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Abstract: In this paper, we propose a novel strategy for the synthesis and the classification 

of nonsmooth limit cycles and its bifurcations (named Non-Standard Bifurcations or 

Discontinuity Induced Bifurcations or DIBs) in n-dimensional piecewise-smooth dynamical 

systems, particularly Continuous PWS and Discontinuous PWS (or Filippov-type PWS) 

systems. The proposed qualitative approach explicitly includes two main aspects: multiple 

discontinuity boundaries (DBs) in the phase space and multiple intersections between DBs 

(or corner manifolds—CMs). Previous classifications of DIBs of limit cycles have been 

restricted to generic cases with a single DB or a single CM. We use the definition of 

piecewise topological equivalence in order to synthesize all possibilities of nonsmooth limit 

cycles. Families, groups and subgroups of cycles are defined depending on smoothness zones 

and discontinuity boundaries (DB) involved. The synthesized cycles are used to define 

bifurcation patterns when the system is perturbed with parametric changes. Four families 

of DIBs of limit cycles are defined depending on the properties of the cycles involved. 

Well-known and novel bifurcations can be classified using this approach. 

Keywords: bifurcation theory; nonsmooth bifurcations; piecewise-smooth systems;  

limit cycles; topological equivalence 
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1. Introduction 

Piecewise-smooth (PWS) dynamical models have become in valuable tools to analyze many 

physical systems [1]. Classical qualitative theory based on smooth dynamical systems cannot 

satisfactorily explain phenomena such as switching and hysteresis in electronic circuits, saturation 

effects in control systems or friction and impacting behaviors in mechanical systems [2–4]. Therefore, 

PWS systems of ordinary differential equations are being used to model in a more realistic form these 

inherent nonsmooth phenomena [5]. The inclusion of PWS functions in dynamical systems has 

revolutionized qualitative theory and bifurcation theory of dynamical systems [6]. Concepts and 

methods have had to be formulated or created for nonsmooth cases and many theoretical and practical 

researches have been developed. However, many open problems remain unsolved [7]. Much work is 

still needed to achieve a unified and general analytical framework to classify non-standard bifurcations 

(or Discontinuity Induced Bifurcations ‒ DIBs) in PWS dynamical systems [8]. In this work, we 

propose a novel strategy for the synthesis and the classification of nonsmooth limit cycles and its 

bifurcations in n-dimensional PWS dynamical systems, particularly Continuous PWS and 

Discontinuous PWS (or Filippov-type PWS systems) [9]. 

The proposed qualitative approach includes two main aspects explicitly: multiple discontinuity 

boundaries (DBs) in the phase space and multiple intersections between DBs (or corner manifolds—

CMs). Figure 1 shows an example of generic non-smooth cycle formed by multiple smooth flows. 

Previous classifications of DIBs of limit cycles have been restricted to generic cases with a single DB 

or a single CM [10]. Kuznetsov et al. [11], proposed in 2003 a full catalog of local and global 

bifurcations in Filippov systems based on classical approach of topological equivalence. Bifurcations 

of cycles were classified in four main groups: touching bifurcations (when a cycle collides with a 

boundary of a sliding segment), sliding disconnection bifurcations (when a double tangency appears in 

a sliding cycle), buckling bifurcations and crossing bifurcations. This classification only considers the 

simplest possible nonsmooth cycles with a single DB. Sliding cycles can also cross DB and have more 

than one sliding segment, while crossing cycles can return to DB more than twice. 

Figure 1. Example of generic piecewise-smooth dynamical system. State space is separate 

din 3 × 3 array of smooth zones . Each zone  is bounded by a set of discontinuity 

boundaries 	 ⋃ ∑ . The intersection of two or more DBs defines a corner 

manifold (Γ). A nonsmooth cycle is the composition of smooth flows 	Φ  and convex 
Filippov flows	ψ . 
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In other work, di Bernardo et al. [5] classified DIBs in PWS flows in two main groups: grazing 

bifurcations and sliding bifurcations. A grazing bifurcation occurs when a limit cycle intersects 

tangentially one of the switching manifolds in phase space [12]. A sliding bifurcation occurs when 

ever a limit cycle develops an intersection with a sliding region (a region on one of the system 

switching manifolds where sliding is possible) [1]. Four subgroups of sliding bifurcations were 

distinguished: sliding–crossing, switching–sliding, grazing—sliding and adding—sliding [8]. 

Recently, Jeffrey and Hogan [13], have complemented previous classifications of sliding 

bifurcations using singularity theory of scalar functions. Two types of bifurcations were proposed: 

regular sliding bifurcations and catastrophic sliding bifurcations. Eight one-parameter sliding 

bifurcations were characterized, four in each type. This method can be extended to sliding bifurcations 

of co-dimension two or higher. The main disadvantage of this method is still the comprehensive 

characterization of bifurcations scenarios with multiple discontinuity boundaries or corner manifolds. 

Figure 2 shows several examples of PWS state spaces with multiple DBs and CMs. 

Figure 2. Left: Examples of three-dimensional (3D) piecewise-smooth state spaces. (a–d). 

3D state spaces with 1, 2, 3 and 4 DBs. Corner manifolds Γ are shown too. Center and 

right: Examples of piecewise-smooth state space and nonsmooth limit cycles reported in [14] 

and observed in mechanical oscillator with double cam. Previous frameworks can not 

difference between two limit cycles that interact with multiple DB. 

