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Abstract: In this paper, the problem of stabilizing a class of fractional-order chaotic 

systems with sector and dead-zone nonlinear inputs is investigated. The effects of model 

uncertainties and external disturbances are fully taken into account. Moreover, the bounds 

of both model uncertainties and external disturbances are assumed to be unknown in 

advance. To deal with the system’s nonlinear items and unknown bounded uncertainties, 

an adaptive fractional-order sliding mode (AFSM) controller is designed. Then, 

Lyapunov’s stability theory is used to prove the stability of the designed control scheme. 

Finally, two simulation examples are given to verify the effectiveness and robustness of the 

proposed control approach.  

Keywords: fractional-order chaotic system; adaptive sliding mode control; input 

nonlinearity; unknown bounded uncertainties 
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1. Introduction 

Although fractional calculus is a mathematical topic with more than 300 years of history, its 

application to physics and engineering has attracted lots of attentions only in the recent years. It has been 

found that with the help of fractional calculus, many systems in interdisciplinary fields can be described 
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more accurately, such as viscoelastic systems [1], dielectric polarization [2], electrode-electrolyte 

polarization [3], finance systems and electromagnetic waves [4]. That is to say, fractional calculus 

provides a superb instrument for the description of the memory and hereditary properties of various 

materials and processes.  

Chaotic systems are a well-known class of complex nonlinear systems, which have several special 

properties, such as extraordinary sensitivity to system initial conditions, chaotic attractors, and fractal 

motions. Meanwhile, it has been proven that some fractional-order differential systems can behave 

chaotically, e.g., the fractional-order Duffing system [5], fractional-order Chen-Lee system [6], 

fractional-order Lorenz system [7], fractional-order hyperchaotic Chen system [8], fractional-order Qi 

system [9], and so on. The research of chaotic systems has attracted considerable attentions, for 

example, Gyorgyi [10] calculated the entropy in chaotic systems. Steeb et al. [11] applied the 

maximum entropy formalism into the study of chaotic systems. Aghababa [12] used the finite-time 

theory to realize finite-time synchronization of chaotic systems. Lu [13] developed a nonlinear 

observer to synchronize the chaotic systems. Chen et al. [14,15] researched the synchronization of 

fractional-order chaotic neural networks. With the development of sliding mode control (SMC) 

technique, SMC approach has became a universal method to realize the stabilization or 

synchronization of chaotic systems [16–20]. It is well known that the system on the sliding manifold 

has desired properties such as good stability, disturbance rejection ability, and tracking capability. 

In this paper, the following class of fractional-order chaotic systems are considered : 
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where 10  iq , 3,2,1i . TzyxX ],,[ , and zyx ,, are pseudo state variables of the system. )(f , 

)(g , )(h , and )(  are nonlinear items of the system, each of the four functions is assumed to be 

continuous and satisfies the Lipschitz condition to guarantee the existence and uniqueness of solutions 

of initial value problems. r,  are given non-negative constants. 

The fractional-order system (1) was introduced by [20], and it should be noted that many chaotic 

systems can be modeled in this form, such as the Chen, Lorenz, Liu, and Lu systems, etc. Some control 

techniques have been reported for stabilizing this type of system. For example,  

Sadras et al. [21] introduced a sliding mode controller to stabilize a special case of system (1).  

Chen et al. [22] developed a fractional-order sliding surface to guarantee asymptotic stability of  

the system in the presence of uncertainties. Inspired by [22], Yin et al. [23] provided an adaptive 

fractional-order sliding mode technique to realize the robust stabilization of this system with unknown 

bounded uncertainties. It is worth noting that there is a drawback in abovementioned literatures, that is, 

the stability of the sliding mode dynamics is not researched. Recently, Faieghi et al. [24] firstly applied 

the fractional Lyapunov stability theory to demonstrate global stability of the sliding mode dynamics. 

