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Abstract: In this survey paper, a summary of results which are to be found in a series
of papers, is presented. The subject of interest is focused on matrix algebraic properties
of the Fisher information matrix (FIM) of stationary processes. The FIM is an ingredient
of the Cramér-Rao inequality, and belongs to the basics of asymptotic estimation theory in
mathematical statistics. The FIM is interconnected with the Sylvester, Bezout and tensor
Sylvester matrices. Through these interconnections it is shown that the FIM of scalar and
multiple stationary processes fulfill the resultant matrix property. A statistical distance
measure involving entries of the FIM is presented. In quantum information, a different
statistical distance measure is set forth. It is related to the Fisher information but where
the information about one parameter in a particular measurement procedure is considered.
The FIM of scalar stationary processes is also interconnected to the solutions of appropriate
Stein equations, conditions for the FIM to verify certain Stein equations are formulated. The
presence of Vandermonde matrices is also emphasized.
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1. Introduction

In this survey paper, a summary of results derived and described in a series of papers, is presented.
It concerns some matrix algebraic properties of the Fisher information matrix (abbreviated as FIM)
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of stationary processes. An essential property emphasized in this paper concerns the matrix resultant
property of the FIM of stationary processes. To be more explicit, consider the coefficients of two monic
polynomials p(z) and q(z) of finite degree, as the entries of a matrix such that the matrix becomes
singular if and only if the polynomials p(z) and q(z) have at least one common root. Such a matrix is
called a resultant matrix and its determinant is called the resultant. The Sylvester, Bezout and tensor
Sylvester matrices have such a property and are extensively studied in the literature, see e.g., [1–3].
The FIM associated with various stationary processes will be expressed by these matrices. The derived
interconnections are obtained by developing the necessary factorizations of the FIM in terms of the
Sylvester, Bezout and tensor Sylvester matrices. These factored forms of the FIM enable us to show that
the FIM of scalar and multiple stationary processes fulfill the resultant matrix property. Consequently,
the singularity conditions of the appropriate Fisher information matrices and Sylvester, Bezout and tensor
Sylvester matrices coincide, these results are described in [4–6].

A statistical distance measure involving entries of the FIM is presented and is based on [7]. In
quantum information, a statistical distance measure is set forth, see [8–10], and is related to the Fisher
information but where the information about one parameter in a particular measurement procedure is
considered. This leads to a challenging question that can be presented as, can the existing distance
measure in quantum information be developed at the matrix level ?

The matrix Stein equation, see e.g., [11], is associated with the Fisher information matrices of scalar
stationary processes through the solutions of the appropriate Stein equations. Conditions for the Fisher
information matrices or associated matrices to verify certain Stein equations are formulated and proved
in this paper. The presence of Vandermonde matrices is also emphasized. The general and more detailed
results are set forth in [12] and [13]. In this survey paper it is shown that the FIM of linear stationary
processes form a class of structured matrices. Note that in [14], the authors emphasize that statistical
problems related to stationary processes have been treated successfully with the aid of Toeplitz forms.
This paper is organized as follows. The various stationary processes, considered in this paper, are
presented in Section 2, the Fisher information matrices of the stationary processes are displayed in
Section 3. Section 3 sets forth the interconnections between the Fisher information matrices and the
Sylvester, Bezout, tensor Sylvester matrices, and solutions to Stein equations. A statistical distance
measure is expressed in terms of entries of a FIM.

2. The Linear Stationary Processes

In this section we display the class of linear stationary processes whose corresponding Fisher
information matrix shall be investigated in a matrix algebraic context. But first some basic definitions
are set forth, see e.g., [15].

If a random variableX is indexed to time, usually denoted by t, the observations {Xt, t ∈ T} is called
a time series, where T is a time index set (for example, T = Z, the integer set).

Definition 2.1. A stochastic process is a family of random variables {Xt, t ∈ T} defined on a probability
space {Ω,F ,P}.



Entropy 2014, 16 2025

Definition 2.2. The Autocovariance function. If {Xt, t ∈ T} is a process such that Var(Xt) < ∞
(variance) for each t, then the autocovariance function γX (·, ·) of {Xt} is defined by

γX (r, s) = Cov (Xr, Xs) = E [(Xr − EXr) (Xs − EXs)] , r, s ∈ Z and E represents the expected value.

Definition 2.3. Stationarity. The time series {Xt, t ∈ Z}, with the index set Z = {0,±1,±2, . . .} , is
said to be stationary if

(i) E |Xt|2 < ∞
(ii) E (Xt) = m for all t ∈ Z, m is the constant average or mean

(iii) γX (r, s) = γX (r + t, s+ t) for all r, s, t ∈ Z,

From Definition 2.3 can be concluded that the joint probability distributions of the random variables
{X1, X2, . . . Xtn} and {X1+k, X2+k, . . . Xtn+k} are the same for arbitrary times t1, t2, . . . , tn for all n
and all lags or leads k = 0, ±1, ±2, . . .. The probability distribution of observations of a stationary
process is invariant with respect to shifts in time. In the next section the linear stationary processes that
will be considered throughout this paper are presented.

2.1. The Vector ARMAX or VARMAX Process

We display one of the most general linear stationary process called the multivariate autoregressive,
moving average and exogenous process, the VARMAX process. To be more specific, consider the vector
difference equation representation of a linear system {y(t), t ∈ Z}, of order (p, r, q),

p∑
j=0

Aj y(t− j) =
r∑
j=0

Cj x(t− j) +

q∑
j=0

Bj ε(t− j), t ∈ Z (1)

where y(t) are the observable outputs, x(t) the observable inputs and ε(t) the unobservable errors,
all are n-dimensional. The acronym VARMAX stands for vector autoregressive-moving average with
exogenous variables. The left side of (1) is the autoregressive part the second term on the right is
the moving average part and x(t) is exogenous. If x(t) does not occur the system is said to be
(V)ARMA. Next to exogenous, the input x(t) is also named the control variable, depending on the
field of application, in econometrics and time series analysis, e.g., [15], and in signal processing and
control, e.g., [16,17]. The matrix coefficients, Aj ∈ Rn×n, Cj ∈ Rn×n, and Bj ∈ Rn×n are the associate
parameter matrices. We have the property A0 ≡ B0 ≡ C0 ≡ In.
Equation (1) can compactly be written as

A(z) y(t) = C(z) x(t) +B(z) ε(t) (2)

where

A(z) =

p∑
j=0

Aj z
j; C(z) =

r∑
j=0

Cj z
j; B(z) =

q∑
j=0

Bj z
j

we use z to denote the backward shift operator, for example z xt = xt−1. The matrix polynomials
A(z), B(z) and C(z) are the associated autoregressive, moving average matrix polynomials, and the
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exogenous matrix polynomial respectively of order p, q and r respectively. Hence the process described
by Equation (2) is denoted as a VARMAX(p, r, q) process. Here z ∈ C with a duplicate use of z as an
operator and as a complex variable, which is usual in the signal processing and time series literature,
e.g., [15,16,18]. The assumptions Det(A(z)) 6= 0, such that |z| ≤ 1 and Det(B(z)) 6= 0, such that
|z| < 1 for all z ∈ C, is imposed so that the VARMAX(p, r, q) process (2) has exactly one stationary
solution and the condition Det(B(z)) 6= 0 implies the invertibility condition, see e.g., [15] for more
details. Under these assumptions, the eigenvalues of the matrix polynomials A(z) and B(z) lie outside
the unit circle. The eigenvalues of a matrix polynomial Y (z) are the roots of the equation Det(Y (z)) = 0,
Det(X) is the determinant of X . The VARMAX(p, r, q) stationary process (2) is thoroughly discussed
in [15,18,19].

The error {ε(t), t ∈ Z} is a collection of uncorrelated zero mean n-dimensional random variables each
having positive definite covariance matrix Σ and we assume, for all s, t, Eϑ{ x(s) ε>(t)} = 0, where
X> denotes the transposition of matrix X and Eϑ represents the expected value under the parameter ϑ.
The matrix ϑ represents all the VARMAX(p, r, q) parameters, with the total number of parameters being
n2(p + q + r). For different purposes which will be specified in the next sections, two choices of the
parameter structure are considred. First, the parameter vector ϑ ∈ Rn2(p+q+r)×1 is defined by

ϑ = vec {A1, A2, ..., Ap, C1, C2, ..., Cr, B1, B2, ..., Bq} (3)

The vec operator transforms a matrix into a vector by stacking the columns of the matrix one underneath
the other according to vecX = col(col(Xij)

n
i=1)

n
j=1, see e.g., [2,20]. A different choice is set forth, when

the parameter matrix ϑ ∈ Rn×n(p+q+r) is of the form

ϑ = (ϑ1 ϑ2 . . . ϑp ϑp+1 ϑp+2 . . . ϑp+r ϑp+r+1 ϑp+r+2 . . . ϑp+r+q) (4)

= (A1 A2 . . . Ap C1 C2 . . . Cr B1 B2 . . . Bq) (5)

Representation (5) of the parameter matrix has been used in [21]. The estimation of the matrices A1,
A2,. . ., Ap, C1, C2,. . ., Cr, B1, B2, . . ., Bq and Σ has received considerable attention in the time series
and statistical signal processing literature, see e.g., [15,17,19]. In [19], the authors study the asymptotic
properties of maximum likelihood estimates of the coefficients of VARMAX(p, r, q) processes, stored in
a (`× 1) vector ϑ, where ` = n2(p+ q + r).

Before describing the control-exogenous variable x(t) used in this survey paper, we shall present the
different special cases of the model described in Equations (1) and (2).

2.2. The Vector ARMA or VARMA Process

When the process (2) does not contain the control process x(t) it yields

A(z)y(t) = B(z)ε(t) (6)

which is a vector autoregressive and moving average process, VARMA(p, q) process, see e.g., [15]. The
matrix ϑ represents now all the VARMA parameters, with the total number of parameters being n2(p+q).
The VARMA(p, q) version of the parameter vector ϑ defined in (3) is then given by

ϑ = vec {A1, A2, ..., Ap, B1, B2, ..., Bq} (7)
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A VARMA process equivalent to the parameter matrix (4) is then the n× n(p+ q) parameter matrix

ϑ = (ϑ1 ϑ2 . . . ϑp ϑp+1 ϑp+2 . . . ϑp+q) = (A1 A2 . . . Ap B1 B2 . . . Bq) (8)

A description of the input variable x(t), in Equation (2) follows. Generally, one can assume either that
x(t) is non stochastic or that x(t) is stochastic. In the latter case, we assume Eϑ{ x(s) ε>(t)} = 0, for
all s, t, and that statistical inference is performed conditionally on the values taken by x(t). In this case
it can be interpreted as constant, see [22] for a detailed exposition. However, in the papers referred in
this survey, like in [21] and [23], the observed input variable x(t), is assumed to be a stationary VARMA
process, of the form

α(z)x(t) = β(z)η(t) (9)

where α(z) and β(z) are the autoregressive and moving average polynomials of appropriate degree and
{η(t), t ∈ Z} is a collection of uncorrelated zero mean n-dimensional random variables each having
positive definite covariance matrix Ω. The spectral density of the VARMA process x(t) is Rx(·)/2π and
for a definition, see e.g., [15,16], to obtain

Rx(e
iω) = α−1(eiω)β(eiω)Ωβ∗(eiω)α−∗(eiω) ω ∈ [−π, π] (10)

where i is the imaginary unit with the property i2 = −1, ω is the frequency, the spectral density Rx(e
iω)

is Hermitian, and we further have, Rx(e
iω) ≥ 0 and

∫ π
−πRx(e

iω)dω < ∞. As mentioned above, the
basic assumption, x(t) and ε(t) are independent or at least uncorrelated processes, which corresponds
geometrically with orthogonal processes, holds and X∗ is the complex conjugate transpose of matrix X .