 

Physical applications can exhibit multiple DBs or CMs due to nonsmooth phenomena such as 

friction, saturation or hysteresis. Casini et al. [15] have studied several mechanical systems with 

multiple DBs caused by the presence of multiple frictional contacts. The model of a non-smooth 

rotational oscillator in contact with one or two different rough discs rotating with constant driving 

velocities is considered [15] and the model of double-belt friction oscillator (DBO) is proposed [16]. 

Both works describe non-standard bifurcations that occur by influence of several DBs. These 

bifurcations were not characterized completely due to the absence of a framework that allows to 

finding differences between nonsmooth cycles caused by multiple DBs or CMs. For example, the right 

side of Figure 2 presents a nonsmooth limit cycle of a mechanical oscillator with double cam [14]. 

Previous frameworks can not uniquely identify each limit cycle that interact with multiple DBs. In this 

paper, we propose a novel strategy that allows to classifying limit cycles and bifurcations in PWS 

dynamical systems with multiple DBs or CMs. 

This methodology of synthesis and classification can also be used to characterize complex 

bifurcation scenarios due to the variation of one or more parameters. First, the PWS state space is 
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modelled using semi-algebraic sets and later, the nonsmooth cycles are synthesized following rules 

based on piecewise topological equivalence. Families, groups and subgroups of cycles are defined 

depending on smoothness zones and discontinuity boundaries (DB) involved. Each non smooth cycle 

is decomposed in smooth segments limited by characteristic points on DB. Crossing, sliding and 

singular sliding points on DB are determined using the integration-free method named Singular-Point 

Tracking (SPT) [17,18]. 

The cycles synthesized are used to define bifurcation patterns when the system is perturbed with 

parametric changes. Four families of DIBs of limit cycles are defined depending on the properties of 

the cycles involved. Well-known and novel bifurcations can be classified using this approach. 

The paper is organized as follows: in Section 2 is sequencially presented the steps in the arranging 

of the cycles into orderly categories and with them proceed into the definicion of the systemic 

grouping of the Non-Standard Bifurcations. In Subsection 2.1 Piecewise Topological Equivalence is 

presented as the tool to compare cycle structures. In Subsection 2.2 Cycle Stability and Direction are 

presented as differentiating characteristics. In Subsection 2.3 special points in the orbits of cycles are 

presented as separating elements of segments formed by points of the same type and also as 

characterizers that make a topological difference between two cycles. The generalizacion of the 

Hierarchical Combination of the possible different elements of the cycle is presented in Subsection 2.4. 

In Subsection 2.5 the nonsmooth limit cycles are used as a methodology to synthesize and classify 

Discontinuity-Induced Bifurcations (DIBs) of nonsmooth limit cycles in PWS dynamical systems. 

Section 3 presents the utility of the classification and gives reference papers on the use of the methodology 

that is developing. 

2. Results 

Now, we propose a novel strategy to synthesize nonsmooth limit cycles in n-dimensional PWS 

dynamical systems. Two main aspects are included explicitly: multiple discontinuity boundaries (DBs) 

in the state space and multiple intersections between DBs (or Corner Manifolds—CMs). The synthesis 

of nonsmooth limit cycles is based on piecewise topological equivalence. 

Let  and  represent the evolution operators of two PWS dynamical systems defined by 

countably many different smooth flows ,  and , in finitely many phase space regions  

and ~	 respectively, 	 1, … , . Two such PWS systems are called Piecewise-Topologically 

Equivalent if [5]: 

(1) They are topologically equivalent, i.e. there is a homeomorphism  that maps the orbits of the 

first system onto orbits of the second one, preserving the direction of time so that 
 where the map	 →  is continuous and invertible. 

(2) 	can be chosen so that being restricted to the closure, , of each region 1,… ,  is also a 
homeomorphism such that →  and → .  

(3) Moreover  can be chosen such that for each ,  restricted to ⁄  and 	restricted 

to	 ⁄  is also a homeomorphism (where	  is the set of interior points of  ). 

According to the previous definition, two phase portraits can be topologically equivalent but not 

piecewise-topologically equivalent. Therefore, we can identify all options of nonsmooth limit cycles 

applying PWS topological equivalence. 
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Let  be a limit cycle defined by the topological structure 	 , , , Ʌ,  where 

	 contains stability conditions,  contains flow direction conditions,  is the topological 

identifier of the cycle, Ʌ is the topological set array and	  is the topological sequence array. The 

array	Ʌ contains the topological union set	 , the topological point set	  and the topological border 

set	 . The array	  contains the topological union sequence	 , the topological point sequence	 , 

and the topological border sequence	 . Table 1 summarizes the notation used in the synthesis and 

classification of nonsmooth limit cycles. 

Table 1. Summary of notation for synthesis and classification of nonsmooth limit cycles. 

