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Abstract: Topological measures are crucial to describe, classify and understand complex 

networks. Lots of measures are proposed to characterize specific features of specific 

networks, but the relationships among these measures remain unclear. Taking into account 

that pulling networks from different domains together for statistical analysis might provide 

incorrect conclusions, we conduct our investigation with data observed from the same 

network in the form of simultaneously measured time series. We synthesize a transfer 

entropy-based framework to quantify the relationships among topological measures, and 

then to provide a holistic scenario of these measures by inferring a drive-response network. 

Techniques from Symbolic Transfer Entropy, Effective Transfer Entropy, and Partial 

Transfer Entropy are synthesized to deal with challenges such as time series being non-

stationary, finite sample effects and indirect effects. We resort to kernel density estimation 

to assess significance of the results based on surrogate data. The framework is applied to 

study 20 measures across 2779 records in the Technology Exchange Network, and the results 

are consistent with some existing knowledge. With the drive-response network, we evaluate 

the influence of each measure by calculating its strength, and cluster them into three classes, 

i.e., driving measures, responding measures and standalone measures, according to the 

network communities.  

Keywords: network inference; topological measures; transfer entropy 
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1. Introduction 

1.1. Problem Statement 

The last decade has witnessed a flourishing progress of network science in many interdisciplinary 

fields [1–3]. It is proved both theoretical and practically that topological measures are essential to complex 

network investigations, including representation, characterization, classification and modeling [4–8]. Over 

the years, scientists have constantly introduced new measures in order to characterize specific features 

of specific networks [9–13]. Each measure alone is of practical importance and can capture some 

meaningful properties of the network under study, but when so many measures are put together we will 

find that they are obviously not “Mutually Exclusive and Collectively Exhaustive”, namely, some 

measures fully or partly capture the same information provided by others while there are still properties 

that cannot be captured by any of the existing measures. Having an overwhelming number of measures 

complicates attempts to determine a definite measure-set that would form the basis for analyzing any 

network topology [14,15]. With the increasing popularity of network analyses, the question which 

topological measures offer complementary or redundant information has become more important [13]. 

Although it might be impossible to develop a “Mutually Exclusive and Collectively Exhaustive” version 

of measure-set at present, there is no doubt that efforts to reveal the relationships among these measures 

could give valuable guidance for a more effective selection and utilization of the measures for complex 

network investigations. 

1.2. Related Works 

The relationship of topological measures has been a research topic for several years [4,14–28], and 

there mainly exist two paradigms, i.e., analytical modeling and data-driven modeling. For a few 

topological measures of model networks, i.e., networks generated with certain algorithm, some 

analytical interrelationships are found. For example, the clustering coefficient C  of generalized random 

graphs are functions of the first two moments of the degree distribution [16], and for the small world 

model, the clustering coefficient C  could be related to the mean degree and rewiring probability [17]. 

The relationship between the average path length and its size in a star-shaped network can be derived 

as: 2 2starL N= −  [18], while for a Barabási-Albert scale-free network, the relationship between them 

is: ln ln lnL N N  [19]. The advantage of the analytical modeling is that the resulting relationships are 

of rigorous mathematical proofs, but this paradigm imposes limitations in that only a small part of the 

relationships can be derived analytically, and it is not sure whether these conclusions still hold true for 

real-life networks. If enough is known about the measures and the way in which they interact, a fruitful 

approach is to construct mechanism models and compare such models to experimental data. If less is 

known, a data-driven approach is often needed where their interactions are estimated from data [20]. In 

other words, when the intrinsic mechanism of real-life network is not clear, the situation we will be 

concerned with here, the data-driven paradigm might be more suitable. Some of the relevant papers 

following the data-driven paradigm are reviewed as follows. 

Jamakovic et al. [14] collected data from 20 real-life networks from technological, social, biological 

and linguistic systems, and calculated the correlation coefficients between 14 topological measures. It 

was observed that subsets of measures were highly correlated, and Principal Component Analysis (PCA) 
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showed that only three dimensions were enough to retain most of the original variability in the data, 

capturing more than 99% of the total data set variance. Li et al. [21] investigated the linear correlation 

coefficients between nine widely studied topological measures in three classical complex network 

models, namely, Erdős-Rényi random graphs, Barabási-Albert graphs, and Watts-Strogatz small-world 

graphs. They drew a similar conclusion, namely that the measure correlation pattern illustrated the strong 

correlations and interdependences between measures, and argued that the both these three types of 

networks could be characterized by a small set of three or four measures instead of by the nine measures 

studied. Costa et al. [4] summarized dozens of topological measures in their review paper and conducted 

correlations analysis between some of the most traditional measures for Barabási-Albert (BA) network,  

Erdős-Rényi (ER), and Geographical Networks (GN). They found that particularly high absolute values 

of correlations had been obtained for the BA model, with low absolute values observed for the ER and 

GN cases. Further, they found that the correlations obtained for specific network models not necessarily 

agreed with that obtained when the three models were considered together. Roy et al. [22] studied  

11 measures across 32 data sets in biological networks, and created a heat map based on paired measures 

correlations. They concluded that the correlations were not very strong overall. Filkov et al. [23] also 

used a heat map and multiple measure correlations to compare networks of various topologies. They 

correlated 15 measures across 113 real data sets which represented systems from social, technical, and 

biological domains. They also found that the 15 measures were not coupled strongly. Garcia-Robledo et al. 

presented an experimental study on the correlation between several topological measures of the Internet. 

By drawing bar plot of the average correlation for each measure, they recognized the average neighbor 

connectivity as the most correlated measure; with the correlation heat map, they concluded that distance 

measures were highly correlated [24]. Bounova and de Weck proposed an overview of network topology 

measures and a computational approach to analyze graph topology via multiple-metric analysis on graph 

ensembles, and they found that density-related measures and graph distance-based measures were 

orthogonal to each other [25]. 

