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Abstract: In this paper, the consensus problem of discrete multiagent systems with time

varying sampling periods is studied. Firstly, with thorough analysis of various delays among

agents, the control input of each agent is designed with consideration of sending delay and

receiving delay. With construction of discrete dynamics of state error vector, it is proved

by applying Halanay inequality that consensus of the system can be reached. Further,

the definition of bounded consensus is proposed in the situation where environmental

disturbances exist. In order to handle this problem, the Halanay inequality is extended into a

more general one with boundedness property. Based on the new Halanay inequality obtained,

the boundedness of consensus error is guaranteed. At last, simulation examples are presented

to demonstrate the theoretical conclusions.

Keywords: multiagent system; Halanay inequality; time delay; disturbances

1. Introduction

The study of multiagent system (MAS) has attracted the interests of researchers from various

fields for its potential application prospects in distributed computing, sensor networks and multi-robots

system [1–4]. From the viewpoint of automatic control, consensus-oriented flocking and formation

control of MAS are widely discussed in previous articles [5–9]. For all kinds of difficulties appearing

in the multiagent system, complex networks involved in synchronization of MAS is among the most



Entropy 2014, 16 6525

significant ones since it is relatively inconvenient to model the exact structure. As a consequence, several

entropy measurements have been introduced into the area of multiagent control to describe the property

of networks recently [10–12]. In addition, coordination methods are also proposed from entropy view

with measurements depicting characteristics of the MAS [13,14]. Apart from the problems resulting

from network, cooperative control of MAS depending on delayed information is also an extensively

studied topic due to the inevitabilities of unreliable communication link, bandwidth limitation, packets

loss and computing constraint [15–18]. In this case, in order to guarantee the consensus of the multiagent

system, assumptions are usually made about the delays and conditions concerning the control parameters

are derived at the same time. Furthermore, for multiagent system with discrete feedbacks, the designed

controllers can only rely on sampled states data of agents and the input values are zero-order-hold

during sampling instants. As a result, the dynamics of multiagent systems can be presented as discrete

ones and the corresponding consensus analyses are also brought out in previous researches [19–22].

Most of the above mentioned consequences are acquired depending on Lyapunov theory and stochastic

matrix theory. For example, in [23], consensus of the system with communication delays is obtained

based on the property of SIA (Stochastic, Indecomposable and Aperiodic) matrix. In [24], the leader

following consensus problem is solved taking use of Lyapunov-Krasovskii functional. Without any

doubt, as two classic methods used in the field of MAS, both Lyapunov theory and stochastic matrix

theory have their own advantages. Nevertheless, in order to apply the Lyapunov theory, it is always

required that the adjacent matrix of communication graph is symmetric and the results obtained can

hardly directly extended to the asymmetric situations. On the other hand, to implement results from

stochastic matrix, system matrix needs to be nonnegative with row sum value of one. Efforts have been

made to overcome these obstacles. In [25], based on stochastic approximation, ergodicity approach

is applied to prove mean square consensus for systems that the existing Lyapunov approaches cannot

handle. Through establishing relations between consensus and ergodic backward products, an effective

tool to solve consensus problems is proposed. In [26], an auxiliary system is introduced and sophisticated

transformations are made to make the consensus analysis more convenient. The requirement that rows

of transition matrix are identical plays an important role in the proofs. Actually, it can be viewed as

a modification of the unit row sum condition when states of the system, other than error states of the

system, are discussed.

The aim of this paper is to provide a new method to study about the consensus problem of discrete

multiagent system with consideration of practical constraints. First of all, sampling period of the

multiagent system is assumed to be time varying. This is often the case for MAS with centralized

feedback system such as the vision-based position feedback system for multiple small UAVs (Unmanned

Aerial Vehicles) and ground vehicles teams guided by UAVs or satellites. In addition, information

delay between two connected agents is formulated as combination of sending delay and receiving delay.

With this kind of formulation, different causes of time delay are analyzed more clearly. Additionally,

conditions about time delays are also discussed as two separated ones regarding sending delay and

receiving delay respectively. Considering about the delayed system constructed as above, we propose a

new idea to prove the consensus of multiagent systems consist of first-order discrete agent based on the

Halanay inequality discussed in [27]. In fact, researchers of multiagent system have begun to implement

various inequality results from mathematics recently. For example, Gronwall-Bellman-Halanay type
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differential inequality has been applied in [28] to handle the stochastic consensus seeking problem. In

[29], an improved Halanay inequality has been utilized for impulsive differential systems. In this paper,

due to the similarity between the discrete multiagent system constructed and the Halanay inequality

studied in [27], results in [27] are applied here to analyze the consensus of the multiagent system.