Variable Characteristics 

Family of Cycles , , , , , ⋯  
Group of Cycles 0, 1, 2,⋯ , 1, 2,⋯ , 2, 3,⋯ , 4, 5,⋯  
Subgr. of Cycles 00, 11, 12,⋯ , 22, 23⋯ , 33, 34, 35,⋯ , 12, 13,⋯  
Cycles ⋯ , ⋯ , ⋯ , ⋯ , ⋯ , ⋯ ,⋯  

Cycle Stability 
	 , , ,  where (stable), (unstable) 
	(inside stable–outside unstable), (inside unstable–outside stable) 

Flow Direction , 	where (clockwise), (anticlockwise) 
Top. Union Set , , , , ,  
Top. Union Seq. ∈ 	with	 1,  where  is the number of points on DB. 
Top. Uniontype	  Union Φ 	and Φ 		in , where ∈ , ⊂  (only for standard cycles) 
Top. Union type  Union Φ 	and Φ 		in , where ∈ , ⊂ or ∈ Γ  
Top. Union type	  Union Φ 	and ψ 		in , where ∈ , ⊂ or ∈ Γ  
Top. Union type  Union ψ 	and ψ 	 in , where ∈ . 
Top. Union type  Union ψ  and ψ 	 in , where ∈ Γ . 
Top. Union type	  Union Φ 	and Φ 	in for ∈ . 
Top. Point Set , , , ,  
Top. Point Seq. 	 ∈ 	with	 1,  where  is the number of points on DB. 
Sliding Points Non-singular points. and have normal components of opposed sign. 
Crossing Points Non-singular points. and have normal components of the same sign. 
Tangent Points Singular points. 	and  are tangents on the analysis point ( 	). 
Pseudo-Eq. Point Singular points. 	 and  are anti-collinear on the analysis point ( 	). 
Corner Points Characteristic points. Points on Corner Manifolds (CM) ( 	 ∈ Γ). 
Top. Border Set , , ⋯ , ,⋯ , , , ⋯  
Top. Border Seq. 	 ∈ 	with 1,  where is the number of characteristic points in  
Top. Border type  Border 		is a discontinuity boundary ∈ . 
Top. Border type  Border 	is a corner manifold ∈ Γ . 
Top. Border type  Border 		can be a discontinuity boundary or a corner manifold. 

Each element of the topological structure  will be explained along this section. Mean while, a 

limit cycle  characterized by a topological structure 	  is noted with the sintaxis presented in  

Equation (1): 

, Ʌ,  (1)

Time information such as initial time 	 ∈ 	 , switching instants 	 	
1,2, … , 1  or period  is not included in the topological structure . Time 
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information is not indispensable in thetopological description of limit cycles. Therefore, two limit 

cycles  and  are PWS topologically equivalent if their topological structures 	  and  are 

identical (independent of the time characteristics). 

2.1. Stability and Direction of Limit Cycles 

Stability and flow direction are very important in the topological structure of a limit cycle. These 

conditions should be evaluated before other conditions to guarantee topological equivalence. Two limit 

cycles  and  that are PWS topologically equivalent should have the same conditions of stability 

and flow direction. Stable cycles, unstable cycles and semi-stable cycles can be distinguished. We also 

consider two different conditions of flow direction in limit cycles: Clockwise Limit Cycle  and 

Anticlockwise Limit Cycle . In Table 2 we identify four different conditions of stability in limit 

cycles and annexing the direction the amount is duplicated: 

Table 2. Condition of stability and direction in limit cycles. 

Inside  Stable  Unstable  

Clockwise    

Anticlockwise    

Outside  Stable  Unstable  

Clockwise    

Anticlockwise    

2.3. Characteristic Points of Limit Cycles on DB 

In Filippov-type PWS, the periodic solutions or cycles can be divided in standard, sliding or 

crossing cycles. In the standard cycles, the flow lies entirely in	  zone. The sliding cycles have sliding 

stable points on DB and the crossing cycles have crossing or singular sliding points on DB. Each 

nonsmooth limit cycle can be defined by a composition of flows Φ  in the smooth  and slide 
segments ψ _ in the borders (DB or CM). The points where the cycle has a change of flow Φ 	or slide 

segments	ψ _ is determined by a characteristic point. Therefore, each nonsmooth limit cycle has at least 

one characteristic point. 

A crossing periodic solution can pass through the boundary of the sliding segment. Sliding cycles 

can cross  and have more than one sliding segment, while crossing cycles can return to	  more than 

twice. Also, corner points can be characteristic points of a nonsmooth limit cycle. Four main types of 

characteristic points are distinguished: 

(1) Grazing points	  

(2) Crossing points	  

(3) Sliding end points (singular sliding points	 , or , or non singular sliding points ) and 

(4) Corner points	 . 

Characteristic points on DB can be identified using the Singular Point Tracking (SPT) method 

explained in previous works [17–19]. The set of characteristic points in a limit cycle constitutes the 

topological point set	  while the sequence of characteristic points in a limit cycle constitutes the 

topological point sequence ( ). 
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The topological structure  should be supplemented with the sets:  (topological union set) and 

(topological border set) and with the sequences: 	  (topological union sequence) and the 	  

(topological border sequence). Six types of topological unions can be identified in limit cycles of a 

PWS system: 

(1) If the cycle does not have a contact point with a border, then the cycle is known as a standard 

cycle and a point verifying the periodicity condition can be defined. This point is a union 

where the flows do not change smooth zone (Φ 	to Φ ) and denominated as type f. 

(2) If the cycle has a contact point with a border and the flows before and after the contact point 

do not change of smooth zone (Φ  to Φ ) then the cycle has a union type g (or grazing). 

(3) The union is named type c (or crossing) when the flows before and after the characteristic 

point change of smooth zone (Φ 	and Φ ). 