More recently, Li et al. explored the linear correlation between the centrality measures using 

numerical simulations in both Erdős-Rényi networks and scale-free networks as well as in real-world 

networks. Their results indicated that strong linear correlations did exist between centrality measures in 

both ER and SF networks, and that network size had little influence on the correlations [26]. Sun and 

Wandelt performed regression analysis in order to detect the functional dependencies among the network 

measures, and used the coefficient of determination to explain how well the measures depended on each 

other. They built a graph for the network measures: each measure was a node and a link existed if there 

was a functional dependency between two measures. By setting a threshold, they got a functional 

network of the measures with six connected components [27]. Lin and Ban focused on the evolution of 

the US airline system from a complex network perspective. By plotting scatter diagrams and calculating 

linear correlations, they found that there was a high correlation between “strength” and “degree”, while 

“betweenness” did not always keep consistent with “degree” [28]. 

The abovementioned researches all follow the data-driven paradigm, and provide convincing 

arguments in favor of using the statistical approach to correlate the measures. The correlations between 

topological measures strongly depend on the graph under study [14], and results from these studies differ 

greatly. Some of them argue that most of the measures are strongly correlated and thus can be redundant, 

while others argue that these correlations are not strong overall. Even the resulting correlation patterns 
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of the same measures in different networks are not consistent. Just as Bounova and de Weck pointed out 

that pulling networks from different domains together for statistical analysis might provide incorrect 

conclusions, because there often exists considerable diversity among graphs that share any given 

topology measures, patterns vary depending on the underlying graph construction model, and many real 

data sets are not actual statistical ensembles [25].  

1.3. Primary Contribution of This Work 

To address the issue mentioned above, we resort to two research strategies: 

(1) On the one hand, our investigation will be based on data observed from the same network, 

instead of data pieced together from different networks in several fields. More specially, we 

will record the trajectories of the measures of the same system, and try to infer their 

relationships from simultaneously measured time series of these measures. 

(2) On the other hand, our investigation will adopt another data-driven method, i.e., transfer 

entropy. Since our data is in the form of time series, transfer entropy, instead of correlation 

coefficients or other model-based methods, might be a better choice for our purpose. There 

are at least two reasons. For one thing, the correlation measure is designed for static data 

analysis and when applying to time series data, all dynamical properties of the series are 

discarded [29]. For another, correlations, linear or nonlinear, only indicate the extent to which 

two variables behave similarly. They cannot establish relationships of influence, since the 

interactions between the measures are not necessarily symmetric. Neither can they indicate if 

two measures are similar not because they interact with each other, but because they are both 

driven by a third [30]. We need a novel tool not only to detect synchronized states, but also 

to identify drive-response relationships. These issues can be addressed by measures of 

information transfer. One such measure is Schreiber’s Transfer Entropy [31], which is with 

minimum of the assumption of the dynamic of the system and the nature of their coupling. 

This paper will follow the data-driven paradigm and employ transfer entropy as a quantitative 

description of interactions among topological measures. Transfer entropy has been proposed to distinguish 

effectively driving and responding elements and to detect asymmetry in the interaction of subsystems. It 

is it widely applicable because it is model-free and sensitive to nonlinear signal properties [32]. Thus the 

transfer entropy is able to measure the influences that one measure can exert over another. On the basis 

of these pair-wise relationships, we will construct a so-called drive-response network with the measures 

as its nodes and the pair-wise relationships as its edges. The resulting network will enable us to gain a 

deeper insight into patterns and implications of relationships among network topological measures. In 

this paper, we mainly consider the following fundamental questions: 

(1) Whether or not there exist drive-response relationships between topological measures? For 

example, will the network diameter influence the average path length? If that is the case, how 

to measure the strength of this relationship? 

(2) What does the overall picture look like when measures are put together? What is the structure 

of the measure-set? Can the measures be grouped into different communities?  

(3) Are all the measures equally important? If not so, how to identify the pivotal ones? 
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In order to conduct our investigation, high-quality data is necessary. It is usually difficult to obtain 

the evolutional record of complex network [33]. Thanks to the advanced information systems in Beijing 

Technology Market Management Office (or BTMMO, for short), we are able to collect a complete data 

set which describe the evolution of the Technology Exchange Network day by day. Our proposed method 

will take the Technology Exchange Network as an empirical application, which allowing us to study 

several measures across as many as 2779 datasets. 

The remainder of this paper is organized as follows: the next section will synthesize a transfer 

entropy-based framework to infer and analyze the drive-response network. The emphasis is on how to 

quantify the relationships among time series which are continuous, non-stationary, and of finite sample 

effect and indirect effect. Section 3 will apply the proposed framework to an empirical investigation on 

the Technology Exchange Network. Some concluding remarks are made in Section 4. 

2. Methodology 

2.1. Main Principle  

The proposed method is to mine the overall pattern of the relationships among network topological 

measures from their time series, which is shown in Figure 1.  

Figure 1. Entropy-based framework to infer drive-response network of topological measures 

from their time series. 

 
The relationships here refer in particular to drive-response relationships. A convenient way to 

represent drive-response relations between two variables is to connect these two with a directed edge, 
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and correspondingly the overall relation pattern can be illustrated in the form of a network. The tool for 

network inference is the transfer entropy, which is proposed by several researchers for revealing 

networks from dynamics [34,35]. 

It is worth noting that what is to be constructed here is the network of measures, which should not be 

confused with the original network of units. As shown in the upper half of Figure 1, we will trace the 

original network at successive time points, acquiring time series for each topological measure. And we 

will quantify the relationships between measures based on these time series with transfer entropy, and 

then construct a drive-response network which stands for the relation pattern among these topological 

measures, as shown in the lower half of Figure 1. 

The process of inferring the drive-response network is as follows: The network can be presented by 

a set V of nodes and a set E of edges, connected together as a directed graph denoted G = (V, E). The 

nodes here are the measures, and the edges are the drive-response couplings between any two measures. 

