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Abstract: The minimum error entropy (MEE) estimation is concerned with the estimation 

of a certain random variable (unknown variable) based on another random variable 

(observation), so that the entropy of the estimation error is minimized. This estimation 

method may outperform the well-known minimum mean square error (MMSE) estimation 

especially for non-Gaussian situations. There is an important performance bound on the 

MEE estimation, namely the W-S lower bound, which is computed as the conditional 

entropy of the unknown variable given observation. Though it has been known in the 

literature for a considerable time, up to now there is little study on this performance bound. 

In this paper, we reexamine the W-S lower bound. Some basic properties of the W-S lower 

bound are presented, and the characterization of Gaussian distribution using the W-S lower 

bound is investigated. 
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1. Introduction 

Let nX   and mY   be two random vectors, with joint probability density function (PDF) 
( , )XYp x y , where X  represents a unknown variable and Y  stands for the observation. An optimal 
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estimator of X  based on the observation is a function of Y  that minimizes a certain cost function. 

Under the well-known minimum mean square error (MMSE) criterion, the optimal estimator is:  
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where [.]E  denotes the expectation operator, ( )E X g Y   denotes the estimation error, and G  

denotes the collection of all measurable functions of Y. The MMSE criterion is prevalent in estimation 

theory due to its mathematical tractability. Under Gaussian assumption, the MMSE criterion yields a 

linear optimal estimator, which requires only a simple matrix-vector operation [1]. When the data are 

non-Gaussian, however, the MMSE estimator will be suboptimal and even unacceptable, since it 

considers only up to second-order statistics for their design. 

In order to take into account higher-order statistics in design of estimators, researchers proposed 

many non-MMSE criteria. The minimum error entropy (MEE) is one of such criteria [2–9]. Under 

MEE criterion, the optimal estimator is obtained by minimizing the error entropy, that is: 
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where  H E  denotes the Shannon entropy [10] of the error E , and (.)Ep  denotes the error’s PDF, 

which is: 

( ) ( ( ) | ) ( )
mE YX Yp e p e g y y p y dy   (3)

where (. | )X Yp y  denotes the conditional PDF of X  given Y y , and ( )Yp y  is the marginal PDF of Y . 

The MEE criterion is invariant with respect to the error’s mean. In practice, the MEE estimator is 

usually restricted to an unbiased one with zero-mean error. The entropy is a measure of concentration 

of a distribution, minimizing the error entropy forces the error to gather. 

The early work in MEE estimation can be traced back to the late 1960s when Weidemann and  

Stear [2] studied the use of error entropy as a cost function for analyzing the performance of a general 

sampled-data estimating systems. Minamide [5] extended Weidemann and Stear’s results to a 

continuous-time estimating system. Tomita, Kalata, Minamide et al. applied the MEE estimation to 

linear Gaussian systems, and studied filtering (state estimation), smoothing, and predicting problems 

from the information theory viewpoint [3–5]. Some important properties of the MEE estimation were 

also reported in [11–16]. In recent years, MEE has become a popular optimization criterion in the 

areas of signal processing and machine learning [8,9,17–22]. Combining kernel density estimation 

(KDE) and Renyi’s quadratic entropy yields a computationally simple, nonparametric entropy 

estimator that has been successfully used in information theoretic learning (ITL) [8]. 
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There is a performance bound on the MEE estimation, which was originally derived by Weidemann 

and Stear [2], and later was rederived and named the W-S lower bound by Janzura et al. [6]. The  

W-S lower bound provides a lower bound on the error entropy, although it is not necessarily attained 

by the MEE estimator for a given joint distribution pXY. This performance bound is nothing but the 

conditional entropy of the unknown variable X  given the observation Y , that is, we have: 

( ) ( | )H E H X Y  (4)

The above inequality can be easily derived using Jensen’s inequality. Let ( ) logx x x   . We have: 
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where (a) comes from the concavity of ( )x  and Jensen’s inequality, and ( )H X Y y  denotes the 

conditional entropy of X  given Y y . 