(4) The union between a smooth flow and a sliding segment (Φ  and	ψ _) is noted by type v. 

(5) A characteristic point between two sliding segments (ψ _and ψ _) defined by different vector 

fields is defined by a union type w. 

(6) While a characteristic point between two sliding segments (ψ _ and ψ _) defined by the same 

vector fields is known as pseudo-equilibrium point and it is denominated as a union type q. 

Figure 3 illustrates the six topological unions and their differences. Points defined as union type ,  

or  belong to discontinuity boundaries (DB) or corner manifolds (CM). Points defined as union type q 

belong to discontinuity boundaries (DB), while points defined as union type  belong to corner 

manifolds (CM). Therefore, three conditions of borders are considered. Border	  when the topological 

union demands a DB. Border	  when the topological union demands a CM. Border 	when the union 

does not demand a special border (DB or CM). Also, each zone and border involved in a nonsmooth 

limit cycle should be labeled with a number (or a color code). For example: first zone (blue), second 

zone (red), third zone (green) or fourth zone (brown). 

Figure 3. Characteristic points of limit cycles on DB or CM and types of topological 

unions , , , , 	 	  and symbols of topological graphs. Three types of borders are 

distinguished: 	(points on DB), 	(points on CM), 	(points on DB or CM). 

 

Now, topological graphs can be defined to analyze the connectivity patterns of each nonsmooth 
limit cycle. Let a topological graph of a nonsmooth limit cycle be a graph for which every vertex 
corresponds with a characteristic point and every edge corresponds with a smooth flow or a sliding 
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segment. A topological graph synthesizes thetopological structure  of a nonsmooth limit cycle. Two 
PWS topologically equivalent cycles should have the same topological graph. The number of vertexes 
and edges of atopological graph are important but not exclusive properties of the topological graph. 
Other properties such as union types and border types should be evaluated to determine PWS Topological 
equivalence of limit cycles. Therefore, isomorphic topological graphs do not imply that corresponding 
limit cycles are PWS topologically equivalent. All possible combinations of nonsmooth limit cycles 
can be easily synthesized by using topological graphs. Figures 4 and 5 show examples of different 
topological graphs. 

Figure 4. Left: topological graphs of cycles that belong groups 0	and	 1. Topological 
characteristics of each graph are synthesized in the Table 3. Right: topological graphs of 
cycles that belong groups 2	 and 	 3 . Topological characteristics of each graph are 
synthesized in the Table 4. 

 

Table 3. Cycles of Groups 0	and 1. Topological identifiers ( ), topological unions 
( ) and basic syntaxis of flow composition	 	 Φ , ψ _ . The topological graphs are 

presented in Figure 4.  

 Case  FlowComposition 

00 1 .  Φ  

11 1  Φ  

12 1 ,  Φ ∘ Φ  

12 2 ,  Φ ∘ ψ  

13 1 , ,  Φ ∘ Φ ∘ Φ  

13 2 , ,  Φ ∘ ψ ∘ Φ  

13 3 , ,  ψ ∘ Φ ∘ ψ  

14 1 , , ,  Φ ∘ Φ ∘ Φ ∘ Φ  

14 2 , , ,  Φ ∘ Φ ∘ ψ ∘ Φ  

14 3 , , ,  ψ ∘ Φ ∘ Φ ∘ ψ  

14 4 , , ,  ψ ∘ ψ ∘ Φ ∘ ψ  

14 5 , , ,  Φ ∘ ψ ∘ Φ ∘ ψ  

Finally, the topological structure  is completely defined when the topological identifier ( ) is 

defined. The topological identifier  of a nonsmooth limit cycle is a label that synthesizes the main 

features of	 . The number of smooth zones involved in the limit cycle, the number of borders 
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involved in the limit cycle and the number of characteristic points in the limit cycle are given by	 . 

The topological identifier  is also fundamental in the proposed classification of limit cycles. In 

next section, we introduce a methodology to classify nonsmooth limit cycles in piecewise-smooth 

dynamical systems. 

Table 4. Cycles of Group 2	. The topological graphs are presented in Figure 5. 

 Case    Flow Composition 

22 1 ,  (1,2) (2,1) Φ ∘ Φ  

23 1 , ,  (1,2,2) (2,1,1) Φ ∘ Φ ∘ Φ  

23 2 , ,  (1,2,2) (2,1,1) Φ ∘ ψ ∘ Φ  

23 3 , ,  (1,1,2) (2,2,1) ψ ∘ Φ ∘ ψ  

24 1 , , ,  (1,2,2,2) (2,1,1,1) Φ ∘ Φ ∘ Φ ∘ Φ  

24 2 , , ,  (1,1,2,2) (2,2,1,1) Φ ∘ Φ ∘ Φ ∘ Φ  

24 3 , , ,  (1,2,2,2) (2,1,1,1) Φ ∘ Φ ∘ ψ ∘ Φ  

24 4 , , ,  (1,1,2,2) (2,2,1,1) Φ ∘ Φ ∘ ψ ∘ Φ  

24 5 , , ,  (1,1,2,1) (2,2,1,2) ψ ∘ Φ ∘ Φ ∘ ψ  

24 6 , , ,  (2,2,1,1) (1,1,2,2) ψ ∘ Φ ∘ Φ ∘ ψ  

24 7 , , ,  (2,2,1,1) (1,1,2,2) ψ ∘ ψ ∘ Φ ∘ ψ  

24 8 , , ,  (1,1,2,2) (2,2,1,1) ψ ∘ Φ ∘ ψ ∘ Φ  

Figure 5. Topological graphs of cycles that belong families B	and	C. 