In our study, the couplings are detected by transfer entropy. Namely, connectivity is based on the 

estimation of the influence one measure v exerts on another measure u. If there exists significant 

coupling, there will be a directed edge from v to u. The resulting network is also a weighted one, with 

the transfer entropy value as the weight of each edge.  

Once the drive-response network is constructed, we may gain in-depth understanding of the 

relationships among the measures by analyzing the network. For example, we can calculate the prestige 

of each node to reveal which measures are more influential, and we can cluster the measures into 

different groups by detecting the communities in the network. 

The main steps of the proposed method are as follows: 

Step 1: Time Series Observation on Topological Measures. Record the graph-level topological 

trajectories in form of simultaneously measured time series 

Step 2: Drive-response Network Inference. Calculate the transfer entropy between each pair of 

measures based on their time series, assess the statistical significance and construct the 

drive-response network. 

Step 3: Drive-response Network Analysis. Calculate the prestige of each node and detect 

community to gain a deep understanding. 

The process will be explained step by step in more details in the following section. 

2.2. Main Steps  

2.2.1. Time Series Observation on Topological Measures 

In our study, the data is collected from observation of the same system. We will track the topological 

measures of an evolving network at successive points in time spaced at uniform time intervals, resulting 

in sequences of observations on topological measures which are ordered in time. The topological 

measures to be investigated in our study are discussed as follows. 

Topological measures can be divided in two groups, i.e., measures at global network level and 

measures at local node level [27,36], corresponding to the measurable element. Local topological 

measures characterize individual network components while global measures describe the whole 

network [37]. Since the observed object in our study is the network as a whole, only those graph-level 
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measures will be selected. In other words, node-level such as the degree of a certain node will not be 

taken into account. 

Due to the fact that the number of proposed measures is overwhelming and new measures are 

introduced every day, there is no consensus on a definitive set of measures that provides a “complete” 

characterization of real-world complex networks [24] and no classifications of these measures are 

universally accepted. On the basis of several important and influential works such as [4,9,25], we will 

classify these measures into four categories, i.e., Category I, Distance Relevant Measures; Category II, 

Centralization Measures; Category III, Connection Measures; Category IV, Entropy and other 

Complexity Measures. We will select a few measures from each of the four categories and conduct our 

investigation on these selected measures. 

Measures selected from Category I: M01, Average Path Length; M02, Diameter; M03, Eccentricity; 

M04, Integration; M05, Variation. All of them are based on distance. For example, the average path 

length is defined as the average number of steps along the shortest paths for all possible pairs of network 

nodes. Diameter is the greatest distance between any pair of vertices. The eccentricity in the local node 

level is defined as the greatest distance between v and any other vertex, and eccentricity in the global 

network level is the sum of all the vertices eccentricities. Graph integration is based on vertex centrality 

while variation is based on vertex distance deviation. 

Measures selected from Category II: M06, Centralization; M07, Degree Centralization; M08, 

Closeness Centralization; M09, Betweenness Centralization; M10, Eigenvector Centralization. In local 

node level, centrality is to quantify the importance of a node. Historically first and conceptually simplest 

is degree centrality, which is defined as the number of links incident upon a node. The closeness of a 

node is defined as the inverse of the farness, which is the sum of its distances to all other nodes. 

Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path 

between two other nodes. The corresponding concept of centrality at the global network level is 

centralization. In our study, we will employ Freeman’s formula [38] to calculate graph-level 

centralization scores based on node-level centrality. 

Measures selected from Category III: M11, Vertex Connectivity; M12, Edge Connectivity; M13, 

Connectedness; M14, Global Clustering Coefficient; M15, Assortativity Coefficient. These measures 

refer to connection. For example, the vertex connectivity is defined as the minimum number of nodes 

whose deletion from a network disconnects it. Similarly, the edge connectivity is defined as the minimum 

number of edges whose deletion from a network disconnects it. Connectedness is defined as the ratio of 

the number of edges and the number of possible edges. It measures how close the network is to complete. 

Global Clustering coefficient is to quantify the overall probability for the network to have adjacent nodes 

interconnected. It is also called second order extended connectivity, which can be calculated by counting 

the edges between the second neighbors of vertex, and again comparing that count to the number of 

edges in the complete graph that could be formed by all second neighbors. Assortativity is defined as the 

Pearson correlation coefficient of the degrees at both ends of the edges. This measure reveals whether 

highly connected nodes tend to be connected with other high degree nodes. 

Measures selected from Category IV: M16, Radial Centric Information Index; M17, Compactness 

Measure Based on Distance Degrees; M18, Complexity Index B. All these measures refer to entropy, 

information and other complexity in the network. Radial Centric Information Index and Compactness 

Measure Based on Distance Degrees are both information-theoretic measures to determine the structural 
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information content of a network, and both of them are based on Shannon’s entropy. Complexity Index 

B is a more recently developed measure due to Bonchev [39]. The complexity index bv is the ratio of the 

vertex degree and its distance degree. The sum over all bv indices is the convenient measure of network 

complexity, i.e., the complexity index B.  

A systematic discussion about the topological measures in complex networks is out of the scope of 

this paper. Detailed description of these measures can be found in [4,18,40,41]. 

Table 1. Commonly used topological measures for undirected and un-weighted graph 
( ) ( )( ),G N G E G= . ( )N G  and ( )E G  are called vertex and edge set respectively  

ID Name Definition Ref. 