2.3. The ARMAX and ARMA Processes

The scalar equivalent to the VARMAX(p, r, q) and VARMA(p, q) processes, given by Equations (2)
and (6) respectively, shall now be displayed, to obtain for the ARMAX(p, r, q) process

a(z)y(t) = c(z)x(t) + b(z)ε(t) (11)

and for the ARMA(p, q) process
a(z)y(t) = b(z)ε(t) (12)

popularized in, among others, the Box-Jenkins type of time series analysis, see e.g., [15]. Where a(z),
b(z) and c(z) are respectively the scalar autoregressive, moving average polynomials and exogenous
polynomial, with corresponding scalar coefficients aj , bj and cj ,

a(z) =

p∑
j=0

aj z
j; c(z) =

r∑
j=0

cj z
j; b(z) =

q∑
j=0

bj z
j (13)

Note that as in the multiple case, a0 = b0 = 1. The parameter vector, ϑ, for the processes, Equations
(11) and (12) is then

ϑ = {a1, a2, ..., ap, c1, c2, ..., cr, b1, b2, ..., bq} (14)

and
ϑ = {a1, a2, ..., ap, b1, b2, ..., bq} (15)



Entropy 2014, 16 2028

respectively.
In the next section the matrix algebraic properties of the Fisher information matrix of the stationary

processes (2), (6), (11) and (12) will be verified. Interconnections with various known structured matrices
like the Sylvester resultant matrix, the Bezout matrix and Vandermonde matrix are set forth. The Fisher
information matrix of the various stationary processes is also expressed in terms of the unique solutions
to the appropriate Stein equations.

3. Structured Matrix Properties of the Asymptotic Fisher Information Matrix of
Stationary Processes

The Fisher information is an ingredient of the Cramér-Rao inequality, also called by some the
Cauchy-Schwarz inequality in mathematical statistics, and belongs to the basics of asymptotic estimation
theory in mathematical statistics. The Cramér-Rao theorem [24] is therefore considered. When assuming
that the estimators of ϑ, defined in the previuos sections, are asymptotically unbiased, the inverse of
the asymptotic information matrix yields the Cramér-Rao bound, and provided that the estimators are
asymptotically efficient, the asymptotic covariance matrix then verifies the inequality

Cov
(
ϑ̂
)
� I−1

(
ϑ̂
)

here I
(
ϑ̂
)

is the FIM, Cov
(
ϑ̂
)

is the covariance of ϑ̂, the unbiased estimator of ϑ, for a detailed
fundamental statistical analysis, see [25,26]. The FIM equals the Cramér-Rao lower bound, and
the subject of the FIM is also of interest in the control theory and signal processing literature, see
e.g., [27] . Its quantum analog was introduced immediately after the foundation of mathematical quantum
estimation theory in the 1960’s, see [28,29] for a rigorous exposition of the subject. More specifically, the
Fisher information is also emphasized in the context of quantum information theory, see e.g., [30,31]. It
is clear that the Cramér-Rao inequality takes a lot of attention because it is located on the highly exciting
boundary of statistics, information and quantum theory and more recently matrix theory. In the next
sections, the Fisher information matrices of linear stationary processes will be presented and its role as
a new class of structured matrices will be the subject of study.
When time series models are the subject, using Equation (2) for all t ∈ Z to determine the residual ε(t) or
εt(ϑ), to emphasize the dependency on the parameter vector ϑ, and assuming that x(t) is stochastic and
that (y(t), x(t)) is a Gaussian stationary process, the asymptotic FIM F(ϑ) is defined by the following
(`× `) matrix which does not depend on t

F(ϑ) = E

{(
∂εt(ϑ)

∂ϑ>

)>
Σ−1

(
∂εt(ϑ)

∂ϑ>

)}
(16)

where the (υ × `) matrix ∂(·)/∂ϑ>, the derivative with respect to ϑ>, for any (υ × 1) column vector
(·) and ` is the total number of parameters. The derivative with respect to ϑ> is used for obtaining the
appropriate dimensions. Equality (16) is used for computing the FIM of the various time series processes
presented in the previous sections and appropriate definitions of the derivatives are used, especially for
the multivariate processes (2) and (6), see [21,22].
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3.1. The Fisher Information Matrix of an ARMA(p, q) Process

In this section, the focus is on the FIM of the ARMA process (12). When ϑ is given in Equation (15),
the derivatives in Equation (16) are at the scalar level

∂εt(ϑ)

∂aj
=

1

a(z)
εt−j for j = 1, . . . , p and

∂εt(ϑ)

∂bk
= − 1

b(z)
εt−k for k = 1, . . . , q

when combined for all j and k, the FIM of the ARMA process (12) with the variance of the noise process
εt(ϑ) equal to one, yields the block decomposition, see [32]

F(ϑ) =

(
Faa(ϑ) Fab(ϑ)

Fba(ϑ) Fbb(ϑ)

)
(17)

The expressions of the different blocks of the matrix F(ϑ) are

Faa(ϑ) =
1

2πi

∮
|z|=1

up(z)u>p (z−1)

a(z)a(z−1)

dz

z
=

1

2πi

∮
|z|=1

up(z)v>p (z)

a(z)â(z)
dz (18)

Fab(ϑ) = − 1

2πi

∮
|z|=1

up(z)u>q (z−1)

a(z)b(z−1)

dz

z
= − 1

2πi

∮
|z|=1

up(z)v>q (z)

a(z)̂b(z)
dz (19)

Fba(ϑ) = − 1

2πi

∮
|z|=1

uq(z)u>p (z−1)

a(z−1)b(z)

dz

z
= − 1

2πi

∮
|z|=1

uq(z)v>p (z)

â(z)b(z)
dz (20)

Fbb(ϑ) =
1

2πi

∮
|z|=1

uq(z)u>q (z−1)

b(z)b(z−1)

dz

z
=

1

2πi

∮
|z|=1

uq(z)v>q (z)

b(z)̂b(z)
dz (21)

where the integration above and everywhere below is counterclockwise around the unit circle. The
reciprocal monic polynomials â(z) and b̂(z) are defined as â(z) = zpa(z−1) and b̂(z) = zqb(z−1)

and ϑ = (a1, . . . , ap, b1, . . . , bq)
> introduced in (15). For each positive integer k we have uk(z) = (1, z,

z2, . . . , zk−1)> and vk(z) = zk−1uk(z
−1). Considering the stability condition of the ARMA(p, q) process

implies that all the roots of the monic polynomials a(z) and b(z) lie outside the unit circle. Consequently,
the roots of the polynomials â(z) and b̂(z) lie within the unit circle and will be used as the poles for
computing the integrals (18)-(21) when Cauchy’s residue theorem is applied. Notice that the FIM F(ϑ)

is symmetric block Toeplitz so that Fab(ϑ) = F>ba(ϑ) and the integrands in (18)-(21) are Hermitian. The
computation of the integral expressions, (18)-(21) is easily implementable by using the standard residue
theorem. The algorithms displayed in [33] and [22] are suited for numerical computations of among
others the FIM of an ARMA(p, q) process.

3.2. The Sylvester Resultant Matrix - The Fisher Information Matrix

The resultant property of a matrix is considered, in order to show that the FIM F(ϑ) has the matrix
resultant property implies to show that the matrix F(ϑ) becomes singular if and only if the appropriate
scalar monic polynomials â(z) and b̂(z) have at least one common zero. To illustrate the subject, the
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following known property of two polynomials is set forth. The greatest common divisor (frequently
abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor
of both the two original polynomials, the roots of the GCD of two polynomials are the common roots of
the two polynomials. Consider the coefficients of two monic polynomials p(z) and q(z) of finite degree,
as the entries of a matrix such that the matrix becomes singular if and only if the polynomials p(z) and
q(z) have at least one common root. Such a matrix is called a resultant matrix and its determinant is
called the resultant. Therefore we present the known (p + q)× (p + q) Sylvester resultant matrix of the
polynomials a and b, see e.g., [2], to obtain

S(a, b) =



1 a1 · · · ap 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

0 · · · 0 1 a1 · · · ap

1 b1 · · · bq 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0n×n

0 · · · 0 1 b1 · · · bq


(22)

Consider the q× (p+ q) and p× (p+ q) upper and lower submatrices Sp(b) and Sq(−a) of the Sylvester
resultant matrix S(−b, a) such that

S(b,−a) =

(
Sp(b)
−Sq(a)

)
(23)

The matrix S(a, b) becomes singular in the presence of one or more common zeros of the monic
polynomials â(z) and b̂(z), this property is assessed by the following equalities

R(a, b) =
∏

i=1,...,p
j=1,...,q

(αi − βj),R(b, a) = (−1)pq
∏

i=1,...,p
j=1,...,q

(αi − βj) (24)

and
R(b,−a) = (−1)q

∏
i=1,...,p
j=1,...,q

(βj − αi), andR(−b, a) = (−1)p
∏

i=1,...,p
j=1,...,q

(βj − αi) (25)

where R(a, b) is the resultant of â(z) and b̂(z), and is equal to Det S(a, b). The string of equalities in
(24) and (25) hold since R(b, a) = (−1)pq R(a, b), R(b,−a) = (−1)q R(b, a), and R(−b, a) = (−1)p

R(b, a), see [34]. The zeros of the scalar monic polynomials â(z) and b̂(z) are αi and βj respectively
and are assumed to be distinct. By this is meant, when we have (z − αi)nαi and

(
z − βj

)nβj with the
powers nαi and nβj both greater than one, that only the distinct roots will be considered free from the
corresponding powers. The key property of the classical Sylvester resultant matrix S(a, b) is that its null
space provides a complete description of the common zeros of the polynomials involved. In particular,
in the scalar case the polynomials â(z) and b̂(z) are coprime if and only if S(a, b) is non-singular. The
following key property of the classical Sylvester resultant matrix S(a, b), is given by the well known
theorem on resultants, to obtain

dim Ker S(a, b) = ν(a, b) (26)



Entropy 2014, 16 2031

where ν(a, b) is the number of common roots of the polynomials â(z) and b̂(z), with counting
multiplicities, see e.g., [3]. The dimension of a subspace V is represented by dim (V), Ker (X) is
the null space or kernel of the matrix X , denoted by Null or Ker. The null space of an n × n matrix A
with coefficients in a field K (typically the field of the real numbers or of the complex numbers) is the
set Ker A = {x ∈ Kn : Ax = 0}, see e.g., [1,2,20].
In order to prove that the FIM F(ϑ) fulfills the resultant matrix property, the following factorization is
derived, Lemma 2.1 in [5],

F(ϑ) = S(b,−a)P(ϑ)S>(b,−a) (27)

where the matrix P(ϑ) ∈ R(p+q)×(p+q) admits the form

P(ϑ) =
1

2πi

∮
|z|=1

up+q(z)u>p+q(z
−1)

a(z)b(z)a(z−1)b(z−1)

dz

z
=

1

2πi

∮
|z|=1

up+q(z)v>p+q(z)

a(z)b(z)â(z)̂b(z)
dz (28)

It is proved in [5] that the symmetric matrix P(ϑ) fulfills the property, P(ϑ) � O. The factorization (27)
allows us to show the matrix resultant property of the FIM, Corollary 2.2 in [5] states.