 

2.4. Hierarchical Classification of Limit Cycles 

The rules based on the concept of piecewise topological equivalence are used in this section to 

define a hierarchical classification of nonsmooth limit cycles in PWS dynamical systems. Figure 6 

shows the proposed hierarchical structure. Families of cycles, groups of cycles and subgroups of cycles 

can be defined depending on topological characteristics of nonsmooth limit cycles. 

Families of cycles are defined depending on the number of smooth zones involved in the nonsmooth 

limit cycles. Each family is identified with a capital letter in the following form: 

(1) Family	 	contains nonsmooth limit cycles that evolve in one zone and its limits (DB or CM); 

(2) Family  contains nonsmooth limit cycles that evolve in two zones and their limits (DB or CM); 

(3) Family  contains nonsmooth limit cycles that evolve in three zones and their limits (DB or CM). 
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Figure 6. Hierarchical classification of cycles in Filippov-type PWS. Families depend on 

smooth zones involved. Groups depend on DB involved. Subgroups depend on the number 

of points on DB. Cycles depends on sequence of points on DB and other properties. 

 

The set of families of nonsmooth limit cycles  has infinite elements (families) 		
, , , , , … , ̅, , ̅, , , … , … , ̿, , ̿ , , … . 

Groups of cycles can be defined in each family of cycles. Groups of cycles are defined depending on 

the number of limits (DBs or CMs) involved in the nonsmooth limit cycles. Each group is identified 

with the capital letter of the family followed by an integer number that represents the quantity of limits 

involved in the nonsmooth limit cycles. Each family of cycles can contain infinite groups of cycles. 

For example, family	  has the groups: 0, 1, 2, 3, … ;	family	 	has the groups: 1, 2, 3, 4,…; 

family  has the groups: 2, 3, 4, 5, … ;	family  has the groups: 3, 4, 5, 6, … ; and so forth. 

Family	  implies at least one border involved in the nonsmooth limit cycles, therefore 0 cannot exist. 

Also, family  implies at least two borders involved in the nonsmooth limit cycles, therefore 0 and 

1 cannot exist. 

Subgroups of cycles can be defined in each group of cycles. Subgroups of cycles are defined 

depending on the number of characteristic points involved in the nonsmooth limit cycles. Each subgroup is 

identified with the capital letter of the family followed by the number of the group, followed by the 

number that represents the quantity of characteristic points involved inthe nonsmooth limit cycles. The 

syntaxis of a subgroup identifier coincides with the syntaxis of the topological identifier  of a 

nonsmooth limit cycle. Each group of cycles can contain finite or infinite subgroups of cycles. For 

example, group 0 only has one subgroup: 00 that contains all standard cycles; group 1 has the 

subgroup: 11, 12, 13, 14,… ; group	 2 has the subgroup: 22, 23, 24, 25,… ; group 3 has 

the subgroup: 33, 34, 35, 36,… ;	group	 1 has the subgroup: 12, 13, 14, 15,… ;	group 2 

has the subgroup: 24, 25, 26, 27, … ;and so forth. Group 1 implies at least two characteristic 

points involved in the nonsmooth limit cycles, therefore 10 and	 11 cannot exist. Group 2 implies 

at least four characteristic points involved in the nonsmooth limit cycles, therefore 20, 21, 22 and 

23 cannot exist. 

Figure 7 shows examples of nonsmooth limit cycles on Family A in two-dimensional and  

three-dimensional Filippov-type PWS dynamical systems, respectively. We can identify the 

topological structure of each limit cycle and its agreement with the topological identifier	 . We can 
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assume that all cycles are stable. Clockwise and anticlockwise direction can be distinguished. Also, 

different number of involved borders and involved characteristic points can be determined. 

Figure 7. Examples of cycles on Family A in three-dimensional Filippov-type PWS.  

(a) zero points on DB (standard cycle). (b–f) one DB involved with 1,2 4, 6 and 8 points 

on DB. (g–l) two DBs involved. (m–o) three DB sinvolved. (p–r) four DBs involved.  

 

Revisiting Tables 3 and 4, these summarize the main characteristics of topological graphs presented 

in Figures 4 and 5, respectively. Different cases can be determined for limit cycles with the same 

topological identifier  depending on the sequences:	 ,  and . Topological identifier 00 

defines a standard (smooth) cycle while 11  defines a grazing cycle. Sliding cycle and  

double-grazing cycle (with the same border) have the same topological identifier 12 but different 

topological unions. Topological union sequences and flow compositions are presented in Table 3 for 

three 13	cases and five 14  cases. Table 4 shows characteristics of nonsmooth limit cycles of 

groups 	 2 . Cases with the same topological identifier  and with the same topological union 

sequence  are distinguished by means of topological border sequence . 

Figure 8 shows examples of nonsmooth limit cycles on Family B and C in three-dimensional 

Filippov-type PWS dynamical systems. Topological graphs of these cycles were presented in Figure 5. 