In addition, this paper further discusses situations where environmental disturbances exist in the

feedback system. Here, environmental disturbances mainly indicate the influences of environment on

sensors in measuring the states of agents. For example, ocean waves usually add disturbances on

velocity and depth measurements of marine vehicles and light reflections will also impact the accuracy

of vision-based localization for small UAVs mentioned above. As a consequence, the feedback states

of agents in the system are corrupted. To better illustrate this problem, the definition of consensus

error is proposed in this paper to describe the consensus state of the system. With the unstructured

disturbances, the results in [27] are not applicable anymore. To take care of this problem, the discrete

Halanay inequality is first time extended into a more general one with asymptotical boundedness, as

shown in Lemma 2 in Section 3. With the implementation of Lemma 2, it is proved that the consensus

error of the multiagent system with environmental disturbances and time delays is still bounded.

The main contributions of this paper are as follows.

(1) The introduction of Halanay inequality into the area of discrete multiagent system control

with various delays. Comparing with Lyapunov dependent methods, the advantage of Halanay

inequality lies in the easy extension of results from undirected graphs to directed graphs. At the

same time, unlike the stochastic matrix theory, no row sum condition is necessary to guarantee the

consensus by Halanay inequality. Even though the method proposed in this paper is preliminary

and not capable of solving all kinds of consensus problems in multiagent systems, it can still be

viewed as a supplement of traditional tools for situations where they can hardly be applied.

(2) Extension of the discrete Halanay inequality into a more general one. With the extension, the

obtained result is more suitable for complex problems with disturbances. It should also be noticed

that the extension we have made is a fundamental one and the potential applications are not limited

in multiagent systems.

The reminder of the paper is organized as follows. In Section 2, problem concerned in this paper is

formulated. Then main results of this paper are presented in Section 3. At last, simulations are proposed

to demonstrate the feasibility of the obtained results.

2. Problem Formulation

Consider a multiagent system consists of n agents with discrete dynamics as below

xi(k + 1) = pixi(k) + T (k)qiui(k) (1)

where xi(k) ∈ R indicates the state of agent i, k is the kth update instant, T (k) is the sampling period

between instant k and k + 1 with assumption that T ≤ T (k) ≤ T , ui(k) ∈ R denotes the control input

of agent i. In this paper, it is assumed that all agents are identical, that is, ∀i ∈ {1, 2, · · · , n}, pi = p and

qi = q. In addition, the states of all agents are scalars to avoid possible complexity in expression and all

results obtained in this paper can be easily extended into multiple states agents with kronecker product.
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Remark 1. From Equation (1), it is assumed that the sampling period of the whole system is time

varying. Under this assumption, the obtained results can be applied to more general situations. Usually,

for feedback systems based on sensors, the sampling period is determined by configurations and always

fixed. However, for the situation where centralized feedback system is deployed, such as the vision-based

position feedback of indoor multi-UAVs system, the sampling period maybe time-varying from time to

time due to the computing time of the central server.

For the multiagent system, the interactions among agents are modeled as a communication graph

G(υ, ε) with vertex set υ = {1, 2, · · · , n} and edge set ε = {(j, i) : i, j ∈ ε} ⊂ υ × υ. If agent i

can receive message from agent j, we have (i, j) ∈ ε and aij = 1. Adjacency matrix of the graph can

be denoted as A = (aij)n×n and the neighbor set of agent i is Ni = {j ∈ υ : (i, j) ∈ ε}. A path in

a graph is denoted as a sequence of ordered edges (i, i1), (i1, i2), · · · , (im, j) and if there is a path to i

from any vertex in the graph, i is called a globally reachable vertex. Besides, diagonal matrix is defined

as D = diag{d1, d2, · · · , dn} with di =
∑

j∈Ni
aij . In the rest of this paper, it is assumed that the graph

is connected and undirected.