The FIM of an ARMA(p, q) process with polynomials a(z) and b(z) of order p, q respectively
becomes singular if and only if the polynomials â(z) and b̂(z) have at least one common root. From
Corollary 2.2 in [5] can be concluded, the FIM of an ARMA(p, q) process and the Sylvester resultant
matrix S(−b, a) have the same singularity property. By virtue of (26) and (27) we will specify the
dimension of the null space of the FIM F(ϑ), this is set forth in the following lemma.

Lemma 3.1. Assume that the polynomials â(z) and b̂(z) have ν(a, b) common roots, counting
multiplicities. The factorization (27) of the FIM and the property (26) enable us to prove the equality

dim (Ker F(ϑ)) = dim (Ker S(b,−a)) = ν(a, b) (29)

Proof. The matrix P(ϑ) ∈ R(p+q)×(p+q), given in (27), fulfills the property of positive definiteness, as
proved in [5]. This implies that a Cholesky decomposition can be applied to P(ϑ), see [35] for more
details, to obtain P(ϑ) =L>(ϑ)L(ϑ), where L(ϑ) is a R(p+q)×(p+q) upper triangular matrix that is unique
if its diagonal elements are all positive. Consequently, all its eigenvalues are then positive so that the
matrix L(ϑ) is also positive definite. Factorization of (27) now admits the representation

F(ϑ) = S(b,−a)L>(ϑ)L(ϑ)S>(b,−a) (30)

and taking the property, if A is an m× n matrix, then Ker (A) = Ker
(
A>A

)
, into account, yields when

applied to (30)

Ker F(ϑ) = Ker S(b,−a)L>(ϑ)L(ϑ)S>(b,−a) = Ker L(ϑ)S>(b,−a)

Assume the vector u ∈Ker L(ϑ)S>(b,−a), such that L(ϑ)S>(b,−a)u = 0 and set S>(b,−a)u = v =⇒
L(ϑ)v = 0, since the matrixL(ϑ) �O =⇒ v = 0, this implies S>(b,−a)u = 0 =⇒ u ∈Ker S>(b,−a).
Consequently,

Ker F(ϑ) = Ker S>(b,−a) (31)
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We will now consider the Rank-Nullity Theorem, see e.g., [1], if A is an m× n matrix, then

dim (Ker A) + dim (Im A) = n

and the property dim (Im A) = dim
(
Im A>

)
. When applied to the (p + q) × (p + q) matrix S(b,−a),

it yields

dim (Ker S(b,−a)) = dim
(
Ker S>(b,−a)

)
=⇒ dim (Ker F(ϑ)) = dim (Ker S(b,−a))

which completes the proof.

Notice that the dimension of the null space of matrix A is called the nullity of A and the dimension
of the image of matrix A, dim (Im A), is termed the rank of matrix A. An alternative proof to the one
developed in Corollary 2.2 in [5], is given in a corollary to Lemma 3.1, reconfirming the resultant matrix
property of the FIM F(ϑ).

Corollary 3.2. The FIM F(ϑ) of an ARMA(p, q) process becomes singular if and only if the
autoregressive and moving average polynomials â(z) and b̂(z) have at least one common root.

Proof. By virtue of the equality (31) combining with the property Det S>(b,−a) = Det S(b,−a) and
the matrix resultant property of the Sylvester matrix S(b,−a) yields, Det S>(b,−a) = 0 ⇐⇒ Ker
S>(b,−a) 6= {0} if and only if the ARMA(p, q) polynomials â(z) and b̂(z) have at least one common
root. Equivalently, Det S>(b,−a) 6= 0 ⇐⇒ Ker S>(b,−a) = {0} if and only if the ARMA(p, q)

polynomials â(z) and b̂(z) have no common roots. Consequently, by virtue of the equality Ker
F(ϑ) = Ker S>(b,−a) can be concluded, the FIMF(ϑ) becomes singular if and only if the ARMA(p, q)

polynomials â(z) and b̂(z) have at least one common root. This completes the proof.

3.3. The Statistical Distance Measure and the Fisher Information Matrix

In [7] statistical distance measures are studied. Most multivariate statistical techniques are based upon
the concept of distance. For that purpose a statistical distance measure is considered that is a normalized
Euclidean distance measure with entries of the FIM as weighting coefficients. The measurements
x1, x2,. . . , xn are subject to random fluctuations of different magnitudes and have therefore different
variabilities. It is then important to consider a distance that takes the variability of these variables or
measurements into account when determining its distance from a fix point. A rotation of the coordinate
system through a chosen angle while keeping the scatter of points given by the data fixed, is also applied,
see [7] for more details. It is shown that when the FIM is positive definite, the appropriate statistical
distance measure is a metric. In case of a singular FIM of an ARMA stationary process, the metric
property depends on the rotation angle. The statistical distance measure, is based onm parameters unlike
a statistical distance measure introduced in quantum information, see e.g., [8,9], that is also related to the
Fisher information but where the information about one parameter in a particular measurement procedure
is considered.

The straight-line or Euclidean distance between the stochastic vector x =
(
x1 x2 . . . xn

)>
and

fixed vector y =
(
y1 y2 . . . yn

)>
where x, y ∈ Rn, is given by

d(x, y) = ‖x− y‖ =
(∑n

j=1
(xj − yj)2

)1/2
(32)
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where the metric d(x, y) := ‖x− y‖ is induced by the standard Euclidean norm ‖ · ‖ on Rn, see e.g., [2]
for the metric conditions.

The observations x1, x2, . . . , xn are used to compute maximum likelihood estimated of the parameters
ϑ1, ϑ2, . . . , ϑm and where m < n. These estimated parameters are random variables, see e.g., [15]. The
distance of the estimated vector ϑ ∈ Rm, given in (15), is studied. Entries of the FIM are inserted in the
distance measure as weighting coefficients. The linear transformation

ϑ̃ = Li(φ)ϑ (33)

is applied, where Li(φ) ∈ Rm×n is the Givens rotation matrix with rotation angle φ, with 0 ≤ φ ≤ 2π

and i ∈ {1, . . . ,m− 1}, see e.g., [36], and is given by

Li(φ) =


Ii−1 0 0 0

0 (cos(φ))i,i (− sin(φ))i,i+1 0

0 (sin(φ))i+1,i (cos(φ))i+1,i+1 0

0 0 0 Im−i−1

 , 0 ≤ φ ≤ 2π (34)

The following matrix decomposition is applied in order to obtain a transformed FIM

Fφ(ϑ) = Li(φ)F(ϑ)L>i (φ) (35)

whereFφ(ϑ) andF (ϑ) are respectively the transformed and untransformed Fisher information matrices.
It is straightforward to conclude that by virtue of (35), the transformed and untransformed Fisher
information matrices Fφ(ϑ) and F(ϑ), are similar since the rotation matrix Li(φ) is orthogonal. Two
matrices A and B are similar if there exists an invertible matrix X such that the equality AX = XB

holds. As can be seen, the Givens matrix Li(φ) involves only two coordinates that are affected by the
rotation angle φ whereas the other directions, which correspond to eigenvalues of one, are unaffected by
the rotation matrix.

By virtue of (35) can be concluded that a positive definite FIM, F(ϑ) � 0, implies a positive
definite transformed FIM, Fφ(ϑ) � 0. Consequently, the elements on the main diagonal of F(ϑ),
f1,1, f2,2, . . . , fm,m, as well as the elements on the main diagonal of Fφ(ϑ), f̃1,1, f̃2,2, . . . , f̃m,m are all
positive. However, the elements on the main diagonal of a singular FIM of a stationary ARMA process
are also positive.

As developed in [7], combining (33) and (35) yields the distance measure of the estimated parameters
ϑ1, ϑ2, . . . , ϑm accordingly, to obtain

d2Fφ(ϑ) =
m∑

j=1,j 6=i,i+1

{
ϑ2
j

fj,j

}
+
{ϑi cos(φ)− ϑi+1 sin(φ)}2

f̃i,i(φ)
+
{ϑi+1 cos(φ) + ϑi sin(φ)}2

f̃i+1,i+1(φ)
(36)

where
f̃i,i(φ) = fi,i cos2(φ)− fi,i+1 sin(2φ) + fi+1,i+1 sin2(φ) (37)

f̃i+1,i+1(φ) = fi+1,i+1 cos2(φ) + fi,i+1 sin(2φ) + fi,i sin
2(φ) (38)

and fj,l are entries of the FIM F(ϑ) whereas f̃i,i(φ) and f̃i+1,i+1(φ) are the transformed components
since the rotation affects only the entries, i and i+1, as can be seen in matrix Li(φ). In [7], the existence
of the following inequalities is proved

f̃i,i(φ) > 0 and f̃i+1,i+1(φ) > 0
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this guaratees the metric property of (36). When the FIM of an ARMA(p, q) process is the
case, a combination of (27) and (35) for the ARMA(p, q) parameters, given in (15) yields for the
transformed FIM,

Fφ(ϑ) = Sφ(−b, a)P(ϑ)S>φ (−b, a) (39)

where P(ϑ) is given by (28) and the transformed Sylvester resultant matrix is of the form

Sφ(−b, a) = Li(φ)S(−b, a) (40)

Proposition 3.5 in [7], proves that the transformed FIM Fφ(ϑ) and the transformed Sylvester matrix
Sφ(−b, a) fulfill the resultant matrix property by using the equalities (40) and (39). The following
property is then set forth.

Proposition 3.3. The properties

Ker Fφ(ϑ) = Ker S>φ (−b, a) and Ker Sφ(−b, a) = Ker S(−b, a)

hold true.

Proof. By virtue of the equalities (39), (40) and the orthogonality property of the rotation matrix Li(φ)

which implies that Ker Li(φ) = {0} combined with the same approach as in Lemma 3.1 completes
the proof.

A straightforward conclusion from Proposition 3.3 is then

dim Ker Fφ(ϑ) = dim Ker Sφ(−b, a), dim Ker Sφ(−b, a) = dim Ker S(−b, a)

In the next section a distance measure introduced in quantum information is discussed.