Simplest crossing cycle has the topological identifier 12. Sliding cycles involving two smooth zones 

have topological identifiers 13, 14, 24, 25, 35	 or 36 . Non-sliding cycles involving two 

smooth zones have topological identifiers 23	or 34. Crossing cycle involving three smooth zones 

has a topological identifier 24 . Sliding cycles involving three smooth zones have topological 

identifiers 25, 26, 37, 38, 47	or 48. Different grazing cycles are shown in Figures 8 and 9 with 

topological identifiers 23, 25, 34, 35, 36, 35, 46 and 47 where the cycles 35	and	 46 are 

double-grazing cycles (with different borders). A nonsmooth cycle such as the cycle with topological 

identifier	 36 can have combined characteristic of grazing, crossing and sliding cycles. This type of 

cycles has not been well studied yet. 

Figure 9 shows examples of limit cycles of family B with the same topological identifier but 

different types of topological unions. Multi-sliding and multi-crossing cycles can have the same 

topological identifier but the types of unions are different. Figure 9 (right) shows examples of limit 

cycles on family B with the same topological identifier, the same types of topological unions but 
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different topological union sequence. For example, the cycles  and  have the same topological 

identifier	 26, both cycles with two characteristic points type  and four characteristic points type . 

However, the cycle  has two sliding segments in different DB while the cycle  has two sliding 

segments in the same DB. 

Figure 8. Examples of cycles on Family B and Family C in three-dimensional Filippov-type 

PWS. (a–i) Family B: cycles with two zones and its limits involved. (j–r) Family C: cycles 

with three zones and its limits involved. 

 

Figure 9. Left: Limit cycles of family B with the same topological identifier but different 

types of topological unions. Right: Limit cycles of family B with the same topological 

identifier, the same types of topological unions but different topological union sequence. 

 

2.5. Synthesis and Classification of DIBs of Limit Cycles 

Now, the synthesis and classification of nonsmooth limit cycles are used to propose a novel 

methodology to synthesize and classify Discontinuity-Induced Bifurcations (DIBs) of nonsmooth limit 

cycles in PWS dynamical systems. Discontinuity-Induced Bifurcations (DIBs) of nonsmooth limit 

cycles can be contained in four families of DIBs ( ): 
(1) Point Addition DIB Family	 ⨁, 
(2) Boundary Addition DIB Family	 ⨁, 
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(3) Zone Addition DIB Family	 ⨁ and 
(4) Cycle Destruction DIB Family ( ⨁ . 

Figure 10 shows generic transitions of limit cycles due to variation of a parameter ( ). Table 5 

summarizes the notation used in the synthesis and classification of DIBs of limit cycles. 

Figure 10. Examples of generic configurations of nonsmooth bifurcation families 	 	in 

Filippov-type PWS when a parameter	  is varied. (a) Point Addtion ⨁ . (b) Boundary 

Addition ⨁ . (c) Zone Addition ⨁ (d) Cycle Destruction ⨂ . 

 

Table 5. Summary of notation for synthesis and classification of Discontinuity-Induced 

Bifurcations (DIBs). 

Variable  Characteristics 

Family of DIBs ⨁, ⨁, ⨁, ⨂  
Group of DIBs 	 ⨁, ⨁,⋯ , ⨁, ⨁,⋯ , ⨁, ⨁,⋯ , ⨂ , ⨂ , ⨂  

Subgroup of DIBs ⋯
⨁ . ,⋯ , ⋯,⋯

⨁ ⋯,⋯ . ,⋯ , ⋯,⋯
⋯ ⨁ ⋯,⋯ . , ⋯ , ⋯,⋯

⨂⋯
.  

DIBs 	 .
⨁, .

⨁, .
⨁ . , .

⨁ . , .
. ⨁ . , .

. ⨁ . , .
⨂⋯

, .
⨂⋯

,⋯  

Top. Bif. Sequence ∆ | → | → |  

Top. UnionTrans. ∆ , ,  
Top. Point Trans. ∆ , ,  
Top. BorderTrans. ∆ , ,  

Point Addition 

∆ ⨁ | → | → |  where 

| | | , | | | , | |  and | |

Example: ∆ ⨁ 2 : 12 → 12 → 13 

BoundaryAdd. 

∆ ,
⨁ , | → | → |  where 

| | | , | | , | |  

| |  and | |  

Example: ∆ ,
⨁ , 11 : 00 → 11 → 12 

ZoneAddition 

,
⨁ , | → | → |  where 

| | , | | , | | , | |  

| |  and | |  

Example:∆ ,
⨁ , 23 : 12 → 23 → 25 
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Table 5. Cont. 

Variable Characteristics 

CycleBirth(Dest.)

∆ ∓
⨂ | → | → |  where 

| ∅, | | , | |  and | |  

Example:∆ ⨂ 12 : ∅ → 11 → 12 

∆ ⨂ | → | → |  where 

| ∅, | | , | |  and | |  

Example:∆ ⨂ 12 : ∅ → 12 → 23 

∆
,

⨂ | → | → |  where 

| ∅, | | | , | |  and | |

Example:∆ ,
⨂ 12 : ∅ → 12 → 23 

Each family of DIBs (  can be classified in groups of DIBs, subgroups of DIBs and DIBs. 

Hierarchical structures of each family of DIBs are presented in Figures 11 and 12. Well-known and 

novel bifurcations can be analyzed with this approach. 

Figure 11. Hierarchical classification of DIBs Families: Point Addition ⨁  and  

Boundary Addition. 