The performance bounds are very important in estimation theory. So far there is, however, little 

study on the W-S lower bound of the MEE estimation. In this paper, we will present some important 

properties of the W-S lower bound, and show that this performance bound can be applied to 

characterize the Gaussian distribution. The rest of the paper is organized as follows: in Section 2,  

some basic properties of the W-S lower bound are presented. In Section 3, the characterization of  

the Gaussian distribution using W-S lower bound is investigated. Finally, the conclusions are given in 

Section 4. 

2. Some Properties of the W-S Lower Bound 

In the following, we present some properties of the W-S lower bound. First, we present several 

sufficient and necessary conditions under which the W-S lower bound can be achieved. 

Theorem 1: Let X  and Y  be two random vectors, nX  , mY  . The MEE estimator †ˆ ( )X = g Y  

of X  based on Y  achieves the W-S lower bound ( )H X Y  if and only if any one of the following 

properties holds: 

(1)  the error † ( )E = X g Y  is independent of Y ; 

(2) † ( )X g Y Z  , where nZ   is a random vector that is independent of Y ; 

(3) †( , ) ( ( )) ( )XY Z Yp x y p x g y p y  , where (.)Zp  is a density function that is independent of Y ; 

(4)  †( ) ( ( ) | )E X Yp x p x g y y  . 
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Proof: (1) Denote ( ; )I E Y  the mutual information between E  and Y . It is easy to derive: 

†

( ; ) ( ) ( )
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            ( ) ( )
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H E H X g Y Y
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 

  

 
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Hence ( ) ( ) ( ; ) 0H E H X Y I E Y   . The mutual information ( ; )I E Y  equals zero if and only if 

E  and Y  are independent, so we conclude that the MEE estimator achieves the W-S lower bound if 

and only if the error is independent of Y . 
(2) As † ( )E = X g Y , we have † ( )X g Y E  . The error entropy ( )H E  achieves the W-S lower 

bound ( )H X Y  if and only if E  is independent of Y  (i.e., ( ; ) 0I E Y  ), so we have † ( )X g Y Z  , 

where nZ   is independent of Y  (let Z = E ). 
(3) The error entropy achieves the W-S lower bound if and only if † ( )X g Y Z  , where nZ   is 

independent of Y . Denote the density function of Z by (.)Zp . The conditional density function of X  

given Y = y  will be †( ) ( ( ))ZX Yp x y p x g y  . Thus †( , ) ( ) ( ) ( ( )) ( )XY Y Z YX Yp x y p x y p y p x g y p y   . 

(4) Since the conditional density function of X  given Y  is † †( ) ( ( )) ( ( ))Z EX Yp x y p x g y p x g y    , 

we have †( ) ( ( ) | )E X Yp x p x g y y  . 

Remark: The properties (2)~(4) of Theorem 1 suggest that if the error entropy achieves the W-S lower 

bound, only the location (or mean) of the conditional density of X  given Y = y  will depend 

on y through function † ( )g y , while the shape of the conditional density is always the same as the 

shape of the error density, which is independent of y . 

Theorem 2: Let X  and Y  be two random vectors,  1 2, , , n
nX = X X X   , mY  . If there exists  

an MEE estimator of X  based on Y  that achieves the W-S lower bound ( )H X Y , then 

 1 2, , , n
nr = r r r   , the r -th conditional central moment of X  given Y = y  is constant over m , 

that is,      1 2

1 1 2 2
nr r r

n nX X X Y y       E  does not depend on y , where i  denotes the 

conditional mean value of iX  given Y = y . 

Proof: If the error entropy achieves the W-S lower bound, the shape of the conditional density of X  

given Y = y  will not depend on y . Thus, the theorem holds since the shape of a density function 

determines its central moments (Note that the central moments depend only on the shape of a density, 

and are independent of the location of distribution). 