Statistical Distance Measure - Fisher Information and Quantum Information

In quantum information, the Fisher information, the information about a parameter θ in a particular
measurement procedure, is expressed in terms of the statistical distance s, see [8–10]. The statistical
distance used is defined as a measure to distinguish two probability distributions on the basis of
measurement outcomes, see [37]. The Fisher information and the statistical distance are statistical
quantities, and generally refer to many measurements as it is the case in this survey. However, in the
quantum information theory and quantum statistics context, the problem set up is presented as follows.
There may or may not be a small phase change θ, and the question is whether it is there. In that case you
can design quantum experiments that will tell you the answer unambiguously in a single measurement.
The equality derived is of the form

F (θ) =

(
ds

dθ

)2

(41)

the Fisher information is the square of the derivative of the statistical distance s with respect to θ.
Contrary to (36), where the square of the statistical distance measure is expressed in terms of entries
of a FIM F (ϑ) which is based on information about m parameters estimated from n measurements, for
m < n. A challenging question could therefore be formulated as follows, can a generalization of equality
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(41) be developed in a quantum information context but at the matrix level ? To be more specific, many
observations or measurements that lead to more than one parameter such that the corresponding Fisher
information matrix is interconnected to an appropriate statistical distance matrix, a matrix where entries
are scalar distance measures. This question could equally be a challenge to algebraic matrix theory and
to quantum information.

3.4. The Bezoutian - The Fisher Information Matrix

In this section an additional resultant matrix is presented, it concerns the Bezout matrix or Bezoutian.
The notation of Lancaster and Tismenetsky [2] shall be used and the results presented are extracted
from [38]. Assume the polynomials a and b given by a(z) =

∑n

j=0
aj z

j and b(z) =
∑n

j=0
bj z

j , cfr.

(13) but where p = q = n, and we further assume a0 = b0 = 1. The Bezout matrix B(a, b) of the
polynomials a and b is defined by the relation

a(z)b(w)− a(w)b(z) = (z − w)u>n (z)B(a, b)un(z)

This matrix is often referred as the Bezoutian. We will display a decomposition of the Bezout matrix
B(a, b) developed in [38]. For that purpose the matrix Uφ and its inverse Tφ are presented, where φ is a
given complex number, to obtain

Uφ =



1 0 · · · · · · 0

−φ 1 · · · · · · 0

0
. . . ...

... . . . ...
0 · · · 0 −φ 1


, Tφ =



1 0 · · · · · · 0

φ 1 · · · · · · 0

φ2 . . . ...
... . . . ...

φn−1 · · · φ2 φ 1


Let (1 − α1z) and (1 − β1z) be a factor of a(z) and b(z) respectively and α1 and β1 are zeros of
â(z) and b̂(z). Consider the factored form of the nth order polynomials a(z) and b(z) of the form
a(z) = (1 − α1z)a−1(z) and b(z) = (1 − β1z)b−1(z) respectively. Proceeding this way, for α2, . . . , αn

yields the recursion a−(k−1)(z) = (1 − αkz)a−k(z), equivalently for the polynomials b−k(z) and
a0(z) = a(z) and b0(z) = b(z). Proposition 3.1 in [38] is presented.

The following non-symmetric decomposition of the Bezoutian is derived, considering the
notations above

B(a, b) = Uα1

(
B(a−1, b−1) 0

0 0

)
U>β1

+ (β1 − α1)bβ1
a>α1

(42)

with aα1 such that a>α1
un(z) = a−1 similarly for bβ1

. Iteration gives the following expansion for the
Bezout matrix

B(a, b) =
n∑
k=1

(βk − αk)Uα1 . . . Uαk−1
Uβk+1

. . . Uβne
n
1 (en1 )> U>β1

. . . U>βk−1
U>αk+1

. . . U>αn

where en1 is the first unit standard basis column vector in Rn, by ej we denote the jth coordinate vector,
ej = (0, . . . , 1, . . . , 0)>, with all its components equal to 0 except the jth component which equals 1.
The following corollarys to Proposition 3.1 in [38] are now presented.
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Corollary 3.2 in [38] states. Let φ be a common zero of the polynomials â(z) and b̂(z). Then
a(z) = (1− φz)a−1(z) and b(z) = (1− φz)b−1(z) and

B(a, b) = Uφ

(
B(a−1, b−1) 0

0 0

)
U>φ

This a direct consequence of (42) and from which can be concluded that the Bezoutian B(a, b) is
non-singular if and only if the polynomials a(z) and b(z) have no common factors. A similar conclusion
is drawn for the FIM in (27) so that matrices F(ϑ) and B(a, b) have the same singularity property.

Related to Corollary 3.2 in[38], this is where we give a description of the kernel or nullspace of the
Bezout matrix.

Corollary 3.3 in [38] is now presented. Let φ1, . . ., φm be all the common zeros of the polynomials
â(z) and b̂(z), with multiplicities n1, . . . , nm. Let ` be the last unit standard basis column vector in Rn

and put

wjk =
(
T jφkJ

j−1
)>

`

for k = 1, . . . ,m and j = 1, . . . , nk and by J we denote the forward n × n shift matrix, Jij = 1 if
i = j + 1. Consequently, the subspace Ker B(a, b) is the linear span of the vectors wjk.
An alternative representation to (27) but involving the Bezoutian B(b, a) and derived in Proposition 5.1
in [38] is of the form

F(ϑ) =M−1(b, a)H(ϑ)M−>(b, a) (43)

where

H(ϑ) =

(
I 0

0 B(b, a)

)
Q(ϑ)

(
I 0

0 B(b, a)

)
andM(b, a)=

(
P 0

PS(â)P PS (̂b)P

)
(44)

and

P =


0 · · · 0 1
... . . . 1 0

0 . . . . . . ...
1 0 · · · 0

 , S(â) =


an−1 an−2 · · · a0

an−2 . . . a0 0
... . . . . . . ...
a0 0 · · · 0

 and Q(ϑ) � 0

The matrix S(â) is the symmetrizer of the polynomial â(z), in this paper a0 = 1, see [2] and P is a
permutation matrix. In [38] it is shown that the matrix Q(ϑ) is the unique solution to an appropriate
Stein equation and is strictly positive definite. However, in the next section an explicit form of the Stein
solution Q(ϑ) is developed. Some comments concerning the property summarized in Corollary 5.2
in [38] follow.

The matrixH(ϑ) is non-singular if and only if the polynomials a(z) and b(z) have no common factors.
The proof is straightforward since the matrix Q(ϑ) is non-singular which implies that the matrix H(ϑ)

is only non-singular when the Bezoutian B(b, a) is non-singular and this is fulfilled if and only if the
polynomials a(z) and b(z) have no common factors.
The matrix M(b, a) is non-singular if a0 6= 0 and b0 6= 0, which is the case since we have
a0 = b0 = 1. From (43) can be concluded that the FIM F(ϑ) is non-singular only when the matrix
H(ϑ) is non-singular or by virtue of (44) when the Bezoutian B(b, a) is non-singular. Consequently,
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the singularity conditions of the Bezoutian B(b, a), the FIM F(ϑ) and the Sylvester resultant matrix
S(b,−a) are therefore equivalent. Can be concluded, by virtue of (29) proved in Lemma 3.1 and the
equality dim (Ker S(a, b)) = dim (Ker B(a, b)) proved in Theorem 21.11 in [1], yields

dim (Ker S(b,−a)) = dim (Ker F(ϑ)) = dim (Ker B(b, a)) = ν(a, b)

3.5. The Stein Equation - The Fisher Information Matrix of an ARMA(p, q) Process

In [12], a link between the FIM of an ARMA process and an appropriate solution of a Stein
equation is set forth. In this survey paper we shall present some of the results and confront some results
displayed in the previous sections. However, alternative proofs will be given to some results obtained
in [12,38].

The Stein matrix equation is now set forth. Let A ∈ Cm×m, B ∈ Cn×n and Γ ∈ Cn×m and consider
the Stein equation

S −BSA> = Γ (45)

It has a unique solution if and only if λµ 6= 1 for any λ ∈ σ(A) and µ ∈ σ(B), the spectrum of D is
σ(D) = {λ ∈ C: det(λIm −D) = 0}, the set of eigenvalues of D. The unique solution will be given in
the next theorem [11].

Theorem 3.4. Let A and B be, such that there is a single closed contour C with σ(B) inside C and
for each non-zero w ∈ σ(A), w−1 is outside C. Then for an arbitrary Γ the Stein Equation (45) has a
unique solution S

S =
1

2πi

∮
C

(λIn −B)−1Γ(Im − λA)−>dλ (46)

In this section an interconnection between the representation (27) of the FIMF(ϑ) and an appropriate
solution to a Stein equation of the form (45) as developed in [12] is set forth. The distinct roots
of the polynomials â(z) and b̂(z) are denoted by α1, α2, . . . , αp and β1, β2, . . . , βq respectively such
that the non-singularity of the FIM F(ϑ) is guaranteed. The following representation of the integral
expression (28) is given when Cauchy’s residue theorem is applied, equation (4.8) in [12]

P(ϑ) = U(ϑ)D(ϑ)Û(ϑ) (47)

where
U(ϑ) =

{
up+q(α1), up+q(α2), . . . , up+q(αp), up+q(β1), up+q(β2), . . . , up+q(βq)

}
D(ϑ) =diag

{(
1

â(z;αi)̂b(αi)a(αi)b(αi)

)
,

(
1

â(βj )̂b(z; βj)a(βj)b(βj)

)}
, i = 1, . . . , p and j = 1, . . . , q

and
Û(ϑ) =

{
vp+q(α1), vp+q(α2), . . . , vp+q(αp), vp+q(β1), vp+q(β2), . . . , vp+q(βq)

}>
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the polynomial p(·; β) is defined accordingly, p(z; β) =
p(z)

(z − β)
and D(ϑ) is the (p + q) × (p + q)

diagonal matrix. The matrices U(ϑ) and Û(ϑ) in (47) are the (p+ q)× (p+ q) Vandermonde matrices
Vαβ and V̂αβ respectively, given by

Vαβ =



1 α1 α2
1 · · · αp+q−11

1 α2 α2
2 · · · αp+q−12

...
...

...
...

...
1 αp α2

p · · · αp+q−1p

1 β1 β2
1 · · · βp+q−11

1 β2 β2
2 · · · βp+q−12

...
...

...
...

...
1 βq β2

q · · · βp+q−1q



>

and V̂αβ =



αp+q−11 αp+q−21 · · · α1 1

αp+q−12 αp+q−22 · · · α2 1
...

...
...

...
...

αp+q−1p αp+q−2p · · · αp 1

βp+q−11 βp+q−21 · · · β1 1

βp+q−12 βp+q−22 · · · β2 1
...

...
...

...
...