 

Figure 12. Hierarchical classification of DIBs Families: Zone Addition ⨁ and Cycle 

Destruction ∅. 
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Point Addition DIB Family ⨁ contains bifurcations where the nonsmooth limit cycles change of 

subgroups of limit cycles when the parameter is varied. The number of zones involved in the limit 

cycles and the number of borders involved in the limit cycles before and after the DIB do not change. 

Nonsmooth limit cycles before the DIB have the same topological identifier	  than the cycle in the 

critic value. A cycle after the DIB has ρ additional points on DB than the cycle in the critic value. 

Table 6 presents examples of DIBs that belong to bifurcation family ⨁. The topological identifier and 

topological union sequence after the DIB are different. 

Table 6. Examples of DIBs that belong to bifurcation family ⨁ 

Bif. Id.      
⨁ 12  12 12 13 , , , ,  
⨁ 13  13 13 14 , , , , , , ,  
⨁ 24  24 24 25 , , , , , , , , , ,  
⨁ 36  36 36 37 , , , , , , , , , , , , , , , ,  
⨁ 24  24 24 25 , , , , , , , , , ,  
⨁ 12  12 12 14 , , , , ,  
⨁ 14  14 14 16 , , , , , , , , , , ,  
⨁ 12  12 12 14 , , , , ,  
⨁ 24  24 24 26 , , , , , , , , , , ,  
⨁ 36  36 36 39 , , , , , , , , , , , , , , , , , ,

Boundary Addition DIB Family	 ⨁) contains bifurcations where the number of borders involved in 

the nonsmooth limit cycles changes due to variation of a parameter ( , . The number of zones 

involved in the limit cycles does not change before and after the DIB. The number of characteristic 

points involved in the limit cycles change before	 ρ  and after ρ  of the DIB. Table 7 summarizes 

several examples of DIBs that belong to bifurcation family ⨁. 

Table 7. Examples of DIBs that belong to bifurcation family ⨁. 

Bif. Id.    

,
⨁ , 11  00 11 12 .   ,  

,
⨁ , 23  12 23 24 ,  , ,  , , ,  

,
⨁ , 23  24 23 33 , , ,  , ,  , ,  

,
⨁ , 12  12 12 34 , ,  ,  , , ,  

,
⨁ , 22  00 22 24 .  ,  , , ,  

,
⨁ , 11  00 11 23 .   , ,  

,
⨁ , 34  23 34 46 , ,  , , ,  , , , , ,  

,
⨁ , 12  12 12 46 ,  ,  , , , , ,  

Zone Addition DIB Family ⨁ contains bifurcations where the number of zones involved in the 

nonsmooth limit cycles changes due to parametric perturbation. Also, the number of borders and 

characteristic points in the nonsmooth limit cycles can change due to the DIB. Table 8 summarizes 

several examples of DIBs that belong to bifurcation family ⨁. 
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Table 8. Examples of DIBs that belong to bifurcation family ⨁. 

Ex. Bif. Id.    

 ,
⨁ , 12  12 12 13 ,  ,  , ,  

 ,
⨁ , 24  24 24 25 , , ,  , , ,  , , , ,  

 ,
⨁ , 11  00 11 13 .   , ,  

 ,
⨁ , 23  12 23 25 ,  , ,  , , , ,  

 ,
⨁ , 11  00 11 22 .   ,  

 ,
⨁ , 12  12 12 33 ,  ,  , ,  

 ,
⨁ , 22  00 22 44 .  ,  , , ,  

 ,
⨁ , 24  24 24 26 , , ,  , , ,  , , , , ,  

 ,
⨁ , 12  12 12 44 ,  ,  , , ,  

 ,
⨁ , 22  00 22 24 .  ,  , , ,  

Cycle Destruction DIB Family 		 ⨂  contains bifurcations where the nonsmooth limit cycle 

disappears due to the variation of a parameter. Three different groups of ⨂	can be identified: ⨂ ,	 ⨂  

and	 ⨂ . Characteristic point changes in the transition Cycle Destruction for the group 	 ⨂ . The 

number of borders and characteristic point changes in the transition Cycle Destruction for the group 

	 ⨂ . The number of zones, borders and characteristic point changes in the transition Cycle 

Destruction for the group	 ⨂ . Table 9 shows examples of DIBs that belong to bifurcation family ⨂. 

Table 9. Examples of DIBs that belong to bifurcation family ⨂	where ∅ and 

.  

Ex. Bif. Id.    

 
⨂ 11  12 12  ,   

 
⨂ 23  23 24 , ,  , , ,  , ,  

 
⨂ 22  22 24 ,  , , ,  ,  

 
⨂ 13  13 12 , ,  ,  , ,  

 
⨂ 23  24 23 , , ,  , ,  , , ,  

 
⨂ 11  26 24 , , , , ,  , , ,  , , , , ,  

 
⨂ 12  12 12 ,  ,  ,  

 
⨂ 13  13 13 , ,  , ,  , ,  

 
⨂ 12  12 23 ,  , ,  ,  

 
⨂ 22  12 00 ,   ,  

 
⨂ 33  33 00 , ,   , ,  

 ,
⨂ 11  11 22  ,   

 ,
⨂ 12  12 33 ,  , ,  ,  

 ,
⨂ 11  11 33  , ,   

 ,
⨂ 22  22 24 ,  , , ,  ,  

 ,
⨂ 22  22 34 ,  , , ,  ,  

3. Experimental Section 

In this section the utility of the strategy is presented. Due to the need to maintain the generality, the 

work is indirectly supported by references of papers that cover some topics related to the final result 
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presented. Also referenced are papers which serve as validation of the method. In those references the 

process followed in perfecting all the elements that constitute the strategy of classification is appreciated. 