I. Distance Relevant Measures 

M01 
Average Path 
Length 

( ) ( )
( ),

2
: ,

1 u v N G

L d u v
N N ∈

=
−  , here N  denotes the number of the 

nodes, and ( ),d u v  denotes the steps along the shortest path between 

nodes u  and v  

[18] 

M02 Diameter ( )
,

: max ,
u v

D d u v=  [18] 

M03 Eccentricity 
( ) ( ) ( )

( )
: max ,u N G

v N G

e G d u v∈
∈

=  , here, ( ),d u v  stands for the distances 

between ( ),u v N G∈  
[40] 

M04 Integration 
( ) ( )

( )

1
:

2 v N G

D G D v
∈

=  , here, ( )D v  is the vertex centrality which is 

defined as ( ) ( )
( )

: ,
v N G

D v d v u
∈

=   
[40] 

M05 Variation 
( ) ( ) ( )*var : maxu N GG D v∈= Δ , here, ( )*D vΔ  is the distance vertex 

deviation ( ) ( ) ( )* *:D v D v D GΔ = −  
[40] 

II. Centralization Measures 

M06 Centralization 
( )

( )

* *:
v N G

G D v
∈

Δ = Δ , here ( )*D vΔ  is the distance vertex deviation 

which is defined as ( ) ( ) ( )* *:D v D v D GΔ = −  
[40] 

M07 
Degree 
Centralization * 

( ) ( ) ( ) ( )( )
( )

: maxD D Du N G
v N G

C G C u C v∈
∈

= − , here ( )DC v  is the degree 

centrality of vertex v , ( ) :
1

v
D

k
C v

N
=

−
, and vk  is the vertex degree 

[41] 

M08 
Closeness 
Centralization * 

( ) ( ) ( ) ( )( )
( )

: maxC C Cu N G
v N G

C G C u C v∈
∈

= − , here ( )CC v  is the 

closeness centrality of vertex v , ( ) ( )
( )

1

1
: ,

1C
w N G

C v d w v
N

−

∈

 
=  −  

  
[41] 
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Table 1. Cont. 

M09 
Betweenness 
Centralization * 

( ) ( ) ( ) ( )( )
( )

: maxB B Bu N G
v N G

C G C u C v∈
∈

= − , here ( )BC v  is the 

closeness centrality of vertex v , which is defined as

( ) ( )( )
( )

( )

,

, ,

2
:

1 2
u w

B
u w N G u w

g v
C v

n n g∈

=
− −  , and ,u wg  is the number of 

paths connecting u  and w , ( ),u wg v  is the number of paths that v  is 

on 

[41] 

M10 
Eigenvector 
Centralization * 

( ) ( ) ( ) ( )( )
( )

: maxE E Eu N G
v N G

C G C u C v∈
∈

= − , here ( )EC v  is the  

centrality of vertex v , which can be calculated by the formula 

( ) ( )
( )

,

1
E v u E

u N G

C v a C u
λ ∈

=  , and the vector of the centralities of 

vertices is  the eigenvector of adjacency matrix ( )ijA a=   

[41] 

III. Connection Measures 

M11 
Vertex 
Connectivity 

( ) ( ) ( ){ }: min , ,G u v unordered pair u v N Gκ κ= ∈ , here, ( ),u vκ  is 

defined as the least number of vertices, chosen from ( ) { },N G u v− , 

whose deletion from G  would destroy every path between u  and v  

[41] 

M12 
Edge 
Connectivity 

( ) ( ) ( ){ }: min , ,G u v unordered pair u v N Gλ λ= ∈ , here, ( ),u vλ  is 

the least number of edges whose deletion from G  would destroy 
every path between u  and v  

[41] 

M13 Connectedness 

( ) ( )
2

:N

A G
E G

N
= , here ( )A G  is the index of total adjacency

( )
1 1

1
:

2

N N

ij
i j

A G a
= =

=   and ija  is the entry lies in row i  and column j  in 

the adjacent matrix ( )ijA a=  

[40] 

M14 
Global 
Clustering 
Coefficient 

( ) ( )

( ) ( )( )( )

21
:

* 1

N v

v N G N v N v

E
C G

N V V∈

=
−

 , where, ( ) ( )( ),N v N vV E  is the sub-

graph of G  that contains all neighborhood vertices and their edges 

[18] 

M15 
Assortativity 
Coefficient 

( )

( ) ( )

2

2
2 2

1 1 1
2

1 1 1 1
2 2

i j ij i j ijj i j i

i j ij i j ijj i j i

k k a k k a
M M

r

k k a k k a
M M

> >

> >

 − +  =
 + − +  

 

 
, here, M  is 

the total number of edges, and ija  is the entry lies in row i  and column 

j  in the adjacent matrix ( )ijA a=  

[4] 
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Table 1. Cont. 

IV. Entropy and Other Complexity Measures 

M16 
Radial Centric 
Information 
Index 

( ),
1

: log
e ek
i i

C R
i

N N
I G

N N=

 
 =
 
 

 , here, e
iN  is the number of vertices 

having the same eccentricity 

[40] 

M17 

Compactness 
Measure Based 
on Distance 
Degrees 

( ) ( ), : 2 log 2 log
DC k k

k

I G W W q qδ = −  

here, W  is the Wiener Index ( )
( ),

1
,

2 u v N G

W d u v
∈

=   and kq  is the sum 

of the distance degrees of all vertices located at a topological distance 
of k  from the center of the graph 

[40] 

M18 
Complexity 
Index B 

( )
( ) ( )( )

: v
v

v N G v N G

k
B G b

vμ∈ ∈

= =  . Here, ib  is the ratio of the vertex 

degree vk  and its distance degree ( ) ( )
( )

: ,
u N G

v d v uμ
∈

=    
[40] 

*In our study some of the centralization measures are normalized by dividing by the maximum theoretical score for a 

graph with the same number of vertices. For degree, closeness and betweenness the most centralized structure is an 

undirected star. For eigenvector centrality the most centralized structure is the graph with a single edge. 

Besides the 18 topological measures mentioned above, we also track two performance measures, i.e. 

“P01: Technological Volume” and “P02: Contract Turnover”, which will be described in Section 2.3.2. 