βp+q−1q βp+q−2q · · · βq 1


It is clear that the (p+ q)× (p+ q) Vandermonde matrices Vαβ and V̂αβ are nonsingular when αi 6= αj ,
βk 6= βh and αi 6= βk for all i, j = 1, . . . , p and k, h = 1, . . . , q. A rigorous systematic evaluation of the
Vandermonde determinants DetVαβ and DetV̂αβ , yields

DetVαβ = (−1)(p+q)(p+q−1)/2 Φ (αi, βk)

where
Φ (αi, βk) =

∏
1≤i<j≤p

(αi − αj)
∏

1≤k<h≤q
(βk − βh)

∏
m=1,...p
n=1,...q

(αm − βn)

Since Vαβ = PV̂ >αβ and given the configuration of the permutation matrix, P , this leads to the equalities
DetV̂ >αβ =DetP DetVαβ and DetP = (−1)(p+q)(p+q−1)/2 so that

DetV̂αβ = (−1)(p+q)(p+q−1) Φ (αi, βk) =⇒ |DetVαβ| =
∣∣∣DetV̂αβ

∣∣∣
We shall now introduce an appropriate Stein equation of the form (45) such that an interconnection with
P(ϑ) in (47) can be verified. Therefore the following (p+ q)× (p+ q) companion matrix is introduced,

Cg=


0 1 · · · 0
... . . . ...
0 · · · 0 1

−gp+q −gp+q−1 · · · −g1

 (48)

where the entries gi are given by zp+q +
∑p+q

i=1 gi(ϑ)zp+q−i = â(z)̂b(z) = ĝ(z, ϑ) and ĝ(ϑ) is
the vector ĝ(ϑ) = (gp+q(ϑ), gp+q−1(ϑ), . . . , g1(ϑ))>. Likewise is the vector g(z, ϑ) = a(z)b(z)

and g(ϑ) = (g1(ϑ), g1(ϑ), . . . , gp+q(ϑ))>, for investigating the properties of a companion matrix see
e.g., [36], [2]. Since all the roots of the polynomials â(z) and b̂(z) are distinct and lie within the unit
circle implies that the products αiβj 6= 1, αiαj 6= 1 and βiβj 6= 1 hold for all i = 1, 2, . . . , p and
j = 1, 2, . . . , q. Consequently, the uniqueness condition of the solution of an appropriate Stein equation
is verified. The following Stein equation and its solution, according to (45) and (46), are now presented

S − CgSC>g = Γ and S =
1

2πi

∮
|z|=1

(zIp+q − Cg)−1Γ(Ip+q − zCg)−>dz
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where the closed contour is now the unit circle |z| = 1 and the matrix Γ is of size (p+ q)× (p+ q). A
more explicit expression of the solution S is of the form

S =
1

2πi

∮
|z|=1

adj(zIp+q − Cg)Γ adj(Ip+q − zCg)>

a(z)b(z)â(z)̂b(z)
dz (49)

where adj(X) = X−1Det(X), the adjoint of matrix X . When Cauchy’s residue theorem is applied to
the solution S in (49), the following factored form of S is derived, equation (4.9) in [12]

S = (C1, C2) (Ip+q ⊗ Γ) (D(ϑ)⊗ Ip+q) (C3, C4)> (50)

where
C1 = adj(α1Ip+q − Cg), adj(α2Ip+q − Cg), . . . , adj(αpIp+q − Cg)

C2 = adj(β1Ip+q − Cg), adj(β2Ip+q − Cg), . . . , adj(βpIp+q − Cg)

C3 = adj(Ip+q − α1Cg), adj(Ip+q − α2Cg), . . . , adj(Ip+q − αpCg)

C4 = adj(Ip+q − β1Cg), adj(Ip+q − β2Cg), . . . , adj(Ip+q − βpCg)

and D(ϑ) is given in (47), the following matrix rule is applied

(A⊗B)(C ⊗D) = AC ⊗BD

and the operator ⊗ is the tensor (Kronecker) product of two matrices, see e.g., [2], [20].
Combining (47) and (50) and taking the assumption, αi 6= αj , βk 6= βh and αi 6= βk, into

account implies that the inverse of the (p+ q)× (p+ q) Vandermonde matrices Vαβ and V̂αβ exist, as
Lemma 4.2 [12] states.

The following equality holds true

S = (C1, C2)
(
V −1αβ P(ϑ)V̂ −1αβ ⊗ Γ

)
(C3, C4)>

or
S = (C1, C2)

(
V −1αβ S

−1(b,−a)F(ϑ)S−>(b,−a)V̂ −1αβ ⊗ Γ
)

(C3, C4)> (51)

Consequently, under the condition αi 6= αj , βk 6= βh and αi 6= βk, and by virtue of (27) and (51), an
interconnection involving the FIM F(ϑ), a solution to an appropriate Stein equation S, the Sylvester
matrix S(b,−a) and the Vandermonde matrices Vαβ and V̂αβ is established. It is clear that by using the
expression (43), the Bezoutian B (a, b) can be inserted in equality (51).
We will formulate a Stein equation when the matrix Γ = ep+qe

>
p+q,

S − CgSC>g = ep+qe
>
p+q (52)

where ep+q is the last standard basis column vector in Rp+q, emi is the i-th unit standard basis column
vector in Rm, with all its components equal to 0 except the i-th component which equals 1. The next
lemma is formulated.

Lemma 3.5. The symmetric matrix P(ϑ) defined in (28) fulfills the Stein Equation (52).
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Proof. The unique solution of (52) is according to (46)

S =
1

2πi

∮
|z|=1

(zIp+q − Cg)−1ep+qe>p+q(Ip+q − zCg)−>dz

more explictely written,

S =
1

2πi

∮
|z|=1

adj(zIp+q − Cg)ep+qe>p+qadj(Ip+q − zCg)>

a(z)b(z)â(z)̂b(z)
dz

Using the property of the companion matrix Cg, standard computation shows that the last column of
adj(zIp+q − Cg) is the basic vector up+q(z) and consequently the last column of adj(Ip+q − zCg) is
the basic vector vp+q(z) = zp+q−1up+q(z

−1). This implies that adj(zIp+q − Cg)ep+q = up+q(z) and
e>p+qadj(Ip+q − zCg)> = v>p+q(z) or

S =
1

2πi

∮
|z|=1

up+q(z)v>p+q(z)

a(z)b(z)â(z)̂b(z)
dz = P(ϑ)

Consequently, the solution S to the Stein Equation (52) coincides with the matrix P(ϑ) defined
in (28).

The Stein equation that is verified by the FIM F(ϑ) will be considered. For that purpose we display
the following p× p and q × q companion matrices Ca and Cb of the form,

Ca=



−a1 −a2 · · · · · · −ap
1 0 · · · · · · 0

0
. . . ...

... . . . . . . ...
0 · · · 0 1 0


, Cb=



−b1 −b2 · · · · · · −bq
1 0 · · · · · · 0

0
. . . ...

... . . . . . . ...
0 · · · 0 1 0


respectively. Introduce the (p+ q) × (p+ q) matrix K(ϑ) =

(
Ca O

O Cb

)
and the (p+ q) × 1 vector

B =

(
e1p
−e1q

)
, where e1p and e1q are the first standard basis column vectors in Rpand Rq respectively.

Consider the Stein equation
S −K(ϑ)SK>(ϑ) = BB> (53)

followed by the theorem.

Theorem 3.6. The Fisher information matrix F(ϑ) (17) coincides with the solution to the Stein
equation (53).

Proof. The eigenvalues of the companion matrices Ca and Cb are respectively the zeros of the
polynomials â(z) and b̂(z) which are in absolute value smaller than one. This implies that the unique
solution of the Stein Equation (53) exists and is given by

S =
1

2πi

∮
|z|=1

(zIp+q −K(ϑ))−1BB>(Ip+q − zK(ϑ))−>dz
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developing this integral expression in a more explicit form yields

S =
1

2πi

∮
|z|=1

 adj(zIp − Ca)
â(z)

O

O
adj(zIq − Cb)

b̂(z)

( e1p
−e1q

){( adj(Ip − zCa)
a(z)

O

O
adj(Iq − zCb)

b(z)

)(
e1p
−e1q

)}>
dz

Considering the form of the companion matrices Ca and Cb leads through straightforward computation
to the conclusion, the first column of adj(zIp − Ca) is the basic vector vp(z) and consequently the first
column of adj(Ip − zCa) is the basic vector up(z). Equivalently for the companion matrix Cb, this yields

S =
1

2πi

∮
|z|=1


vp(z)

â(z)

−vq(z)

b̂(z)

( u>p (z)

a(z)
−
u>q (z)

b(z)

)
dz (54)

Representation (54) is such that in order to obtain an equivalent representation to the FIM F(ϑ) in (17),
the transpose of the solution to the Stein Equation (53) is therefore required, to obtain

S> =
1

2πi

∮
|z|=1


up(z)v>p (z)

a(z)â(z)
−
up(z)v>q (z)

a(z)̂b(z)

−
uq(z)v>p (z)

â(z)b(z)

uq(z)v>q (z)

b(z)̂b(z)

 dz = F(ϑ) (55)

or

S> =
1

2πi

∮
|z|=1

(Ip+q − zK(ϑ))−1BB>(zIp+q −K(ϑ))−>dz = F(ϑ)

The symmetry property of the FIM F(ϑ), leads to S = F(ϑ). From the representation (55) can be
concluded that the solution S of the Stein Equation (53) coincides with the symmetric block Toeplitz
FIM F(ϑ) given in (17). This completes the proof.

It is straightforward to verify that the submatrix (1,2) in (55) is the complex conjugate transpose of the
submatrix (2,1), whereas each submatrix on the main diagonal is Hermitian, consequently, the integrand
is Hermitian. This implies that when the standard residue theorem is applied, it yields F(ϑ) = F>(ϑ).

An Illustrative Example of Theorem 3.6

To illustrate Theorem 3.6, the case of an ARMA(2, 2) process is considered. We will use the
representation (17) for computing the FIM F(ϑ) of an ARMA(2, 2) process. The autoregressive
and moving average polynomials are of degree two or p = q = 2 and the ARMA(2, 2) process is
described by,

y(t)a(z) = b(z)ε(t) (56)

where y(t) is the stationary process driven by white noise ε(t), a(z) = (1 + a1z + a2z
2) and

b(z) = (1 + b1z + b2z
2) and the parameter vector is ϑ = (a1, a2, b1, b2)

>. The condition, the zeros
of the polynomials

â(z) = z2a(z−1) = z2 + a1z + a2 and b̂(z) = z2b(z−1) = z2 + b1z + b2
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are in absolute value smaller than one, is imposed. The FIM F(ϑ) of the ARMA(2, 2) process (56) is of
the form

F(ϑ) =

(
Faa(ϑ) Fab(ϑ)

F>ab(ϑ) Fbb(ϑ)

)
(57)

where

Faa(ϑ) =
1

(1− a2)
[
(1 + a2)

2 − a21
] ( 1 + a2 −a1

−a1 1 + a2

)

Fbb(ϑ) =
1

(1− b2)
[
(1 + b2)

2 − b21
] ( 1 + b2 −b1

−b1 1 + b2

)

Fab(ϑ) =
1

(a2b2 − 1)2 + (a2b1 − a1) (b1 − a1b2)

(
a2b2 − 1 a1 − a2b1
b1 − a1b2 a2b2 − 1

)
The submatrices Faa(ϑ) and Fbb(ϑ) are symmetric and Toeplitz whereas Fab(ϑ) is Toeplitz. One can
assert that without any loss of generality, the property, symmetric block Toeplitz, holds for the class
of Fisher information matrices of stationary ARMA(p, q) processes, where p and q are arbitrary, finite
integers that represent the degrees of the autoregressive and moving average polynomials, respectively.
The appropriate companion matrices Ca, Cb, the 4× 4 matrices K(ϑ) and BB> are

Ca=
(
−a1 −a2
1 0

)
, Cb=

(
−b1 −b2
1 0

)
,K(ϑ) =

 −a1 −a2 0 0

1 0 0 0

0 0 −b1 −b2
0 0 1 0

 andBB> =

 1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


(58)

where B =
(

1 0 −1 0
)>

. It can be verified that the Stein equation

F(ϑ)−K(ϑ)F(ϑ)K>(ϑ) = BB>

holds true, when F(ϑ) is of the form (57) and the matrices K(ϑ) and BB> are given in (58).