The proposed classification can be used in the development of numerical integration methods for nonsmooth 

systems. Specifically, the classification of cycles has utility in the determination of Non-Standard 

Bifurcations. In from a parameter change of the system, the present limit cycle changes passing by a 

transaction cycle and, ends in other different from the first. The proposed method lets one, while the 

system is evolving, constructs the sequence of elements constituting the dynamics and then to 

determine by comparison, what type of cycles are involved and in which order they have presented. 

Derived from the previous information, the result of the evolution is compared against a database in 

which are referenced to: the sequence of elements, points and segments of points that constitutes all 

cycles and, the sequence of cycles that constitutes all the Non-Standard Bifurcations. The result is the 

possibility to detect in a dynamical system, at the moment it is evolving, a non-standard bifurcation event. 

Also, in a subsequent step, is enabled the possibility of the continuation of a Non-Standard Bifurcations. 

This method demands the following of different tasks. First, characterize singular and special points 

of the evolution of non-smooth dynamical systems. In [18] tools to discriminate 42 singular and 

special points including the segments of orbit belonging to different regions or DBs were characterized 

and developed. Second, in [19] an operative sketch of a numeric tool to implement the methodology in 

order to work with systems having simultaneous the three types of discontinuity present in Piecewise 

Smooth Dynamical Systems—impact, Filippov and first derivative discontinuities—was presented. The 

results offer a convenient approach for large systems with more than two regions and more than two 

sliding segments. In [20] a report of the development of toolbox for bifurcation analysis of Filippov 

Systems is presented. The main benefit of this little application was the corroboration that is numerically 

feasible and simultaneously, at the moment the integration is running, the following: (1) evolutions 

from region to region or from region to DB; (2) changes in the equation that representing the dynamics 

of the regions without losing the point in the DB; (3) to test, sort and save the type of point is 

appearing in the integration. 

Another task that has been conducted is the validation. In [17] a validation with the current  

classification [13] of local and global bifurcation for planar discontinuous piecewise smooth autonomous 

systems was conducted. Each cycle was separated into its constitutive elements and their sequence was 

stored in a database of points. For each point an equation able to discriminate the type at the moment 

that integration is running was tested. With the equations, 38 different limit cycles were analyzed and 

introduced in a database of cycles. Additionally, the sequences of cycles of the non-standard 

bifurcations well known at the time were added to the database. Finally, significant papers were taken 

and their results or examples were compared with the ones working with this methodology. In [21] an 

example of the biological system, Harvesting a Prey-Predator community, composed of two 

populations—predator and prey—is compared, where prey is harvested only when it exceeds a 

threshold. In [14] the example presented in [15] is complemented related with a mechanical oscillator 

of the double disk cam. In it the state space is divided into a high number of regions which in turn 

produces complex limit cycles with a great number of elements from different regions and DBs. 

The future work demands that novel papers presenting different types of cycles and bifurcations be 

analyzed to check if the method is able to discriminate and the classification has a category for every 

one. i.e. Jeffrey and Hogan [13] recently presented an abundant number of cycles with the objective of 
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deriving a classification of Sliding Bifurcations in Piecewise-Smooth Flows; in [22] with the objective 

of classification and characterization of generic codimension-2 singularities of Planar Filippov Systems, 

multiple portraits with scenarios of local and global bifurcations are presented. 

4. Conclusions 

The proposed strategy for the synthesis and classification of nonsmooth limit cycles and its 

bifurcations (named Discontinuity Induced Bifurcations or DIBs) in -dimensional piecewise-smooth 

(PWS) dynamical systems, particularly Continuous PWS and Filippov-type PWS systems has been 

demonstrated be one tool in the analysis of non-standard bifurcations. The strategy shows the best 

utility in two aspects: multiple discontinuity boundaries (DBs) in the phase space and multiple 

intersections between DBs (or corner manifolds (CMs}). This approach, being based on comparison of 

elements of limits cycles, allows the topology differentiation of large chains. Previous classifications 

of codim-1 and codim-2DIBs of limit cycles have been restricted to generic cases with a single DB or a 

single corner manifold, but with the methodology derived from the classification complex bifurcation 

scenarios including the variation of one or more parameters can be characterized. The use of the 

concept of piecewise topological equivalence allowed nonsmooth cycles to be decomposed into 

smooth segments limited by characteristic points on DB and, families, groups and subgroups of cycles 

and bifurcations were defined depending on the smoothness zones and discontinuity boundaries (DBs) 

involved. The derived method, Singular-Point Tracking (SPT) allowed us to determine crossing, sliding 

and singular sliding points on DB. With the primary elements and using combination methods a great 

number of cycles which included the well-known limit cycles were synthesized. The cycles synthesized 

were used to define bifurcation patterns when the system was perturbed with parametric changes. Four 

families of DIBs of limit cycles were defined, depending on the properties of the cycles involved. Our 

future work is oriented to take recent published non-standard bifurcations, discriminate their cycles, 

the elements of the cycles and, to include the cycles and bifurcations in one level of the classification. 
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