2.2.2. Drive-response Network Inference 

The drive-response network to be constructed can be denoted as ( ),G V E= , here, { }1 2, , , nV V V V=   

is the set of vertices/nodes, i.e., the measures, and E  is the set of edges, i.e., pair-wise relations between 

any two measures. The adjacency matrix A  of the drive-response network is defined as follows: 

( )
( )

* , ,

0, ,

i jv v i j

ij

i j

EPSTE v v E
a

v v E

→
 ∈= 

∉
 (1) 

Here *

i jv vEPSTE →  is the effective partial symbolic transfer entropy from measure iv  to measure jv  that 

is of statistical significance. The calculation of *

i jv vEPSTE →  is the most complicated step in the proposed 

method, and we will depict it in details as follows. 
The Transfer Entropy from a time series Y  to a times series X  as the average information contained 

in the source Y  about the next state of the destination X  that was not already contained in the 

destination’s past [31,35]: 

( ) ( )
( )

1

1
1

, , 1

| ,
, , log

|
t t t

t t t
Y X t t t

x x y t t

p x x y
TE p x x y

p x x
+

+
→ +

+

=   (2) 

Here, 1t +  indicates a given point in time, t  indicates the previous point, tx  is element t  of the time 

series of variable X  and ty  is element t  of the time series of variable Y . ( ),p A B  and ( )|p A B  are 
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the joint and conditional distribution respectively, and ( ) ( ) ( )| ,p A B p A B p B= . In order to calculate 

( )1,t tp x x+  we have to count how many times a particular combination of symbols, ( ),a b  appears in the 

joint columns 1tX +  and tX , then divide by the total number of occurrences of all possible combinations. 

For example, if there are two possible combinations, ( ),a b  and ( )' ',a b  appear 21 and seven times, 

respectively, then ( ) ( ), 21 21 7 0.75p a b = + =  and ( ) ( )' ', 7 21 7 0.25p a b = + = . ( )1, ,t t tp x x y+  can be 

calculated in the same way. 

Though the analytic form of transfer entropy is relatively simple, but its application to investigation 

on time series of topological measures is not so easy. There are five major practical challenges:  

(1) Time series being non-stationary: The probabilities are estimated from observations of a 

single instance over a long time series. It is very important therefore that the time series is 

statistically stationary over the period of interest, which can be a practical problem with 

transfer entropy calculations [42]. In most cases the time series of topological measures are 

non-stationary. 

(2) Time series being continuous: It is problematic to calculate the transfer entropy on 

continuous-valued time series such as we have here. Kaiser and Schreiber developed a 

criticism and presented many caveats to the extension of the transfer entropy to continuous 

variables [43]. Here we will resort to another solution. 

(3) Finite sample effects: A finite time series will result in fewer examples of each combination 

of states from which to calculate the conditional probabilities. When used to analyze finite 

experimental time series data, there is a strong risk of overestimating the influence, a problem 

that is known from the literatures [44,45].  

(4) Indirect effects: When evaluating the influence between two time series from a multivariate 

data set, the case in our study, it is necessary to take the effects of the remaining variables 

into account, and distinguish between direct and indirect effects [46]. 

(5) Statistical significance: A small value of transfer entropy suggests no relation while a large 

value does. Two irrelevant series can have non-zero transfer entropy due to finite sample size 

of the time series [47], thus it is not a good choice to simply select a threshold value to judge 

whether there exists drive-response relationship between two measures. 

In the last few years, several improved transfer entropy algorithms have been proposed to deal with 

some of these challenges. For example, Symbolic Transfer Entropy [48] is a solution for (1) and (2), 

Effective Transfer Entropy [44] is for (3), while Partial Transfer Entropy [49] is for (4). In order to deal 

with these practical challenges all at once, techniques from Symbolic Transfer Entropy, Effective 

Transfer Entropy, and Partial Transfer Entropy should be synthesized, resulting an effective, partial, 

symbolic version of Transfer Entropy as follows: 
Let us consider 1,{ }tv , 2,{ }tv , 1, 2, ,t k=   as the denotations for the time series of measures 1v  and 2v  

respectively. The embedding parameters in order to form the reconstructed vector of the time series of 1v  

are the embedding dimension 1m and the time delay 1τ . The reconstructed vector of 1v  is defined as: 

( )
1 1 1

'

1, 1, 1, 1, ( 1), , ,t t t t mv v vτ τ− − −= v  (3) 
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where '1, ,t k=   and { }'
1 1 2 2max ( 1) ,( 1)k k m mτ τ= − − − .  

The reconstructed vector for 2v  is defined accordingly, with parameters 2m  and 2τ . For each vector 1,tv , 

the ranks of its components assign a rank-point 
11, 1, 2, ,ˆ , , ,t t t m tr r r =  v  where { }, 11,2, ,j tr m∈   for 

11, ,j m=  , and 2,ˆ tv  is defined accordingly.  

The symbolic transfer entropy is defined as [48]: 

( ) ( )
( )2 1

1, 1 1, 2,

1, 1 1, 2,

1, 1 1,

ˆ ˆ ˆ| ,
ˆ ˆ ˆ, , log

ˆ ˆ|
t t t

v v t t t

t t

p
STE p

p
+

→ +
+

=
v v v

v v v
v v

 (4) 

Here, symbolic transfer entropy uses a convenient rank transform to find an estimate of the transfer 

entropy on continuous data without the need for kernel density estimation. Since slow drifts do not have 

a direct effect on the ranks, it still works well for non-stationary time series.  

The partial symbolic transfer entropy is defined conditioning on the set of the remaining time series 

{ }3 4, , , Nz v v v=  . 