3.5.1. Some Additional Results

In Proposition 5.1 in [38], the matrix Q(ϑ) in (44) fulfills the Stein Equation (59) and the property
Q(ϑ) � 0 is proved. It states that when e>P =

(
e>1 P, 0

)>
= (en, 0n)> ∈ R2n, where e1 is the first unit

standard basis column vector in Rn and en is the last or n-th unit standard basis column vector in Rn, the
following Stein equation admits the form

Q(ϑ)=FN(ϑ)Q(ϑ)F>N (ϑ)+eP e
>
P (59)

where

FN(ϑ) =

(
Ĉa 0

e1e
>
1 Cb

)
, Ĉa=



0 1 0 · · · 0

0 0 1 · · · 0
... . . . . . . ...

0
. . . . . . 1

−ap −ap−1 · · · · · · −a1


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A corollary to Proposition 5.1, [38] will be set forth, the involvement of various Vandermonde matrices in
the explicit solution to equation (59) is confirmed. For that purpose the following Vandermonde matrices
are displayed,

Vα =


1 1 1

α1 α2 αn

α2
1 α2

2 α2
n

...
...

...
αn−11 αn−12 αn−1n

 , V̂α =


αn−11 αn−21 1

αn−12 αn−22 1

αn−13 αn−23 1
...

...
...

αn−1n αn−2n 1

 , V̂αβ =

(
V̂α

V̂β

)
, and Vαβ =

(
Vα Vβ

)

(60)
where V̂β and Vβ have the same configuration as V̂α and Vα respectively. A corollary to Proposition 5.1
in [38] is now formulated.

Corollary 3.7. An explicit expression of the solution to the Stein equation (59) is of the form

Q(ϑ)=

(
VαD11(ϑ)V̂α VαD12(ϑ)V >α
V̂ >αβD21(ϑ)V̂αβ V̂ >αβD22(ϑ)V >αβ

)
(61)

where the n× n and 2n× 2n diagonal matrices Dkl(ϑ) shall be specified in the proof.

Proof. The condition of a unique solution of the Stein Equation (59) is guaranteed since the eigenvalues
of the companions matrices Ĉa and Cb given respectively by the zeros of the polynomials â(z) and b̂(z)

are in absolute value smaller than one. Consequently, the unique solution to the Stein Equation (59)
exists and is given by

Q(ϑ) =
1

2πi

∮
|z|=1

(zI2n − FN(ϑ))−1eP e
>
P (I2n − zFN(ϑ))−>dz (62)

in order to proceed successfully, the following matrix property is displayed, to obtain(
A O

B C

)−1
=

(
A−1 O

−C−1BA−1 C−1

)

When applied to the Equation (62), it yields

Q(ϑ) =
1

2πi

∮
|z|=1


adj(zIp − Ĉa)

â(z)
O

adj(zIq − Cb)e1e>1 adj(zIp − Ĉa)
â(z)̂b(z)

adj(zIq − Cb)
b̂(z)


(
en
0

)
×




adj(In − zĈa)
a(z)

O

adj(In − zCb)e1e>1 adj(Ip − zĈa)
a(z)b(z)

adj(In − zCb)
b(z)


(
en
0

)
>

dz
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Considering that the last column vector of the matrices adj(zIp − Ĉa) and adj(In − zĈa) are the vectors
un(z) and vn(z) respectively, it then yields

Q(ϑ) =
1

2πi

∮
|z|=1


un(z)

â(z)
vn(z)

â(z)̂b(z)

( v>n (z)

a(z)

zn−1u>n (z)

a(z)b(z)

)
dz

=
1

2πi

∮
|z|=1


un(z)v>n (z)

a(z)â(z)

zn−1un(z)u>n (z)

â(z)a(z)b(z)
vn(z)v>n (z)

â(z)̂b(z)a(z)

zn−1vn(z)u>n (z)

â(z)̂b(z)a(z)b(z)

 dz =

(
Q11(ϑ) Q12(ϑ)

Q21(ϑ) Q22(ϑ)

)

Applying the standard residue theorem leads for the respective submatrices

Q11(ϑ) = {un(α1), . . . , un(αn)}D11(ϑ) {vn(α1), . . . , vn(αn)}>

Q12(ϑ) = {un(α1), . . . , un(αn)}D12(ϑ) {un(α1), . . . , un(αn)}>

Q21(ϑ) = {vn(α1), . . . , vn(αn), vn(β1), . . . , vn(βn)}D21(ϑ) {vn(α1), . . . , vn(αn), vn(β1), . . . , vn(βn)}>

Q22(ϑ) = {vn(α1), . . . , vn(αn), vn(β1), . . . , vn(βn)}D22(ϑ) {un(α1), . . . , un(αn), un(β1), . . . , un(βn)}>

where the n× n diagonal matrices are

D11(ϑ) =diag {1/ (a(αi)â(z;αi))} ,D12(ϑ) =diag
{
αn−1i / (a(αi)b(αi)â(z;αi))

}
for i = 1, . . . , n

and the 2n× 2n diagonal matrices are

D21(ϑ) =diag
{

1/
(
a(αi)̂b(αi)â(z;αi)

)
, 1/

(
â(βj)a(βj )̂b(z; βj)

)}
, for i, j = 1, . . . , n

D22(ϑ) =diag

{
αn−1i /

(
a(αi)b(αi)̂b(αi)â(z;αi)

)
, βn−1j /

(
â(βj)a(βj)b(βj )̂b(z; βj)

)}
, for i, j = 1, . . . , n

It is clear that the first and third matrices in Q11(ϑ), Q12(ϑ), Q21(ϑ) and Q22(ϑ) are the appropriate
Vandermonde matrices displayed in (60), it can be concluded that the representation (61) is verified.
This completes the proof.

In this section an explicit form of the solution Q(ϑ), expressed in terms of various Vandermonde
matrices, is displayed. Also, an interconnection between the Fisher information F(ϑ) and appropriate
solutions to Stein equations and related matrices is presented. Proofs are given when the Stein equations
are verified by the FIM F(ϑ) and the associated matrix P(ϑ). These are alternative to the proofs
developed in [38]. The presence of various forms of Vandermonde matrices is also emphasized. In
the next section some matrix properties of the FIM F(ϑ) of an ARMAX process is presented.
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3.6. The Fisher Information Matrix of an ARMAX(p, r, q) Process

The FIM of the ARMAX process (11) is set forth according to [4]. The derivatives in the
corresponding representation (16) are

∂εt(ϑ)

∂aj
=

c(z)

a(z)b(z)
x(t− j) +

1

a(z)
ε(t− j),

∂εt(ϑ)

∂cl
= − 1

b(z)
ε(t− l) and

∂εt(ϑ)

∂bk
= − 1

b(z)
εt−k

where j = 1, . . . , p, l = 1, . . . , r and k = 1, . . . , q. Combining all j, l and k yields the (p + r + q) ×
(p+ r + q) FIM

G(ϑ) =

 Gaa(ϑ) Gac(ϑ) Gab(ϑ)

G>ac(ϑ) Gcc(ϑ) Gcb(ϑ)

G>ab(ϑ) G>cb(ϑ) Gbb(ϑ)

 (63)

where the submatrices of G(ϑ) are given by

Gaa(ϑ) =
1

2πi

∮
|z|=1

Rx(z)
up(z)u>p (z−1)c(z)c(z−1)

a(z)a(z−1)b(z)b(z−1)

dz

z
+

1

2πi

∮
|z|=1

up(z)u>p (z−1)

a(z)a(z−1)

dz

z

=
1

2πi

∮
|z|=1

Rx(z)
up(z)v>p (z)c(z)ĉ(z)

a(z)â(z)b(z)̂b(z)zr−q
dz+

1

2πi

∮
|z|=1

up(z)v>p (z)

a(z)â(z)
dz

Gab(ϑ) = − 1

2πi

∮
|z|=1

up(z)u>q (z−1)

a(z)b(z−1)

dz

z
= − 1

2πi

∮
|z|=1

up(z)v>q (z)

a(z)̂b(z)
dz

Gac(ϑ) = − 1

2πi

∮
|z|=1

Rx(z)
up(z)u>r (z−1)c(z)

a(z)b(z)b(z−1)

dz

z
= − 1

2πi

∮
|z|=1

Rx(z)
up(z)v>r (z)c(z)

a(z)b(z)̂b(z)zr−q
dz

Gcc(ϑ) =
1

2πi

∮
|z|=1

Rx(z)
ur(z)u>r (z−1)

b(z)b(z−1)

dz

z
=

1

2πi

∮
|z|=1

Rx(z)
ur(z)v>r (z)

b(z)̂b(z)zr−q
dz

Gbb(ϑ) =
1

2πi

∮
|z|=1

uq(z)u>q (z−1)

b(z)b(z−1)

dz

z
=

1

2πi

∮
|z|=1

uq(z)v>q (z)

b(z)̂b(z)
dz, and Gcb(ϑ) =O

where Rx(z) is the spectral density of the process x(t) and is defined in (10). Let K(z) =

a(z)a(z−1)b(z)b(z−1), combining all the expressions in (63) leads to the following representation of
G(ϑ) as the sum of two matrices

1

2πi

∮
|z|=1

Rx(z)

K(z)

(
c(z)up(z)

−a(z)ur(z)
O

)(
c(z)up(z)

−a(z)ur(z)
O

)∗
dz

z
+

1

2πi

∮
|z|=1

1

K(z)

(
b(z)up(z)

O

−a(z)uq(z)

)(
b(z)up(z)

O

−a(z)uq(z)

)∗
dz

z

(64)
where (X)∗ is the complex conjugate transpose of the matrix X ∈ Cm×n. Like in (23) we set forth

S(−c, a) =

(
−Sp(c)
Sr(a)

)
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here Sp(c) is formed by the top p rows of S(−c, a). In a similar way we decompose

S(−b, a) =

(
−Sp(b)
Sq(a)

)

The representation (64) can be expressed by the appropriate block representations of the Sylvester
resultant matrices, to obtain

G(ϑ) =

 −Sp(c)Sr(a)

O

W(ϑ)

 −Sp(c)Sr(a)

O


>

+

 −Sp(b)O

Sq(a)

P(ϑ)

 −Sp(b)O

Sq(a)


>

(65)

where the matrix P(ϑ) is given in (28) and the matrixW(ϑ) ∈ R(p+r)×(p+r) is of the form

W(ϑ) =
1

2πi

∮
|z|=1

Rx(z)
up+r(z)u>p+r(z

−1)

a(z)a(z−1)b(z)b(z−1)

dz

z
=

1

2πi

∮
|z|=1

Rx(z)
up+r(z)v>p+r(z)

a(z)b(z)â(z)̂b(z)
dz (66)

It is shown in [4] that W(ϑ) � O. As can be seen in (65), the ARMAX part is explained by the first
term, whereas the ARMA part is described by the second term, the combination of both terms is a
summary of the Fisher information of a ARMAX(p, r, q) process. The FIM G(ϑ) under form (65) allows
us to prove the following property, Theorem 3.1 in [4]. The FIM G(ϑ) of the ARMAX(p, r, q) process
with polynomials a(z), c(z) and b(z) of order p, r, q respectively becomes singular if and only if these
polynomials have at least one common root. Consequently, the class of resultant matrices is extended by
the FIM G(ϑ).