Yuan et al. [25] employed the continuous frequency distributed model of fractional integrator to 

analyze asymptotic stability of this kind of sliding mode dynamics. However, in [24,25], the nonlinear 

items of the controlled system were required to be directly eliminated, resulting in a complex 

controller unsuitable for practical realization. On the other hand, all approaches in the aforementioned 
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works are only focused on the linear and direct application of control inputs. In practice, input 

nonlinearity is often encountered in various chaotic systems and can be a cause of instability. Thus, it 

is obvious that the effects of input nonlinearity must be taken into account when analyzing and 

implementing a control scheme. Recently, Aghababa [26–28] considered the impacts of nonlinear 

inputs in the stabilization and synchronization of integer-order chaotic systems. However, to the best 

of our knowledge, there is little information available in the literature about the stabilization of 

fractional-order chaotic systems with nonlinear inputs. 

Motivated by the above discussions, the problem of stabilizing a class of uncertain fractional-order 

chaotic systems with nonlinear inputs is addressed in this paper. Two kinds of nonlinear inputs 

including sector nonlinear inputs and dead-zone nonlinear inputs are researched, respectively. In order 

to stabilize system (1), an adaptive fractional-order sliding mode (AFSM) controller is proposed, 

which is associate with time-varying feedback gains, can deal with the nonlinear items of the 

controlled system. After that, the Lyapunov’s stability theory is used to demonstrate the stability of the 

proposed control scheme. 

To sum up, our approach makes the following contributions: (i) it researches the stabilization of a 

class of fractional-order chaotic systems with unknown bounded model uncertainties and external 

disturbances; (ii) two kinds of control input nonlinearities including sector and dead-zone 

nonlinearities are considered; (iii) based on a fractional-order integral type sliding surface, adaptive 

sliding mode input control and some adaptation laws, a novel sliding mode control scheme is proposed. 

The remainder of this paper is organized as follows: in Section 2, the relevant definitions, lemmas 

and numerical methods for solving the fractional-order differential equations are given. Main results 

are presented in Section 3. Some numerical simulations are provided in Section 4 to show the 

effectiveness of the proposed method. Finally, conclusions are put forth in Section 5. 

2. Preliminaries 

2.1. Definitions and Lemma  

The most frequently used definitions for the general fractional calculus are Riemann-Liouville 

definition, Caputo definition and Grunwald-Letnikov definition.  

Definition 1. The -th-order Riemann-Liouville fractional integration is given by : 
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where )(  is the Gamma function. 

Definition 2. For nn  1 , Rn , the Riemann-Liouville fractional derivative definition of order 
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Definition 3. The Caputo fractional derivative definition of order   is described as: 
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where m  is the smallest integer number, larger than  . 

Definition 4. The Grunwald-Letnikov fractional derivative definition of order   is written as: 
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Lemma 1. (Barbalat’s Lemma [29]) If RR :  is a uniformly continuous function for 0t , and if 

the limit of the integral  d
t

t  0
)(lim  exist and is finite, then 0)(lim 


t

t
 . 

2.2. Numerical Method for Solving Fractional Differential Equations 

The PC (Predictor, Corrector) method which was proposed by Diethelm et al. in [30] is generally used 

to solve fractional differential equations (FDE). Consider the following fractional differential equation: 

0)0(,0),,( XXTtXtFXD   (6)

which is equivalent to the Volterra integral equation: 
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During the process of numerical computation, the trapezoidal quadrature product is used to replace 

the integral, and the nodes )1...,,2,1,0(  njt j  are taken with respect to the weight 

function 1
1 )( 
  

nt , that is to say: 
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where 1

~
nG  is the piecewise linear interpolation for G  with nodes and knots chosen at jt , 

1....,,1,0  nj . On the basis of quadrature theory, the integral on the right side of Equation (8) can 

be described as: 
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Let NTh / , nhtn  , Nn ...,,1,0 , and )( nh tX  be approximation for )( ntX . If )( jh tX  is 

calculated, then )( 1nh tX  can be computed by means of the following formula: 
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To calculate the values of )( 1tX p
h  and )( 1n

p
h tX , we should use the predictor formula, the following 

numerical approximation formula is applied: 
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Hence, for approximating the Equation (7), the predictor formula is given by: 
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In this method, the error is: 

 }1,2min{
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Thus, with the help of the aforementioned method, we can obtain the numerical solution of a 

fractional differential equation. 