( ) ( )
( )2 1

1, 1 1, 2,

1, 1 1, 2,

1, 1 1,

ˆ ˆ ˆ ˆ| , ,
ˆ ˆ ˆ ˆ, , , log

ˆ ˆ ˆ| ,
t t t t

v v t t t t

t t t

p
PSTE p

p
+

→ +
+

=
v v v z

v v v z
v v z

 (5) 

where the rank vector t̂z  is defined as the concatenation of the rank vectors for each of the embedding 

vectors of the time series in z . The partial symbolic transfer entropy is the pure or direct information flow 

between them, information transmitted indirectly by the environment (the other measures) is eliminated. 

Finally, we will define effective partial symbolic transfer entropy as follows: 

2 1 2 1 2 1

1 shuffled
v v v v v vEPSTE PSTE PSTE

M→ → →= −   (6) 

where M  is the times to shuffle the series (we set 200M =  in our study) of 2v̂  and  

( ) ( )
( )2 1

1, 1 1, 2,

1, 1 1, 2,

1, 1 1,

ˆ ˆ ˆ ˆ| , ,
ˆ ˆ ˆ ˆ, , , log

ˆ ˆ ˆ| ,

shuffled
t t t tshuffled shuffled

v v t t t t

t t t

p
PSTE p

p

+
→ +

+

=
v v v z

v v v z
v v z

 (7) 

Here, the elements of 2v̂  is randomly shuffled, which implies that all statistical dependencies between 

the two series have been destroyed. 
2 1

shuffled
v vPSTE →  consequently converges to zero with increasing sample 

size and any nonzero value of 
2 1

shuffled
v vPSTE →  is due to small sample effects representing the bias in the 

standard entropy measure. 

By now, we have coped with the practical challenges (1), (2), (3) and (4) with effective partial 

symbolic transfer entropy. For challenge (5), i.e., statistical significance, it may be evaluated by using 

bootstrapping strategies, surrogate data or random permutations [50,51]. Under the surrogate-based 

testing scheme, we will assess the significance with kernel density estimation. 

By shuffling the time series 2v̂  for M  times, we now get M  different 
2 1

shuffled
v vPSTE →  values and we 

will denote them as 1 2, , , Mp p p , and we denote 
2 1v vPSTE →  as 0p . We build with 1M +  values a 

probability distribution function using a kernel approach, known as Parzen-Rosenblat method [52,53], 

which can be expressed as: 



Entropy 2014, 16 5765 

 

 

0

1ˆ ( )
( 1)

M
i

h
i

p x
f x K

M h h=

− =  +  
  (8) 

Here, ( )K   is the kernel function and h  is the bandwidth. We will employ the most widely used 

Gaussian kernel ( )
21

2
1

2

x
K x e

π
−

=  here, and the bandwidth will be selected using pilot estimation of 

derivatives [54]. 

The existence of a drive-response link between two measures is then determined using this probability 
and a pre-defined significant level. The final 

2 1

*
v vEPSTE → , 21a , is defined as: 

2 1

2 1

*
21

,

0,

v v threshold

v v

threshold

EPSTE p p
a EPSTE

p p

→
→

≤= = 
>

 (9) 

Here, ( )
0

ˆ
hp

p f x dx
∞

=   (one-side test is adopted here and obviously 0p  is expected to be bigger than 

other ip  and lies in the right side) and we set 0.01thresholdp =  in our study. 

Other entries ija  in the adjacency matrix A  can be calculated in the same way. 

2.2.3. Drive-response Network Analysis 

The resulting network can be analyzed from a two-fold perspective: 

At the local node level, we are going to calculate the in-strength and out-strength [55] of each node 

to assess how influential and comprehensive it is: 

( )
1

N

in ji
j

S i a
=

=  (10) 

( )
1

N

out ij
j

S i a
=

=  (11) 

Here, ija  is the entry of the adjacency matrix of drive-response network as described in the  

previous section.  

In the context of drive-response relationships, the specific implications of the in-strength and  

out-strength are: the out-strength is the sum of information flowing from the measure to others, which 

stands for its prestige and reveals its influence to others. The in-strength is the sum of information 

flowing from others to the measure. The greater the in-strength a measure has, the more comprehensive 

the measure is, since there are more information flows to it from other measures.  

On the global network level, we are going to cluster the measures into different groups by detecting 

communities in the resulting network. Measures in the same community are clustered into one group.  If the 

resulting network is complicated, tools for detecting communities in the network science can be employed. 
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2.3. Further Remarks  

2.3.1. Choice of Coupling Measure 

In fact, the choice of coupling measure between pairs of time series permits many alternatives, ranging 

from correlation and partial correlation to mutual information and causality measures [56], with the cross 

correlation [57] and Granger causality [58] being the famous ones. Some of these popular tools are  

non-directional, e.g. correlation or partial correlation, and mutual information measures, thus these 

measures cannot provide satisfactory results for our study since the interactions between the measures 

are not necessarily symmetric. Granger causality has acquired preeminent status in the study of 

interactions and is able to detect asymmetry in the interaction. However, its limitation is that the model 

should be appropriately matched to the underlying dynamics of the examined system, otherwise model 

misspecification may lead to spurious causalities [46]. Given a complex system with a priori unknown 

dynamics, the first choice might be Transfer Entropy [59]. Its advantages are obvious: (1) it makes 

minimal assumptions about the dynamics of the time series and does not suffer from model 

misspecification bias; (2) it can captures both linear and nonlinear effects; (3) it is numerically stable 

even for reasonably small sample sizes [60]. 

2.3.2. Validation of the Proposed Method 

The proposed method is an integration of techniques from Symbolic Transfer Entropy, Effective 

Transfer Entropy, and Partial Transfer Entropy. All these relevant techniques have been proved 

theoretically and practically by numerical simulation and empirical investigations, respectively in [44,48,49], 

and these techniques are compatible, which means they can be synthesized to provide more 

comprehensive solutions. In fact, there already exist some synthesized methods such as Partial Symbolic 

Transfer Entropy [46], Corrected Symbolic Transfer Entropy with surrogate series to make the results 

more effective [61], and Effective Transfer Entropy based on symbolic encoding techniques [62]. To 

our best knowledge, research taking into account of all these five practical issues mentioned above and 

synthesizing all these techniques all at once still lacks.  