Theorem 3: Let X  and Y  be two random vectors, nX  , mY  . If there exists an MEE estimator 
of X  based on Y  that achieves the W-S lower bound ( )H X Y , then it will be: 

†ˆ ( )X = g Y X Y c    E  (7)

where nc  is a n -dimensional constant vector. 

Proof: According to the property (2) of Theorem 1, we have † ( )X g Y Z  , where nZ   is a 

random vector that is independent of Y . It follows easily that: 
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 † †( ) ( )X Y g Y Z Y g Y Z         E E E  (8)

And hence, † ( )g Y X Y c    E , where  c Z E . 

It has been shown in [15] that the MEE estimator may be non-unique even if the error distribution is 

restricted to zero-mean (unbiased). However, the following corollary holds. 

Corollary 1: Let X  and Y  be two random vectors, nX  , mY  . If there exists an MEE estimator 
of X  based on Y  that achieves the W-S lower bound ( )H X Y , then the unbiased MEE estimator will 

be unique, and be identical to the MMSE estimator. 

Proof: If error E  is restricted to zero-mean (i.e.,  E E 0 ), by Theorem 3, we have † ( )g Y X Y   E  

(i.e., c  0 ). In this case, the MEE estimator becomes the conditional mean of X  given Y  (i.e., the 

MMSE estimator), which is, obviously, unique. 

Theorem 4: Let X  and Y  be two random vectors, nX  , mY  . If there exists an MEE estimator 

of X  based on Y  that achieves the W-S lower bound ( )H X Y , then the MEE estimator and the 

smoothed MEE (SMEE) estimator of X  based on Y  will be identical. 

Proof: According to [16], the SMEE estimator is obtained by minimizing the smoothed MEE criterion 

 H E U , where   is the smoothing factor, and U  is a smoothing variable (see [16] for the 

detailed description of the smoothing variable) that is independent of X , Y  and E . Clearly, the 

SMEE estimator of X  based on Y  is identical to the MEE estimator of X U  based on Y . Since 

the MEE estimator of X  based on Y  achieves the W-S lower bound, we have † ( )X g Y Z  , where 

Z  is a random vector that is independent of Y . It follows that † †( ) ( )X U g Y Z U g Y Z        , 

where Z Z U   . Because U  is independent of X , Y  and E , the variable Z   will also be 

independent of Y . By property (2) of Theorem 1, one may easily conclude that the MEE estimator of 

X  based on Y  is identical to the MEE estimator of X U  based on Y . This completes the proof. 

Theorem 5: Let the random vector 
X

Y

 
 
 

 has a joint (multivariate) Gaussian distribution, 

 ,
X

Y


 
 

 
N , where X

Y





 

  
 

, XX XY

YX YY

  
     

, then the MEE estimator of X  based on Y  will 

achieve the W-S lower bound, and it will be an affine linear function of Y . 

Proof: It is easy to prove that the conditional distribution of X  given Y  has a Gaussian distribution 

with mean vector  1
X XY YY YX Y Y        E  and covariance matrix 1

XX XY YY YX
    . That is, 

the conditional mean of X  given Y  is an affine linear function of Y , and the conditional covariance 

matrix of X  given Y  is constant (i.e., does not depend on Y ). Since the shape of the Gaussian 

distribution depends only on the covariance matrix, the conditional density of X  given Y  has a fixed 

shape. And hence, the MEE estimator of X  based on Y  will achieve the W-S lower bound. By 

Theorem 3, the MEE estimator of X  will also be an affine linear function of Y . 