3. Main Results 

Consider system (1) is perturbed by model uncertainty and external disturbance, and a nonlinear 

control input is added to the second equation of system (1), then the proposed fractional-order chaotic 

system can be rewritten as: 
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where ),,( zyxg  and )(td  represent the model uncertainty and external disturbance, respectively, 

)(tu  is the single control law to be designed later, and ))(( tuh  is a nonlinear function of control input 

satisfying either Equations (15) or (16). If the nonlinear function ))(( tuh  is continuous inside a 

sector ],[ 21  , 01  , i.e.: 

)())(()()( 2
2

2
1 tutuhtutu    (15)

Then the presented nonlinear function of input in Equation (15) is called sector nonlinear input. A 

typical sector nonlinear function is shown in Figure 1. 
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Figure 1. Sector nonlinear function ))(( tuh  for the input )(tu . 
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The dead-zone nonlinear function is described as follows: 
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where )(h  and )(h  are nonlinear functions of )(tu , u  and u  are given constants. Besides, outside 

of the dead-band, the nonlinear input ))(( tuh  has gain reduction tolerances 2 , 1  , 1  and 2 , 

which satisfy the following property: 
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where 2 , 1 , 1 , 2  are positive constants. A sample dead-zone nonlinear function is displayed 

in Figure 2. 

Figure 2. Dead-zone nonlinear function ))(( tuh  for the input )(tu . 
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Before introducing our approach, we firstly give an assumption. 

Assumption 1. The model uncertainty and external disturbance are assumed to be bounded by: 
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following adaptive laws: 
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where 1 , 2  are positive constants, and s  is the sliding surface to be designed later. 

Generally, the design procedure of an AFSM controller involves two steps. The first step is to 

establish an appropriate sliding surface with the desired properties. The second step is to design a  

robust control law to ensure the occurrence of sliding motion. In this paper, we select the following 

fractional-order integral type sliding surface: 
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where   is an arbitrary positive constant. Taking time derivative of Equation (20), we get: 
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When the system (14) operates in the sliding mode, the following equalities are satisfied: 
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that is, we can get the desired sliding mode dynamics: 
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Theorem 1. Consider the sliding mode dynamics (23), the system is asymptotically stable. 

Proof: According to the continuous frequency distributed model of fractional integrator [31–33], the 

fractional-order sliding mode dynamics (23) is exactly equivalent to the following infinite dimensional 

ordinary differential equations: 
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where   0))(sin()(   iq
ii q  , 3,2,1i . In above model, ),(1 tz  , ),(2 tz  , ),(3 tz   are the 

true state variables, while )(tx , )(ty , )(tz  are the pseudo state variables. Then, Lyapunov’s stability 

theory in [34] can be applied to prove the asymptotic stability of the above system. Selecting a positive 

definite Lyapunov function: 
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Since 0)( i ,  , r  are non-negative constants, and   is a positive constant, so according to the 

analysis results of Reference [34], we have 0)(1 tV , which implies that the fractional-order sliding 

mode dynamics (23) is asymptotically stable. Therefore, the proof is completed. 

Once a proper sliding surface has been designed, it is followed by designing an adaptive control  

law to force the state trajectories of system (14) onto the sliding surface and stay on it forever.  

The control law for the nonlinearities defined in Equations (15) and (16) are given by Equations (27) 

and (28), respectively: 
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where i , 3,2,1,0i  are the gains of adaptation, it is obvious that 0)( tK  for all 0t . 

Theorem 2. Consider the fractional-order chaotic system (14) with unknown bounded uncertainties 

and sector nonlinear input, then the closed-loop system consisting of uncertain system (14) and 

controller (27) will converge to the sliding surface 0s . 

Proof: Selecting a positive Lyapunov function for system (14): 
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 (30)

where *
ik , 3,2,1,0i  are positive constants, and satisfy  ˆˆ|),,(|*

0  zyxgk , |),,(|*
1 zyxfk  , 

 *
2k , |),,(|*

3 zyxhk  . 