Definition 1. The consensus of multiagent system consists of Equation (1) is reached if for any initial

states of agents, there exists

lim
k→∞

‖xi(k)− xj(k)‖ = 0; i = 1, 2, · · · , n (2)

Denote a globally reachable agent in the system as agent n, according to Definition 1, the consensus

error of the MAS at instant k is presented as ζ(k) with definition

ζ(k) =
∑

1≤i≤n−1

(xi(k)− xn(k))
2 (3)

Based on the definition of consensus error, the bounded consensus of multiagent system is proposed in

this paper to describe the situation where consensus cannot be reached.

Definition 2. The bounded consensus of multiagent system consists of Equation (1) is called achieved if

there exist a constant C > 0, that

lim
k→∞

ζ(k) ≤ C (4)

With the above Definitions, it can be concluded that the consensus of multiagent system can be viewed

as a special case of bounded consensus with C = 0. It should be noticed that in [30], the definition of

practical consensus is proposed to depict a similar consensus state for multiagent systems resulting from

quantization effect. Even though there exist similarities, the bounded consensus defined in this paper is

aiming at describing the situation where consensus of MAS is influenced by disturbances. For bounded

consensus, it needs to prove that the consensus error of the system is bounded and the convergent set is

influenced by bound of disturbance.

The purpose of this paper is to design the structure of control input ui(k) depending only on local

information to reach consensus or bounded consensus for the multiagent system with consideration of

various delays and disturbances. To solve the consensus problems proposed as above, the following

control protocol is constructed at first

ui(k) = −
1

∑

j∈Ni
aij

∑

j∈Ni

aij(αixi(k)− βixj(k − τ(k))) (5)
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where, αi and βi are positive control parameters to be designed, τ(k) is bounded sending delay satisfying

1 ≤ τ(k) ≤ r. In addition, with receiving delays µ(k) concerned in this paper, it should be noticed that

shared information from neighbored agents will not be effective until agent i receives it. As a result, the

control input of agent i should be revised as

ui(k) =











0 tk ≤ t < tk + µ(k)

−
1

∑

j∈Ni
aij

∑

j∈Ni

aij(αixi(k)− βixj(k − τ(k))) tk + µ(k) ≤ t < tk+1
(6)

where tk =
∑k−1

j=1 T (j) and delay µ(k) satisfies 0 ≤ µ(k) ≤ T (k)−∆T . ∆T > 0 is a constant value.

Remark 2. From the formulation process of the controller (6), the time delays between agents are

formulated as combination of sending delay and receiving delay in this paper. Through dividing delays

into two different parts, a more clear description about sources of delays is obtained. It is assumed that

τ(k) ≥ 1, indicating that agents cannot instantly send the feedback data out to neighbors due to the

limitation from system resources or structures. In addition, since the discrete systems are sampled-data

dependent, τ(k) is an integer number. On the other hand, the receiving delay depicts the information

delay between agents within one sampling period. From practical point of view, the kind of delay always

results from instruments or transmissions. Combining two kinds of delays, the total information delay

between two connected agents can be calculated as µ(k) +
∑k

j=k−τ(k) T (j). In previous researches,

conditions about the total delay are usually discussed. With this kind of construction, we can analyze

the influence of delays on the system with better clearness through considering the sending delay and

receiving delay separately.

In the next section, with the introduction of the Halanay inequality, main results of this paper are

presented regarding the consensus and bounded consensus problem designed.

3. Main Results

Based on the control protocol Equation (6), the dynamics of agent i can be described as

xi(k + 1) = pxi(k)− q

{

1
∑

j∈Ni
aij

∑

j∈Ni

(T (k)− µ(k))aij(αixi(k)− βixj(k − τ(k)))

}

(7)

Define X(k) = [x1(k), x2(k), · · · , xn(k)]
T , P = pIn and Q = qIn, the dynamics of multiagent system

can be expressed in compact form as

X(k + 1) = PX(k)−QTα(k)X(k) +QTβ(k)X(k − τ(k)) (8)

where Tα(k) is a diagonal matrix with ith diagonal item as αi(T (k) − µ(k)), and Tβ(k) is a weighted

adjacency matrix as

Tβ(k) = D−1













(T (k)− µ(k))β1 0 · · · 0

0 (T (k)− µ(k))β2 · · · 0

0 0
. . . 0

0 0 · · · (T (k)− µ(k))βn













A
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Since all the agents in the system have identical discrete dynamics, we can adopt the same controller

gain for all agents as αi = α and βi = β. Considering about the consensus error defined as (3), the state

error vector of multiagent system can be presented as

E(k) = [e1(k), e2(k), · · · , en−1(k)]
T

with ei(k) = xi(k)− xn(k). According to the Equation (8), the dynamics of error vector can be derived.