Since our investigation is applied here to purely observational data, we have no way to validate the 

proposed framework with simulated signals or outside intervention. To valid the feasibility of the 

proposed method, we will resort to another strategy which is based on experiential evidence: 

Suppose that the relationship between the topological measures here and some other measures are 

experientially approved. We then embed these extra measures into our data, deduce the drive-response 

relationship between these extra measures and the topological measures, and test if the results of our 

proposed method are consistent with the existing knowledge. Obviously the consistence will give us 

more confidence on the feasibility of our method.  

Here, the extra measures are two performance indices of technology exchange, i.e., P01: 

Technological Volume and P02: Contract Turnover, which have been adopted by BTMMO for several 

years [63]. In the context of System Theory, it is generally believed that system structure determines its 

function/the performance. Thus, what is expected is that these two embedded measures will be 

responding ones while some of the topological measures will drive them. 
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3. Empirical Application and Results 

3.1. Time Series of Topological Measures in Technology Exchange Network  

Technology exchange holds a great potential for promoting innovation and competitiveness at 

regional and national levels [64]. In order to expedite scientific and technological progress and 

innovation, it is stipulated in the Regulation of Beijing Municipality on Technology Market that the first 

party of the contract can get tax relief if the contract is identified as a technique-exchanging one and 

registered by BTMMO. Because of the preferential taxes, most of the technology exchange activities are 

recorded by BTMMO, in the form of technology contracts. Thus it offers the chance for us to obtain 

high-quality technology exchange records from BTMMO. We are able to capture the total evolutional 

scenario of the Technology Exchange Network. 

Networks serve as a powerful tool for modeling the structure of complex systems, and there is no 

exception for technology exchange. Intuitively we can model technology exchange as a network with 

the contracting parties as the nodes and contracts as the edges which linking the two contracting parties 

together. However, in the complex network literature, it is often assumed that no self-connections or 

multiple connections exist [4]. In other words, we will model the technology exchange as a simple graph 

as follows: we take the contracting parties as the nodes, and if contractual relationship between any two 

parties exists, regardless of how many contracts they signed, there will be (only) one edge linking them 

together. Here, the resulting technology exchange network is treated as an undirected and un-weighted one. 

We observed the 18 topological and two performance measures of the Technology Exchange Network 

in Beijing day by day from 24 May 2006 to 31 December 2013, obtaining 2779 records in total. This is 

the most fine-grained data that we can get, because technology exchange activities can only be accurate 

at the day level, rather than to hours or seconds as in stock exchanges. The complete dataset is provided 

as a supplementary. 

Since the technology exchange network is not a connected one, all the measures are calculated on the 

giant component of these networks. The measures M01, M02, M07, M08, M09, M10, M11, M12, M13, 

M14, M15 are calculated with the igraph packages [41], while measures M03, M04, M05, M06, M16, 

M17, M18 are calculated by the QuACN package [40]. All these algorithms are implemented in the R 

language [65], and we visualize our results mainly with the ggplot2 package [66]. The time series of all 

these measures are shown in Figure 2. 

3.2. Drive-Response Network Inference and Analysis  

Calculating the time series depicted in Section 3.1 with the method proposed in Section 2.2.2, we get 

the adjacent matrix, which is shown in Figure 3 (Since the EPSTE values are rather small, all the entries 

are multiplied by 10,000 for ease of plotting). 

In Figure 3, the diagonal entries are marked with “X” because we will not study the self-correlations 

and these entries are omitted. Red-filled entries are not only greater than zero but also statistically 

significant, thus each red-filled entry stands for a drive-response relationship. The darker the color, the 

more significant the relationship is. It can be seen that the darkest entries are all located in row M07, 

M10, M15, and M16, which means the strong drive-response relationships share these four common 

drives. We will further analyze these rows after constructing the drive-response network. 
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Figure 2. Time series of topological and performance measures of Technology Exchange 

Network in Beijing ranging from 24 May 2006 to 31 December 2013. 
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Figure 3. The adjacent matrix of drive-response network of topological and performance 

measures in Technology Exchange Network. 

 

Finish the steps proposed in Section 2.2.3, and we can draw the drive-response network, which is 

shown in Figure 4. In Figure 4, each measure is mapped as a node, and each arrow stands for a drive-

response relationship, and we associate each edge with a weight value, i.e., the effective partial symbolic 

transfer value, which is mapped as the width of the lines.  

Some basic features of the resulting network can be mentioned: there are 20 nodes and 43 edges in 

the network. The connectedness is 0.1131579, with the average vertex degree 4.3. It can been seen that the 

resulting network is not a connected one, with three isolated measures which are relatively independent. 
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Figure 4. The drive-response network of topological and performance measures in 

Technology Exchange Network. 

 

Although most of the vertices are connected, it is certainly not a dense graph. The diameter of giant 

component of the resulting is 3, and the average path length is 1.34375. Thus, the information flowing 

on this network is relatively simple. Further investigation on the drive-response network is two-fold. On 

the one hand, we will calculate the out-strength and in-strength of each measure to uncover how 

influential and comprehensive it is. On the other hand, we will cluster the measures into different groups. 

The out-strength and in-strength values of each measure is shown in Table 2. 

It can be seen from Table 2 that the most influential measures are Eigenvalue Centralization, 

Assortativity Coefficient, Radial Centric Information and Degree Centralization. Among these 

measures, two of them are centralization measures, one is connection measure and the remaining other 

is entropy measure. There is no distance relevant measure to be influential ones. In other words, distance 

relevant measures are usually driven by others. Graph integration, variation, eccentricity and average 

path length are influenced by the graph assortativity and eigenvalue centralization. 