3.7. The Stein Equation - The Fisher Information Matrix of an ARMAX(p, r, q) Process

In Lemma 3.5 it is proved that the matrix P(ϑ) (28) fulfills the Stein Equation (52). We will now
consider the conditions under which the matrix W(ϑ) (66) verifies an appropriate Stein equation. For
that purpose we consider the spectral density to be of the form Rx(z) = (1/h(z)h(z−1)). The degree
of the polynomial h(z) is ` and we assume the distinct roots of the polynomial h(z) to lie outside the
unit circle, consequently, the roots of the polynomial ĥ(z) lie within the unit circle. We therefore rewrite
W(ϑ) accordingly

W(ϑ) =
1

2πi

∮
|z|=1

up+r(z)u>p+r(z
−1)

h(z)h(z−1)a(z)a(z−1)b(z)b(z−1)

dz

z

We consider a companion matrix of the form (48) and with size p + q + `, it is denoted by Cf and the
entries fi are given by zp+q+` +

∑p+q+`
i=1 fi(ϑ)zp+q+`−i = â(z)̂b(z)ĥ(z) = f̂(z, ϑ) and f̂(ϑ) is the vector

f̂(ϑ) = (fp+q+`(ϑ), fp+q+`−1(ϑ), . . . , f1(ϑ))>. Likewise for the vector f(z, ϑ) = a(z)b(z)h(z)

and f(ϑ) = (f1(ϑ), f1(ϑ), . . . , fp+q+`(ϑ))>. The property Det(zIp+q+` − Cf ) = â(z)̂b(z)ĥ(z) and
Det(Ip+q+` − zCf ) = a(z)b(z)h(z) holds and assume

r = q + ` or p+ q + ` = p+ r and r > q (67)
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W(ϑ) is then of the form

W(ϑ) =
1

2πi

∮
|z|=1

up+r(z)v>p+r(z)

h(z)ĥ(z)a(z)â(z)b(z)̂b(z)
dz (68)

We will formulate a Stein equation when the matrix Γ = ep+re
>
p+r and which is of the form

S − CfSC>f = ep+re
>
p+r (69)

where ep+r is the last standard basis column vector in Rp+r. The next lemma is formulated.

Lemma 3.8. The matrixW(ϑ) given in (68) fulfills the Stein Equation (69).

Proof. The unique solution of (69) is assured since the product of all the eigenvalues of Cf are different
from one, the solution is of the form

S =
1

2πi

∮
|z|=1

(zIp+r − Cf )−1ep+re>p+r(Ip+r − zCf )−>dz

or

S =
1

2πi

∮
|z|=1

adj(zIp+r − Cf )ep+re>p+radj(Ip+r − zCf )>

â(z)̂b(z)ĥ(z)a(z)b(z)h(z)
dz

taking the property of the companion matrix Cf into account implies that the last column vector of
adj(zIp+r −Cf ) is the basic vector up+r(z), consequently the last column of adj(Ip+r − zCf ) is the basic
vector vp+r(z), this yields

S =
1

2πi

∮
|z|=1

up+r(z)v>p+r(z)

â(z)̂b(z)ĥ(z)a(z)b(z)h(z)
dz =W(ϑ)

Consequently, the matrix W(ϑ) defined in (68) verifies the Stein Equation (69). This completes
the proof.

The matrices, P(ϑ) andW(ϑ), in (65), verify under specific conditions appropriate Stein equations,
as has been shown in Lemma 3.5 and Lemma 3.8, respectively. We will now confirm the presence of
Vandermonde matrices by applying the standard residue theorem toW(ϑ) in (68), to obtain

W(ϑ) =VαβξR (ϑ) V̂αβξ (70)

The (p+ r)× (p+ r) diagonal matrixR (ϑ) is of the form

R (ϑ) = diag

{(
1/â(z;αi)̂b(αi)ĥ(αi)φ(αi)

)
,
(

1/â(βj )̂b(z; βj)ĥ(βj)φ(βj)
)
,
(

1/â(ξk )̂b(ξk)ĥ(z; ξk)φ(ξk)
)}
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where φ(z) = a(z)b(z)h(z) and i = 1, . . . , p, j = 1, . . . , q and k = 1, . . . , `. Whereas the (p+ r) ×
(p+ r) matrices Vαβξ and V̂αβξ are of the form

Vαβξ =



1 α1 α2
1 · · · αp+r−11

...
...

...
...

...
1 αp α2

p · · · αp+r−1p

1 β1 β2
1 · · · βp+r−11

...
...

...
...

...
1 βq β2

q · · · βp+r−1q

1 ξ1 ξ21 · · · ξp+r−11
...

...
...

...
...

1 ξ` ξ2` · · · ξp+r−1`



>

, V̂αβξ =



αp+r−11 αp+r−21 · · · α1 1
...

...
...

...
αp+r−1p αp+r−2p · · · αp 1

βp+r−11 βp+r−21 · · · β1 1
...

...
...

...
βp+r−1q βp+r−2q · · · βq 1

ξp+r−11 ξp+r−21 · · · ξ1 1
...

...
...

...
ξp+r−1` ξp+r−2` · · · ξ` 1


The (p+ r) × (p+ r) Vandermonde matrices Vαβξ and V̂αβξ are nonsingular when αi 6= αj , βk 6= βh,
ξm 6= ξn, αi 6= βk, αi 6= ξm, βk 6= ξm for all i, j = 1, . . . , p, k, h = 1, . . . , q and m,n = 1, . . . , `. The
Vandermonde determinants DetVαβξ and DetV̂αβξ, are

DetVαβξ = (−1)(p+r)(p+r−1)/2 Ψ (αi, βk, ξm)

where
Ψ (αi, βk, ξm) =∏

1≤i<j≤p
(αi − αj)

∏
1≤k<h≤q

(βk − βh)
∏

1≤m<n≤`
(ξm − ξn)

∏
r=1,...,p
s=1,...,q

(αr − βs)
∏

r=1,...,p
w=1,...,`

(αr − ξw)
∏

s=1,...,q
w=1,...,`

(βs − ξw)

Like for the Vandermonde matrices Vαβ and V̂ >αβ ,

DetV̂αβξ = (−1)(p+r)(p+r−1) Ψ (αi, βk, ξm) =⇒ |DetVαβξ| =
∣∣∣DetV̂αβξ

∣∣∣
Equation (70) is the ARMAX equivalent to (47). A combination of both equations generates a new
representation of the FIM G(ϑ), this is set forth in the following lemma.

Lemma 3.9. Assume the conditions (67) to hold and consider the representations of P(ϑ) andW(ϑ) in
(47) and (70) respectively, leads to an alternative form to (65), it is given by

G(ϑ) =

 −Sp(c)Sr(a)

O

VαβξR (ϑ) V̂αβξ

 −Sp(c)Sr(a)

O


>

+

 −Sp(b)O

Sq(a)

VαβD(ϑ)V̂αβ

 −Sp(b)O

Sq(a)


>

In Lemma 3.9, the FIM G(ϑ) is expressed by submatrices of two Sylvester matrices and various
Vandermonde matrices, both type of matrices become singular if and only if the appropriate polynomials
have at least one common root.
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3.8. The Fisher Information Matrix of a Vector ARMA(p, q) Process

The process (6) is summarized as,

A(z)y(t) = B(z)ε(t)

and we assume that {y(t), t ∈ N}, is a zero mean Gaussian time series and {ε(t), t ∈ N} is a
n-dimensional vector random variable, such that Eϑ {ε(t)} = 0 and Eϑ

{
ε(t)ε>(t)

}
= Σ and the

parameter vector ϑ is of the form (7). In [6] it is shown that representation (16) for the n2(p+q)×n2(p+q)

asymptotic FIM of the VARMA process (6) is

F (ϑ) = Eϑ

{(
∂ε

∂ϑ>

)>
Σ−1

(
∂ε

∂ϑ>

)}
(71)

where ∂ε/∂ϑ> is of size n×n2(p+ q) and for convenience t is omitted from ε(t). Using the differential
rules outlined in [6], yields

∂ε

∂ϑ>
=
{(
A−1(z)B(z)ε

)> ⊗B−1(z)
} ∂vec A(z)

∂ϑ>
−
(
ε> ⊗B−1(z)

) ∂vec B(z)

∂ϑ>
(72)

The substitution of representation (72) of ∂ε/∂ϑ> in (71) yields the FIM of a VARMA process. The
purpose is to construct a factorization of the FIM F (ϑ) that should be a multiple variant of the
factorization (27), so that a multiple resultant matrix property can be proved for F (ϑ). As illustrated
in [6], the multiple version of the Sylvester resultant matrix (22) does not fulfill the multiple resultant
matrix property. In that case even when the matrix polynomials A(z) and B(z) have a common zero
or a common eigenvalue, the multiple Sylvester matrix is not neccessarily singular. This has also been
illustrated in [3]. In order to consider a multiple equivalent to the resultant matrix S(−b, a), Gohberg
and Lerer set forth the n2(p+ q)× n2(p+ q) tensor Sylvester matrix

S⊗(−B,A) :=



(−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In On2×n2 · · · On2×n2

On2×n2
. . . . . . . . . . . . ...

... . . . . . . . . . . . . On2×n2

On2×n2 · · · On2×n2 (−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In
In ⊗ In In ⊗ A1 · · · In ⊗ Ap On2×n2 · · · On2×n2

On2×n2
. . . . . . . . . . . . ...