Remark: If X  and Y  are joint Gaussian, the MEE estimator of X  based on Y  will achieve the W-S 

lower bound. However, it should be noted that for most cases, the MEE estimator cannot achieve this 

performance bound. A simple example is given below. 
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Example 1: Consider the joint PDF      ,XY YX Yp x y p x y p y , where:  
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where 1 sin( )y y   , 1  . The joint density XYp  is joint Gaussian only when 0  , and in this 

case y  is independent of Y . For any y  and  ( 1  ), the conditional distribution of X  given 

Y = y  is Gaussian, which is symmetric and unimodal (SUM). According to the Theorem 1 in [12], the 

MEE estimator of X  based on Y  will be the conditional median of X  given Y . For different   

values, we can calculate the minimum error entropy and the W-S lower bound ( )H X Y . The results 

are shown in Figure 1. As one can see clearly, when 0   (joint non-Gaussian), the minimum error 

entropy is always above the W-S lower bound. 

Figure 1. The minimum error entropy and the W-S lower bound. 
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3. Characterization of the Gaussian Distribution 

The W-S lower bound can be applied to characterize the Gaussian distribution, i.e., constructing 

some conditions under which a distribution is Gaussian (or joint Gaussian). The problem of 

characterization of the Gaussian distribution is an interesting problem, which has been extensively 

studied in the literature [23–27]. First, we introduce a lemma. 

Lemma 1 [24]: Let X  and Y  be two random vectors, pX  , qY  . If  ,X XXX  N , and the 

distribution of Y  given X  is a q -dimensional Gaussian distribution with mean vector a BX ( qa , 

q pB  ), and constant covariance matrix 0
q q  , then the joint distribution of 

X

Y

 
 
 

 will be a 

 p+q -dimensional Gaussian distribution, whose mean vector and covariance matrix are: 



Entropy 2014, 16 820 

 

 

0

X X

Y X

T
XX XY XX XX
T T
XY YY XX XX

a B

B

B B B

 


 
    

        


                   

 (10)

Based on Lemma 1, we can state the following theorem. 

Theorem 6: Let X  and Y  be two random vectors, nX  , mY  . Assume that  ,Y YYY  N , and 

the distribution of X  given Y  is a n -dimensional Gaussian distribution. If there exists a linear estimator 

X̂ = BY  such that the error entropy ( )H E  achieves the W-S lower bound ( )H X Y , where n mB  , 

E X BY  , then 
X

Y

 
 
 

 will be a  n+ m -dimensional multivariate Gaussian random vector. 

Proof: Since the linear estimator X̂ = BY  achieves the W-S lower bound, by Theorem 1, we have: 

X = BY + Z  (11)

where nZ   is a random vector that is independent of Y . And hence, the conditional mean vector of 

X  givenY is a+ BY , where  a Z E . In addition, the conditional covariance matrix of X  given Y  

is equal to the covariance matrix of Z , which is a constant matrix (i.e., independent of Y ). By 

applying Lemma 1, we complete the proof. 

The next lemma is needed in the proof of Theorem 7. 

Lemma 2 [25]: Let nX   and mY   be two random vectors. Suppose the conditional densities 
( )X Yp x y  and ( )Y Xp y x  are both (multivariate) Gaussian. Denote the covariance matrix of the 

conditional density ( )X Yp x y  by ( )X Y y . Then the following two statements are equivalent: 

(i) the joint density function ( , )XYp x y  is multivariate Gaussian; 

(ii) ( )X Y y  is constant on m . 

Theorem 7: Let nX   and mY   be two random vectors. Suppose the conditional  

densities ( )X Yp x y  and ( )Y Xp y x  are both (multivariate) Gaussian. If the MEE estimator of X  based 

on Y  achieves the W-S lower bound ( )H X Y , then the joint density function ( , )XYp x y  will be 

multivariate Gaussian. 

Proof: Since the MEE estimator of X  based on Y  achieves the W-S lower bound, by Theorem 2, the 

conditional covariance matrix ( )X Y y  will not depend on y  (i.e., be constant on m ). By Lemma 2, 

the joint density XYp  will be multivariate Gaussian. 

Before presenting Theorem 8, we introduce the third lemma, which is an extended version of 

Ghurye and Olkin’s theorem [23,26]. 