Since the following relation exists

[

E(k)

xn(k)

]

=

[

In−1 −1n−1

0 1

]

X(k) =MX(k) (9)

Combining this with Equation (8), we have

MX(k + 1) = PMX(k)−QMTα(k)X(k) +QMTβ(k)X(k − τ(k)) (10)

That is,

[

E(k + 1)

xn(k + 1)

]

= P

[

E(k)

xn(k)

]

−QMTα(k)M
−1

[

E(k)

xn(k)

]

+QMTβ(k)M
−1

[

E(k − τ(k))

xn(k − τ(k))

]

(11)

By calculating, we have

MTα(k)M
−1 = Tα(k)MM−1 = Tα(k)

and

MTβ(k)M
−1 = β(T (k)− µ(k))MD−1AM−1

Further

MD−1AM−1 =

[

C 0n−1

MC 1

]

(12)

where C is related with the communication graph of whole system as

C = D−1
n−1An−1 −

1

dn
1n−1A

n
n−1 (13)

where Dn−1 is the first n − 1 rows and the first n − 1 columns of matrix D and An−1 has similar

definitions. An
n−1 is formed by the first n− 1 items of nth rows of matrix A. MC ∈ R

1×(n−1) can also be

calculated, the detailed structure of MC is omitted here. Now, the discrete dynamics of state error vector

E(k) can be obtained as follows

E(k + 1) = pE(k)− qα(T (k)− µ(k))E(k) + qβ(T (k)− µ(k))CE(k − τ(k)) (14)

Based on Definition 1, the consensus problem of multiagent system is transformed into the stability

problem of the multi-state system depicted as Equation (14). Before introducing Theorem 1, the

following lemma from [27] is presented.
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Lemma 1. Let 0 < a(n) ≤ Ma < 1, 0 < b(n) ≤ 1, and let {yn}n≥−r be a sequence of real numbers

satisfying the Halanay-type inequality

∆yn ≤ −a(n)yn + b(n)max{yn, yn−1, ..., yn−r}, yn ≥ 0, n ≥ 0.

where, ∆yn = yn+1 − yn If there exist positive constants Γ ∈ Z+, and λl ∈ (0, 1) such that

(k+1)Γ−1
∏

i=kΓ

[1− a(i) +
b(i)

(1−Ma)r
] ≤ λl < 1, k ∈ N,

then

yn ≤ [1 +
1

(1−Ma)r
]Γ−1max{y0, y−1, ..., y−r}λ

[n
Γ
]

l , n ≥ 0.

With Lemma 1, Theorem 1 can be presented as one of the main results of this paper.

Theorem 1. For multiagent system consist of agent with dynamics as Equation (1), with the control

protocol designed as Equation (6) and assumptions made about the sending and receiving delays, the

consensus of the system is guaranteed if following conditions are satisfied by proper choice of control

parameters α and β.

(i) sup λα(k) < 1

(ii) λβ(k) <
1
λC

(iii) λβ(k)λC ≤ d0λ
r
α(k)− λr+1

α (k)

where, 0 < d0 < 1, λα(k) = |p− qα(T (k)− µ(k))|, λβ(k) = |p− qβ(T (k)− µ(k))| and λC = ‖C‖ is

constant value for fixed communication graph.

Proof. According to Equation (14), the error dynamics of multiagent system can be expressed

as follows.