... . . . . . . . . . . . . On2×n2

On2×n2 · · · On2×n2 In ⊗ In In ⊗ A1 · · · In ⊗ Ap


(73)

In [3], the authors prove that the tensor Sylvester matrix S⊗(−B,A) fulfills the multiple resultant
property, it becomes singular if and only if the appropriate matrix polynomials A(z) and B(z) have at
least one common zero. In Proposition 2.2 in [6], the following factorized form of the Fisher information
F (ϑ) is developed

F (ϑ) =
1

2πi

∮
|z|=1

Φ(z)Θ(z)Φ∗(z)
dz

z
(74)
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where

Φ(z) =

(
Ip ⊗ A−1(z)⊗ In Opn2×qn2

Oqn2×pn2 Iq ⊗ In ⊗ A−1(z)

)
S⊗(−B,A) (up+q(z)⊗ In2)

and
Θ(z) = Σ⊗ σ(z), σ(z) = B−>(z)Σ−1B−1(z−1) (75)

In order to obtain a multiple variant of (27), the following matrix is introduced,

M(ϑ) =
1

2πi

∮
|z|=1

Λ(z)J (z)Λ∗(z)
dz

z
= S⊗(−B,A)P (ϑ)

(
S⊗(−B,A)

)> (76)

where

J (z) = Φ(z)Θ(z)Φ∗(z) and Λ(z) =

(
Ip ⊗ A(z)⊗ In Opn2×qn2

Oqn2×pn2 Iq ⊗ In ⊗ A(z)

)
and the matrix P (ϑ) is a multiple variant of the matrix P(ϑ) in (28), it is of the form

P (ϑ) =
1

2πi

∮
|z|=1

(up+q(z)⊗ In2) Θ(z) (up+q(z)⊗ In2)∗
dz

z
(77)

In Lemma 2.3 in [6], it is proved that the matrix M(ϑ) in (76) becomes singular if and only if
the matrix polynomials A(z) and B(z) have at least one common eigenvalue-zero. The proof is a
multiple equivalent of the proof of Corollary 2.2 in [5], since the equality (76) is a multiple version of
(27). Consequently, the matrix M (ϑ) like the tensor Sylvester matrix S⊗(−B,A), fulfills the multiple
resultant matrix property. Since the matrix M (ϑ) is derived from the FIM F (ϑ), this enables us to prove
that the matrix F (ϑ) fulfills the multiple resultant matrix property by showing that it becomes singular
if and only if the matrix M (ϑ) is singular, this is done in Proposition 2.4 in [6]. Consequently, it can be
concluded from [6] that the FIM of a VARMA process F (ϑ) and the tensor Sylvester matrix S⊗(−B,A)

have the same singularity conditions. The FIM of a VARMA process F (ϑ) can therefore be added to the
class of multiple resultant matrices.

A brief summary of the contribution of [6] follows, in order to show that the FIM of a VARMA process
F (ϑ) is a multiple resultant matrix two new representations of the FIM are derived. To construct such
representations appropriate matrix differential rules are applied. The newly obtained representations are
expressed in terms of the multiple Sylvester matrix and the tensor Sylvester matrix. The representation
of the FIM expressed by the tensor Sylvester matrix is used to prove that the FIM becomes singular if and
only if the autoregressive and moving average matrix polynomials have at least one common eigenvalue.
It then follows that the FIM and the tensor Sylvester matrix have equivalent singularity conditions. In a
numerical example it is shown, however, that the FIM fails to detect common eigenvalues due to some
kind of numerical instability. The tensor Sylvester matrix reveals it clearly, proving the usefulness of the
results derived in this paper.
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3.9. The Fisher Information Matrix of a Vector ARMAX(p, r, q) Process

The n2(p+ q + r)× n2(p+ q + r) asymptotic FIM of the VARMAX(p, r, q) process (2)

A(z)y(t) = C(z)x(t) +B(z)ε(t)

is displayed according to [23] and is an extension of the FIM of the VARMA(p, q) process (6).
Representation (16) of the FIM of the VARMAX(p, r, q) process is then

G(ϑ) = Eϑ

{(
∂ε

∂ϑ>

)>
Σ−1

(
∂ε

∂ϑ>

)}

where

∂ε

∂ϑ>
=

{(
A−1(z)C(z)x

)> ⊗B−1(z)
} ∂vec A(z)

∂ϑ>

+
{(
A−1(z)B(z)ε

)> ⊗B−1(z)
} ∂vec A(z)

∂ϑ>

−
{
x> ⊗B−1(z)

} ∂vec C(z)

∂ϑ>

−
(
ε> ⊗B−1(z)

) ∂vec B(z)

∂ϑ>
(78)

To obtain the term ∂ε/∂ϑ>, of size n × n2(p + q + r), the same differential rules are applied as for the
VARMA(p, q) process. In Proposition 2.3 in [23], the representation of the FIM of a VARMAX process
is expressed in terms of tensor Sylvester matrices, this obtained when ∂ε/∂ϑ> in (78) is substituted in
(16), to obtain

G(ϑ) =
1

2πi

∮
|z|=1

Φx(z)Θ(z)Φ∗x(z)
dz

z
+

1

2πi

∮
|z|=1

Λx(z)Ψ(z)Λ∗x(z)
dz

z
(79)

The matrices in (79) are of the form

Φx(z) =

 Ip ⊗ A−1(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Orn2×rn2 Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Iq ⊗ In ⊗ A−1(z)


 −S⊗p (B)

Orn2×n2(p+q)

S⊗q (A)

 (up+q(z)⊗ In2)

Λx(z) =

 Ip ⊗ A−1(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Ir ⊗ In ⊗ A−1(z) Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Oqn2×qn2


 −S⊗p (C)

S⊗r (A)

Oqn2×n2(p+r)

 (up+r(z)⊗ In2)

S⊗p,q(−B,A) =

(
−S⊗p (B)

S⊗q (A)

)
, S⊗p,r(−C,A) =

(
−S⊗p (C)

S⊗r (A)

)
(80)

additionally we have Ψ(z) = Rx(z) ⊗ σ(z) and the Hermitian spectral density matrix Rx(z) is defined
in (10), whereas the matrix polynomials Θ(z) and σ(z) are presented in (75). In (80), we have the
pn2 × (p+ q)n2 and qn2 × (p+ q)n2 submatrices S⊗p (−B) and S⊗q (A) of the tensor Sylvester resultant
matrix S⊗p,q(−B,A). Whereas the matrices S⊗p (−C) and S⊗r (A) are the upper and lower blocks of the
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(p+r)n2×(p+r)n2 tensor Sylvester resultant matrix S⊗p,r(−C,A). As for the FIM of the VARMA(p, q)

process, the objective is to construct a multiple version of (65), this done in [23], to obtain

Mx(ϑ) =
1

2πi

∮
|z|=1

L(z)A(z)L∗(z)
dz

z
+

1

2πi

∮
|z|=1

W(z)B(z)W∗(z)
dz

z

=

 −S⊗p (B)

Orn2×n2(p+q)

S⊗q (A)

P (ϑ)

 −S⊗p (B)

Orn2×n2(p+q)

S⊗q (A)


>

+

 −S⊗p (C)

S⊗r (A)

Oqn2×n2(p+r)

T (ϑ)

 −S⊗p (C)

S⊗r (A)

Oqn2×n2(p+r)


>

(81)

The matrices involved are of the form

L(z) =

 Ip ⊗ A(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Orn2×rn2 Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Iq ⊗ In ⊗ A(z)

 and A(z) := Φx(z)Θ(z)Φ∗x(z)

W(z) =

 Ip ⊗ A(z)⊗ In Opn2×rn2 Opn2×qn2

Orn2×pn2 Ir ⊗ In ⊗ A(z) Orn2×qn2

Oqn2×pn2 Oqn2×rn2 Oqn2×qn2

 and B(z) := Λx(z)Ψ(z)Λ∗x(z)

T (ϑ) =
1

2πi

∮
|z|=1

(up+r(z)⊗ In2) Ψ(z) (up+r(z)⊗ In2)∗
dz

z

and P (ϑ) is given in (77). Note, the matrices Φx(z), Λx(z), L(z) andW(z) are the corrected versions
of the corresponding matrices in [23].

A parallel between the scalar and multiple structures is straightforward. This is best illustrated by
comparing the representations (27) and (28) with (76) and (77) respectively, confronting the FIM for
scalar and vector ARMA(p, q) processes. The FIM of the scalar ARMAX(p, r, q) process contains an
ARMA(p, q) part, this is confirmed by (65), through the presence of the matrix P(ϑ) which is originally
displayed in (28). The multiple resultant matrices M (ϑ) and Mx(ϑ) derived from the FIM of the
VARMA(p, q) and VARMAX(p, r, q) processes respectively both contain P (ϑ), whereas the first matrix
term of the matrices Φ(z) and Φx(z), which are of different size, consist of the same nonzero submatrices.
To summarize, in [23] compact forms of the FIM of a VARMAX process expressed in terms of multiple
and tensor Sylvester matrices are developed. The tensor Sylvester matrices allow us to investigate the
multiple resultant matrix property of the FIM of VARMAX(p, r, q) processes. However, since no proof
of the multiple resultant matrix property of the FIM G(ϑ) has been done yet, justifies the consideration
of a conjecture. A conjecture that states, the FIM G(ϑ) of a VARMAX(p, r, q) process becomes singular
if and only if the matrix polynomials A(z), B(z) and C(z) have at least one common eigenvalue. A
multiple equivalent to Theorem 3.1 in [4] and combined with Proposition 2.4 in [6], but based on
the representations (79) and (81), can be envisaged to formulate a proof which will be a subject for
future study.

4. Conclusions

In this survey paper, matrix algebraic properties of the FIM of stationary processes are discussed.
The presented material is a summary of papers where several matrix structural aspects of the FIM
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are investigated. The FIM of scalar and multiple processes like the (V)ARMA(X) are set forth with
appropriate factorized forms involving (tensor) Sylvester matrices. These representations enable us to
prove the resultant matrix property of the corresponding FIM. This has been done for (V)ARMA(p, q)

and ARMAX(p, r, q) processes in the papers [4–6]. The development of the stages that lead to the
appropriate factorized form of the FIM G(ϑ) (79) is set forth in [23]. However, there is no proof done
yet that confirms the multiple resultant matrix property of the FIM G(ϑ) of a VARMAX(p, r, q) process.
This justifies the consideration of a conjecture which is formulated in the former section, this can be a
subject for future study.

The statistical distance measure derived in [7], involves entries of the FIM. This distance measure
can be a challenge to its quantum information counterpart (41). Because (36) involves information
about m parameters estimated from n measurements. Whereas in quantum information, like in
e.g., [8–10], the information about one parameter in a particular measurement procedure is considered for
establishing an interconnection with the appropriate statistical distance measure. A possible approach,
by combining matrix algebra and quantum information, for developing a statistical distance measure in
quantum information or quantum statistics but at the matrix level, can be a subject of future research.
Some results concerning interconnections between the FIM of ARMA(X) models and appropriate
solutions to Stein matrix equations are discussed, the material is extracted from the papers, [12] and [13].
However, in this paper, some alternative and new proofs that emphasize the conditions under which the
FIM fulfills appropriate Stein equations, are set forth. The presence of various types of Vandermonde
matrices is also emphasized when an explicit expansion of the FIM is computed. These Vandermonde
matrices are inserted in interconnections with appropriate solutions to Stein equations. This explains,
when the matrix algebraic structures of the FIM of stationary processes are investigated, the involvement
of structured matrices like the (tensor) Sylvester, Bezoutian and Vandermonde matrices is essential.
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