Taking the time derivative of both sides of Equation (30), one obtains: 













ˆ)ˆ(
1ˆ)ˆ(

1
)(

1

)(
1

)(
1

)(
1

21
3

*
33

3

2
*
22

2
1

*
11

1
0

*
00

0
2





kkk

kkkkkkkkkssV

 (31)

Inserting s  from Equation (21) into (31), and according to the second state equation of Equation (14), 

we have: 

 
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It is clear that: 
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(33)

According to Equations (15) and (27), we known that: 

)(sgn)())(()sgn()())(()( 222
1 stKtuhstKtuhtu    (34)

One can conclude from Equation (34) that: 

)(sgn)())(()sgn( 2 stKtuhs   (35)

Multiplying both sides of Equation (35) by || s , and using sss )sgn(||  with 1)(sgn 2 s , we get: 

||)())(( stKtush   (36)

Substituting Equation (36), the adaptive laws (19) and (29) into (33), and using Assumption 1, one has: 
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where 0|||)),,(|(||)(|||)),,(|()ˆˆ|),,(|()( *
3

*
2

*
1

*
0  zzyxhkykxzyzfkzyxgktQ  . 

It is easy to demonstrate that: 

0||)()(2  stQtV  (38)

Integrating (38) from zero to t , it yields: 

 
t

tVVdsQ
0 22 )()0(||)(   (39)

Since 0)(2 tV , 0)()0( 22  tVV  is positive and finite, then we can obtain that 

t

t
dsQ

0
||)(lim   

exists and is finite. With this in mind, according to Barbalat’s lemma: 

0||)(lim 


stQ
t

 (40)

Owing to the fact 0)( tQ , Equation (40) implies that 0s  as t . Therefore, the state 

trajectories of the controlled system (14) can be forced onto the predefined sliding surface. Hence, the 

proof is completed. On the basis of Theorem 2, if system (14) subject to dead-zone nonlinear input, 

then we have the following theorem. 

Theorem 3. Consider the fractional-order chaotic system (14) with unknown bounded uncertainties 

and dead-zone nonlinear input. Then the closed-loop system consisting of uncertain system (14) and 
controller (28) will converge to the sliding surface 0s . 

Proof: In a similar way as in the Proof of Theorem 2, we get: 
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According to Equations (16), (17), and (28), when 0s , it is apparent that  utu )( , and: 
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From Equation (42), since 01   , 0)( tK , then one has: 

)(sgn)())(()sgn( 2 stKtuhs   (43)

Multiplying both sides of Equation (43) by || s , and using sss )sgn(||  with 1)(sgn 2 s , it yields: 

||)())(( stKtush   (44)

When 0s , through the similar operations, the inequality (44) still holds. Substituting (44), the 

adaptive laws (19) and (29) into (41), in the same way to the case of Equation (37), we can obtain 
0)(2 tV . By Barbalat’s lemma, we have 0lim 


s

t
. Thus, the proof is completed. 

4. Simulation Results 

In this section, two illustrative examples are presented to verify the feasibility and effectiveness of 

the propose control scheme.  

4.1. Numerical Simulation Considering Sector Nonlinear Input  

Consider an uncertain fractional-order Chen system with sector nonlinear input, which is described by: 

bzxyzD

tuhtdzyxgcyxzxacyD

xyaxD

q
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
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3

))(()(),,()(

)(
2

1

 (45)

where the model uncertainty, external disturbance and sector nonlinear input are given by: 

)())](sin(3.07.0[))((

cos3.0)(),2sin(1.0),,(

tututuh

ttdyzyxg


 

 (46)

It is obvious that δ1 = 0.4, 25 . In this simulation, set the control parameters as 

153210   , 1 , 1.01  , 2.02  , let 01.0h , )94.0,92.0,9.0(),,( 321 qqq , 

)28,3,35(),,( cba , 0)0(ˆ)0(ˆ  , 2.0)0()0()0()0( 3210  kkkk . According to the 

initialization method in [35], the initial conditions for fractional differential equations with order 

between 0 and 1 are constant function of time, so the initial conditions for system (45) can be chosen 

randomly as:  

1)0()(

1)0()(

1)0()(













ztz

yty

xtx

 (47)

for 0 t . 