‖E(k + 1)‖ ≤ |p− qα(T (k)− µ(k)|‖E(k)‖+ |p− qβ(T (k)− µ(k)|‖C‖‖E(k − τ)‖ (15)

where, ‖ · ‖ indicates the 2-norm. With the definition of λα, λβ and λC

‖E(k + 1)‖ − ‖E(k)‖ ≤ −(1 − λα(k))|‖E(k)‖+ λβ(k)λC‖E(k − τ)‖ (16)

Define γ(k) = ‖E(k)‖, we have the Halanay-type inequality presented in Lemma 1 as below

∆γ(k) ≤ −(1− λα(k))γ(k) + λβ(k)λCγ(k − τ) (17)

From condition (iii), we have

λβ(k)λC
(1− λα(k))r

<
λβ(k)λC

(1− supk→∞ λα(k))r
(18)
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In addition, it is obvious that γ(k − τ) ≤ max{γ(k), γ(k − 1), · · · , γ(k − τ)} and with conditions (i)

and (ii), Lemma 1 can be applied to prove that

γ(k) ≤ [1 +
1

(1− λ0)r
] max{γ(0), γ(−1), ..., γ(−r)}dn0 , n ≥ 0 (19)

Based on above inequality, it can be found that as n→ ∞, γ(k) = 0. Considering about the definition

of consensus error, that is ζ(k) = γ2(k), the consensus of the multiagent system is reached. Theorem 1

is proved.

Remark 3. During the discussion of Theorem 1, it can be concluded that one advantage of implementing

the Halanay inequality in proving stability of the multiagent system is the avoidance of dependence on

symmetry of communication graph. As a matter of fact, even though the communication graph is assumed

to be connected and undirected, conditions (i–iii) in Theorem 1 are not dependent on this assumption.

Remark 4. The existence of α and β satisfying conditions (i) and (ii) is actually decided by the dynamics

of agents, receiving delay and communication graph together. Since the situations can vary from case

to case, it is difficult to obtain general expressions for conditions of α and β. However, with particular

dynamics of agents and communication graph, the values of α and β can be easily chosen according

to definitions of λα and λβ. Here, a typical situation where p > 0 and q > 0 is presented for a better

illustration. According to conditions (i) and (ii), we have

p+ 1

q(T (k)− µ(k))
> α >

p− 1

q(T (k)− µ(k))
(20)

and

λCp+ 1

λCq(T (k)− µ(k))
> β >

λCp− 1

λCq(T (k)− µ(k))
(21)

with α 6= p

q(T (k)−µ(k))
and β 6= p

q(T (k)−µ(k))
. Besides, Equations (20) and (21) also imply requirements

for ∆T as

∆T > sup{
p− 1

λC

p+ 1
λC

T (k),
p− 1

p+ 1
T (k)} (22)

As for condition (iii), the value of r indicates the maximum sending delay tolerant by the system.

During the implementation of Theorem 1, condition (iii) can be verified with chosen control parameters

and r. For other situations, similar process can be carried out to decide values of α and β. �

In Theorem 1, we have proved that for the discrete system as Equation (1) with control protocol (5),

the consensus of multiagent system can be obtained even though different kinds of delays are involved.

However, in practical environment, not only delays critically influences the performance of system,

but also the environmental disturbances that bring inaccuracy to feedback data will severely impair the

consensus of the system. In the following part of this paper, we will further discuss about the situation

where disturbances exist. In this case, the control protocol (6) should be further revised as

ui(k) =

{

0, tk ≤ t < tk + µ(k)

− 1∑
j∈Ni

aij

∑

j∈Ni
aij(αi(xi(k) + δi(k)) − βi(xj(k − τ(k)) + δj(k − τ(k)))), tk + µ(k) ≤ t < tk+1

(23)
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where δi(k) and δj(k − τ(k)) denote bounded state disturbances of agent i and j respectively. Due to

the uncertainty of disturbance, δj(k − τ(k)) can also be presented as δj(k). Based on the protocol, the

dynamics of the multiagent system can be presented as

X(k + 1) = PX(k)−QTα(k)X(k) +QTβ(k)X(k − τ(k))−QTδ(k)Ξ(k) (24)

where Tδ = Tα(k) − Tβ(k) and Ξ(k) = [δ1(k), δ2(k), · · · , δn(k)]
T . The error dynamics of the system

should be revised as

E(k + 1) =pE(k)− qα(T (k)− µ(k))E(k)

+ qβ(T (k)− µ(k))CE(k − τ)− q(T (k)− µ(k))(αIn−1 − βC)Λ(k)
(25)

where Λ(k) = [δ1(k)− δn(k), · · · , δn−1(k)− δn(k)]
T .