Lemma 3 [26]: Let 1
pU   and 2

qU   be two independent non-degenerate random vectors, and let 

1
pX   and 2

qX   be two independent random vectors such that: 

1 1 1 2 2

2 1 1 2 2

X AU A U

X C U C U

 
  

 (12)
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where 1
p pA  , 2

p qA  , 1
q pC  , 2

q qC  , among which 1A  and 2C  are square nonsingular 

matrices. Then 1U  and 2U  are multivariate Gaussian random vectors if the following conditions on 1A , 

2A , 1C  and 2C  are satisfies: 

(i) 1
2 1 1 2P = C C A A  is nonsingular, 

(ii) none of the rows of 1
1 1 2= A A  and 1

2 1= P C  are null vectors. 

Consider now the problem of estimating the source nX   given the observation Y = AX + Z , 

where mY  , m nA  , and mZ   is the additive noise that is independent of X , as shown in 

Figure 2. 

Figure 2. General setup of the source estimating problem. 

X

Z

Y AX Z  X̂  

For the above estimation problem, the following theorem holds: 

Theorem 8: For the estimation problem in Figure 2, if there exists a linear estimator X̂ = BY  such that 

the error entrpy ( )H E  achieves the W-S lower bound ( )H X Y , where n mB  , E X BY  , then 

X  and Z  are multivariate Gaussian random vectors if the following conditions on A  and B  are satisfied: 

(i) the matrices nI BA  and 1( )m nI A I BA B   are nonsingular, where nI  and mI  are identity 

matrices of order n  and m  respectively, 

(ii) none of the rows of 1( )nI BA B  and 
11( )m nI A I BA B A
     are null vectors. 

Proof: Since Y = AX + Z , the error E  can be expressed as: 

 ( ) 

  ( )n

E X BY

X B AX + Z

I BA X BZ

 
 
  

 (13)

Thus we have: 

1 2

1 2

E A X A Z

Y C X C Z

 
  

 (14)

where 1 nA I BA  , 2A B  , 1C A , 2 mC I . On the other hand, the error entropy ( )H E  achieves 

the W-S lower bound ( )H X Y  if and only if E  is independent of the observation Y . Then by 

applying Lemma 3, we arrive easily at the results. When 1m n  , the conditions (i) and (ii) in 

Theorem 8 will be equivalent to the condition that 0A  , 0B  , and 1B A . Therefore, we have the 

following corollary: 

Corollary 2: For the estimation problem in Figure 2, if X , Y , Z  are all scalar random variables 

( 1m n  ), and there exists a linear estimator X̂ = BY  such that the error entropy ( )H E  achieves the 



Entropy 2014, 16 822 

 

 

W-S lower bound ( )H X Y , where B , E X BY  , then X  and Z  are scalar Gaussian random 

variables if 0A  , 0B  , and 1B A . 

Remark: It is worth noting that when the condition that 0A  , 0B  , and 1B A  does not hold, 

some of the variables in the estimating system will become degenerate random variables. Specifically, 

when 0A  , the variable AX  will be a degenerate random variable; when 0B  , the estimator 

X̂ = BY  will become a degenerate random variable; when 1B A ( 0A  ), the variable (1 )BA X  

will be a degenerate random variable. 

4. Conclusions 

MEE estimation provides an appealing approach to design optimal estimators in the framework of 

information theory. Recent successful applications of the MEE criterion in the areas of signal 

processing and machine learning suggest that this estimation method has significant potential 

advantages over traditional MMSE estimation, especially when data possess non-Gaussian 

distributions. Though it has shown remarkable success in many applications, some theoretical aspects 

of the MEE estimation need further study. In this work, we reexamine the W-S lower bound on the 

MEE estimation, which is a Shannon theory-type performance bound on the estimation error entropy. 

We present some basic properties of the W-S lower bound, and give some interesting results on the 

characterization of Gaussian distribution using this performance bound. It is hoped that the results of 

this work will help us to gain insights into the attainment of the W-S lower bound in MEE estimation. 
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