampering detection. Entropy 2013, 15, 3170–3185. 

37. Moulay, E.; Perruquetti, W. Finite time stability and stabilization of a class of continuous systems. 

J. Math. Anal. Appl. 2006, 323, 1430–1443. 

38. Amato, F.; Ariola, M.; Cosentino, C. Finite-time control of discrete-time linear systems: Analysis 

and design conditions. Automatica 2010, 46, 919–924. 

39. Yang, Y.; Li, J.; Chen, G. Finite-time stability and stabilization of nonlinear stochastic hybrid 

systems. J. Math. Anal. Appl. 2009, 356, 338–345. 

40. Chen, W.; Jiao, L.C. Finite-time stability theorem of stochastic nonlinear systems. Automatica 

2010, 46, 2105–2108. 

41. Jammazi, C. On a sufficient condition for finite-time partial stability and stabilization: 

applications. IMA J. Math. Control Inf. 2010, 27, 29–56. 
42. Zhang, Y.; Liu, C.; Mu, X. Robust finite-time  control of singular stochastic systems via static 

output feedback. Appl. Math. Comput. 2012, 218, 5629–5640. 

43. Wan, Z.L.; Hou, Y.Y.; Liao, T.L.; Yan, J.J. Partial Finite-Time Synchronization of Switched 

Stochastic Chua’s Circuits via Sliding-Mode Control. Math. Probl. Eng. 2011, 2011, 162490 

H



Entropy 2014, 16 2243 

 

 

44. Yin, J.; Khoo, S.; Man, Z.; Yu, X. Finite-time stability and instability of stochastic nonlinear 

systems. Automatica 2011, 47, 2671–2677. 

45. Zhou, J.; Xu, S.; Shen, H. Finite-time robust stochastic stability of uncertain stochastic delayed 

reaction–diffusion genetic regulatory networks. Neurocomputing 2011, 74, 2790–2796. 

46. Bhat; S.P.; Bernstein, D.S. Finite-Time Stability of Homogeneous Systems. In Proceedings of the 

American Control Conference, IEEE. Albuquerque, NM, USA, 4–6 June, 1997. 

47. Aghababa, M.P.; Aghababa, H.P. Finite-time stabilization of uncertain non-autonomous chaotic 

gyroscopes with nonlinear inputs. Appl. Math. Mech. 2012, 33, 155–164. 

48. Aghababa, M.P.; Aghababa, H.P. Chaos suppression of rotational machine systems via finite-time 

control method. Nonlinear Dyn. 2012, 69, 1881–1888. 

49. Meng, Z.; Sun, C.; An, Y.; Cao, J.; Gao, P. Chaos Anti-Control of Permanent Magnet 

Synchronous Motor Based on Model Matching. In Proceeding of International Conference on 

Electrical Machines and Systems, Seoul, Korea, 8–11 Octorber 2007, pp. 1748–1752. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 