Due to the existence of state disturbances, the discrete error dynamics of the MAS is presented as

Equation (25). It can be found that Lemma 1 can no longer be directly used to prove the consensus

of the system. In fact, the consensus of multiagent system defined in Definition 1 can no longer be

obtained. In this case, the concept of bounded consensus proposed in Definition 2 is used to describe the

performance of the control protocol under environmental disturbances. In order to prove the bounded

consensus of the system, the Halanay inequality in Lemma 1 should be extended into a more general

case with consideration of disturbances. As a result, Lemma 2 is proposed as follows. Comparing with

Lemma 1, a positive value c is added in the Halanay inequality to make the obtained result capable of

handling the bounded consensus problem.

Lemma 2. Let 0 < a(n) ≤ Ma < 1, 0 < b(n) ≤ 1, c ≥ 0 and let {zn}n≥−r be a sequence of real

numbers satisfying the inequality

∆zn ≤ −a(n)zn + b(n)max{zn, zn−1, ..., zn−r}+ c, zn ≥ 0, n ≥ 0. (26)

If there exist two constant Γ ∈ Z+ and 0 < λl < 1 such that

(k+1)Γ−1
∏

i=kΓ

(1− a(i) + κb(i)) ≤ λl, k ∈ N, (27)

where κ = 1
(1−Ma)r

, then

zn+1 ≤ (1 + κ)Γ−1 max{z0, z−1, ..., z−r}λ
[n+1

Γ
]

l +Ψ, (28)

where

Ψ = max

{

ρc
(λl/ǫ

Γ − 1)ǫs − λl + 1

(1− λl)(1− ǫ)

}

, s ∈ {Γ,Γ + 1, · · · , 2Γ− 1},

where ǫ = 1− a + κb with a = min{a(i)}, b = max{b(i)}, i ∈ {1, 2, · · · , n}, and ρ > 1.

Proof. Define an auxiliary system as below

−a(n)yn + b(n)max{yn, yn−1, ..., yn−r}+ c ≤ ∆yn

≤ −a(n)yn + b(n)max{yn, yn−1, ..., yn−r}+ ρc, ρ > 1, yn ≥ 0.
(29)
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We can assume that there is a n1 ≥ 0 such that zs = ys, s ∈ {n1, n1 − 1, ..., n1 − r}, then

zn ≤ yn, n ≥ n1.

Define another auxiliary system

∆pn = −a(n)pn, pn ≥ 0.

Let pn1
= yn1

, we have

yn ≥ pn =
n−1
∏

i=n1

(1− a(i))pn1
=

n−1
∏

i=n1

(1− a(i))yn1
, n > n1.

As a result,

max{yn, yn−1, ..., yn−r} ≤ yn
1

∏n−1
i=n−r(1− a(i))

≤ yn
1

(1−Ma)r
. (30)

It follows from (29) and (30) that

yn+1 − ρc ≤ (1− a(n) + κb(n))yn

By iterative computation, we have

yn+1 ≤
n
∏

i=0

(1− a(i) + κb(i))y0 + ψ (31)

where

ψ = ρc[1 +

n
∑

j=1

n
∏

i=j

(1− a(i) + κb(i))] > 0.

Using (27) and noting 1− a(i) + κb(i) ≤ 1 + κ, we obtain that

n
∏

i=0

(1− a(i) + κb(i))y0 ≤ (1 + κ)Γ−1max{y0, y−1, ..., y−r}λ
[n+1

Γ
]

0 . (32)

Define variables ψ0 and ω as

ψ0 =
n

∑

j=εΓ+1

n
∏

i=j

(1− a(i) + κb(i))

ω =

{

∏n

i=(ε+1)Γ(1− a(i) + κb(i)), n ≥ (ε+ 1)Γ

1, n = (ε+ 1)Γ− 1

where ε is a positive integer satisfying

(ε+ 1)Γ− 1 ≤ n < (ε+ 2)Γ− 1 (33)
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Then ψ can be presented as

ψ = ρc[1 + (

εΓ
∑

j=1

(ε+1)Γ−1
∏

i=j

(1− a(i) + κb(i)))ω + ψ0]. (34)

Since

1− a(i) + κb(i) ≤ 1− a+ κb,

ψ0 and ω have the following relations

ψ0 ≤

n
∑

j=εΓ+1

n
∏

i=j

(1− a + κb) =
(1− a+ κb)(1 − (1− a+ κb)n−εΓ)

a− κb
(35)

ω ≤

n
∏

i=(ε+1)Γ

(1− a+ κb) = (1− a+ κb)n−(ε+1)Γ+1 (36)

Substitute (35) and (36) into (34), we obtain

ψ ≤ρc[1 +
(1− a+ κb)(1 − (1− a+ κb)n−εΓ)

a− κb

+ [(1− a+ κb)Γ−1 + (1− a+ κb)Γ−2 + · · ·+ 1](
λ0

1− λ0
)(1− a+ κb)n−(ε+1)Γ+1]

≤ρc
(λ0/ǫ

Γ − 1)ǫn−εΓ+1 − λ0 + 1

(1− λ0)(1− ǫ)
.