With the above fractional orders and initial conditions, system (45) possesses a chaotic behavior, as 

shown in Figure 3.  

To observe the control effect of AFSM controller, the state trajectories of Equation (45) without 

control are firstly given in Figure 4. 

When the controller is activated at st 5 , we can obtain the desired time responses of system (45), 

shown in Figure 5. It is not difficult to see that all state trajectories converge to zero asymptotically, 
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which implies that a class of uncertain fractional-order chaotic systems (14) with sector nonlinear 

input can be stabilized. 

Figure 3. Chaotic attractors of fractional-order Chen system. 
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The time evolutions of feedback gains )(tki , 3,2,1,0i  and the estimations )(ˆ t , )(ˆ t  are 

presented in Figures 6 and 7, respectively. From Figures 6 and 7, it is clear that all time-varying 

feedback gains )(tki , 3,2,1,0i  and the estimations )(ˆ t , )(ˆ t  converge to some fixed values, 

which verify the feasibility of the introduced method. 

Figure 4. State trajectories of system (45) without control. 
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Figure 5. State trajectories of system (45) with controller activated at st 5 . 
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Figure 6. Time evolutions of feedback gains )(tki with controller activated at st 5 . 
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Figure 7. Time evolutions of )(ˆ t  and )(ˆ t  with controller activated at st 5 . 
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4.2. Numerical Simulation Considering Dead-Zone Nonlinear Input 

In this simulation, we consider the uncertain fractional-order Liu system with dead-zone nonlinear 

input, which is written as: 

mxyczzD

tuhtdzyxgkxzbyyD

eyaxxD

q
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where the model uncertainty, external disturbance and dead-zone nonlinear input are given by: 

 

















3)())),(sin(5.08.0)(3)((

3)(3,0

3)())),(cos(3.01)(3)((

))((

sin6.0)(,sin3.0),,( 222

tututu

tu

tututu

tuh

ttdzyxzyxg

 (49)

It is obvious that 7.01  , 3.01  , 310 . In this simulation, set the control parameters as 

103210   , 1 , 5.01  , 12  , let 01.0h , )98.0,98.0,98.0(),,( 321 qqq , 

)1,4,4,5,5.2,1(),,,,,( emkcba , 0)0(ˆ)0(ˆ  , 1.0)0()0()0()0( 3210  kkkk . The initial 

conditions for systems (48) can be chosen randomly as: 
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 (50)

for 0 t . 

The chaotic behaviors of system (48) are displayed in Figures 8 and 9. 

Figure 8. Chaotic attractors of fractional-order Liu system. 
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When the controller is activated at st 5 , we get the desired state trajectories of (48), shown in 

Figure 10. 



Entropy 2014, 16 743 

 

 

Figure 9. State trajectories of system (48) without control. 
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Figure 10. State trajectories of system (48) with controller activated at st 5 . 
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From Figure 10 we can observe that system (48) is stabilized by the proposed sliding mode control 

approach, and all state trajectories tend to zero asymptotically. Time evolutions of feedback gains 

)(tki , 3,2,1,0i  and the estimations )(ˆ t , )(ˆ t  are illustrated in Figures 11 and 12, respectively. 

All these simulation results demonstrate that our method is strongly robust to unknown model 

uncertainties and external disturbances. Therefore, the proposed approach is effective and feasible. 

Figure 11. Time evolutions of feedback gains )(tki with controller activated at st 5 . 
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Figure 12. Time evolutions of )(ˆ t  and )(ˆ t  with controller activated at st 5 . 

 

5. Conclusions 

In this paper, an adaptive fractional-order sliding mode controller is designed to stabilize a class of 

uncertain fractional-order chaotic systems with nonlinear inputs. The bounds of model uncertainties 

and external disturbances are assumed to be unknown in advance. Techniques for stabilizing this type 

of systems are demonstrated in detail. On the basis of the Lyapunov stability theorem, some sufficient 

conditions are given to guarantee the stabilization. Finally, two simulation examples are presented to 

verify the effectiveness and robustness of the proposed control scheme. 
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