It can also be seen from Table 2 that measure M14: Global Clustering Coefficient is the most 

comprehensive one since it takes up the most information from others. Another popular measure M01: 

Average Path Length, also has a relatively great in-strength value. These two measures are often 

employed to characterize and class networks [1,4]. Except the three isolated measures, the in-strength 

values of all the other measures are greater than zero, which implies that most measures are influenced 

by others.   
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Table 2. The out-strength and in-strength values of each measure. 

ID Measure Out-strength In-strength 

M01 Average Path Length 0.00 0.0005448487(#03) 

M02 Diameter 0.00 0.00 

M03 Eccentricity 0.00 0.0001440922(#15) 

M04 Integration 0.00 0.0002026297(#14) 

M05 Variation 0.00 0.0002431556(#12) 

M06 Centralization 0.00 0.0003962536(#08) 

M07 Degree Centralization 0.0003152017(#04) 0.0004322766(#06) 

M08 Closeness Centralization 0.00 0.0002431556(#13) 

M09 Betweenness Centralization 0.00 0.0005538545(#02) 

M10 Eigenvector Centralization 0.0023685158(#01) 0.0003917507(#09) 

M11 Vertex Connectivity 0.00 0.00 

M12 Edge Connectivity 0.00 0.00 

M13 Connectedness 0.00 0.0002521614(#11) 

M14 Global Clustering Coefficient 0.00 0.0006168948(#01) 

M15 Assortativity Coefficient 0.0023324927(#02) 0.0002746758(#10) 

M16 Radial Centric Information Index 0.0015264769(#03) 0.0005043228(#04) 

M17 Compactness Measure Based on Distance Degrees 0.00 0.0004232709(#07) 

M18 Complexity Index B 0.00 0.0004367795(#05) 

According to the network structure, we can cluster the 18 measures into three groups: 

Driving measures:  

 M07, Degree Centralization;  

 M10, Eigenvalue Centralization;  

 M15, Assortativity Coefficient;  

 M16, Radial Centric Information. 

Responding measures:  

 M01, Average Path Length;  

 M03, Eccentricity;  

 M04, Integration;  

 M05, Variation;  

 M06, Centralization;  

 M08, Closeness Centralization;  
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 M09, Betweenness Centralization;  

 M13, Connectedness;  

 M14, Global Clustering Coefficient;  

 M17, Compactness;  

 M18: Complexity Index B. 

Standalone measures:  

 M02, Diameter;  

 M11, Vertex Connectivity;  

 M12, Edge Connectivity. 

The isolation implies that these measures have no information flow with other measures. It doesn’t 

mean that these measures are trivial ones; rather, they should be treated as non-redundant ones because 

they contain special information that is not include by other measures, indicating that some of them may 

reveal different topological aspects of real-world networks. 

Now, we will tend to the two embedding measures: “P01, Technological Volume” and “P02, Contract 

Turnover”. In our resulting network, both the two are identified as responding measures, which is 

consistent with the principle of System Theory that “The structure of the system determines its function”. 

Further, the in-strength value of “P01, Technological Volume” (0.0005268372) is greater than that of 

“P02, Contract Turnover” (0.0003557277). This result is also consistent with our experience that what 

we are investigating on is the technology exchange network, it stands to reason that the technological 

volume gains more information from its own structure. Both these two results can serve as evidence for 

the feasibility of our proposed method. 

4. Conclusions and Discussions 

Taking into account that pulling networks from different domains and topologies together for 

statistical analysis might provide incorrect conclusions [25], we conduct our investigation with the data 

observed from the same network in the form of simultaneously measured time series. In order to reveal 

the relationships among topological measures from their time series, we synthesize a practical 

framework comprising techniques from Symbolic Transfer Entropy, Effective Transfer Entropy, and 

Partial Transfer Entropy, which is able to deal with the challenges such as time series being non-

stationary, time series being continuous, finite sample effects and indirect effects. Using a surrogate-

based testing scheme, we assess the statistical significance of the resulting drive-response relationships 

with kernel density estimation. Thus, the synthesized framework can serve as a complete solution for 

the application of transfer entropy in complicated issues. Furthermore, the framework doesn’t stop at the 

pair-wise relationships, but makes further efforts to provide a holistic scenario in the form of a drive-

response network. The transfer entropy-based framework not only quantifies the pair-wise influence one 

measures exerts on another, but also reveals the overall structure of the measures. 

We select 18 topological measures and apply the proposed method to the empirical investigation on 

Technology Exchange Network. After calculating the drive-response relationships and inferring the 

network of these measures, we identify the most influential and most comprehensive measures according 

to their in-strength and out-strength values. We also cluster these measures into three groups, i.e., driving 

measures, responding measures, and standalone measures. By embedding two performance measures, 



Entropy 2014, 16 5773 

 

 

i.e., technological volume and contract turnover and calculating the relationships between topological 

and performance measures, we find that our results are consistent with the principle of System Theory 

and some existing knowledge, which validates the feasibility of our proposed method. 

Our conclusion is based on the purely observational data from Technology Exchange Network in 

Beijing, thus the resulting drive-response network should not be simply generalized. In other words, the 

drive-response network may not hold true for other networks. However, the proposed method is 

applicable to other types of network, in case that the time series of topological measures in that network 

can be observed. 

It is to be mentioned that although we can divide the measures into driving and responding ones, it is 

not to say that the driving measures can determine the responding measures. The drive-response 

relationships are not equal to deterministic relationships. In general, approaches based on observational 

quantities alone are not able to disclose a deterministic picture of the system, and interventional 

techniques will ultimately be needed. Nevertheless, the proposed method can serve as a heuristic tool in 

detecting directed information transfer, and the detected drive-response relationships can be viewed as 

a justifiable inferential statistic for true relationships, which give us more evidence and confidence to 

reveal intrinsic relationship among the topological measures. 
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