(37)

This together with (33), we have

ψ ≤ Ψ. (38)

It follows from (31), (32) and (38) that

yn+1 ≤ (1 + κ)Γ−1max{y0, y−1, ..., y−r}λ
[n+1

Γ
]

0 +Ψ

= (1 + κ)Γ−1max{x0, x−1, ..., x−r}λ
[n+1

Γ
]

0 +Ψ

Since zn ≤ yn for n > n1,

zn+1 ≤ (1 + κ)Γ−1max{z0, z−1, ..., z−r}λ
[n+1

Γ
]

0 +Ψ, n ≥ 0.

Based on Lemma 2, Theorem 2 can be proposed as follows.

Theorem 2. For multiagent system consist of agents with dynamics as Equation (1), with the control

protocol presented as Equation (23) and conditions assumed in Theorem 1, the bounded consensus of

the system is guaranteed.
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Proof. According to Equation (25), similar as the proof in Theorem 1, we have

‖E(k + 1)‖ − ‖E(k)‖ ≤ −(1− λα)‖E(k)‖+ λβλC‖E(k − τ)‖+ λδλC‖‖Λ(k)‖ (39)

where λδ = λα+λβ. It is obviously that above equation can satisfy the condition of Lemma2 with Γ = 1.

Since the environmental disturbances concerned are bounded, the value of ω = supk→∞{λδλC‖Λ(k)‖}

is also bounded. As a consequence, the boundedness of the multiagent system is guaranteed. And the

bound of consensus error can be calculated as

C = (
ρω

1− d0
)2 (40)

Theorem 2 is proved.

4. Simulations

In this section, examples are given to illustrate the effectiveness of results obtained in this paper. A

multiagent system consists of five identical agents is concerned with a = 1.1, b = 2. The communication

graph among agents can be depicted as Figure 1. In both examples, we assume that T (k) = 0.5 for

simplicity. The receiving delay is supposed to be 0.2 ≤ µ(k) ≤ 0.3 and the sending delay τ(k) is

randomly chosen from {1, 2}, that is, r = 2. With the choice of control parameters α = 0.5 and β = 0.1,

it can be verified that all conditions in Theorem 1 can be satisfied.

Figure 1. Communication graph of multiagent system.

The simulation result is shown in Figure 2 without consideration of disturbances, it is obvious that

as time goes to infinity, the consensus error of the system converges to zero. In Figure 3, it is assumed

that there are environmental disturbances δ(k) in all feedback links and the disturbances are chosen from

[−0.5 0.5]. From the simulation results, it can be concluded that the consensus error of the multiagent

system is still bounded.

In the simulations, we assume the communication graph is connected and undirected. In fact, from

the derivation of the theorems, it is known that as long as the strong connectivity of graph is guaranteed,

similar results can also be reached with directed communication links according to the same process of

proof in this paper. In addition, from Lemma 1 and Lemma 2, it is known that conditions proposed in

Theorem 1 are relative conservative. In the future studies, more strict conditions will be derived with

consideration of more complex agent dynamics and switching communication graphs.
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Figure 2. Consensus error of multiagent system without disturbances.
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Figure 3. Consensus error of multiagent system with disturbances.
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5. Conclusions

In this paper, consensus problems of discrete multiagent systems were discussed. The main

contribution of this paper was the introduction of Halanay inequality in proving the consensus of discrete

multiagent systems. Dispensing with discussions of symmetry of communication graph and row sum

of system matrix, consensus of the discrete multiagent systems with various delays was proved. In

addition, with an extension of the Halanay inequality, it was proved that bounded consensus of the whole

system could still be reached when environmental disturbances were concerned. At last, feasibility and

effectiveness of the proposed control protocol were positively demonstrated through simulations.
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