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Abstract: The intention of this paper is to evaluate the sensitivity of the Storm Water 

Management Model (SWMM) output to its input parameters. A global parameter sensitivity 

analysis is conducted in order to determine which parameters mostly affect the model 

simulation results. Two different methods of sensitivity analysis are applied in this study. 

The first one is the partial rank correlation coefficient (PRCC) which measures nonlinear but 

monotonic relationships between model inputs and outputs. The second one is based on the 

mutual information which provides a general measure of the strength of the non-monotonic 

association between two variables. Both methods are based on the Latin Hypercube 

Sampling (LHS) of the parameter space, and thus the same datasets can be used to obtain 

both measures of sensitivity. The utility of the PRCC and the mutual information analysis 

methods are illustrated by analyzing a complex SWMM model. The sensitivity analysis 

revealed that only a few key input variables are contributing significantly to the model 

outputs; PRCCs and mutual information are calculated and used to determine and rank the 

importance of these key parameters. This study shows that the partial rank correlation 

coefficient and mutual information analysis can be considered effective methods for 

assessing the sensitivity of the SWMM model to the uncertainty in its input parameters. 

Keywords: sensitive analysis; SWMM model; mutual information; monte carlo simulation; 

Latin Hypercube Sampling ; partial rank correlation coefficient (PRCC); parameter ranking 
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1. Introduction 

Urban drainage models are widely used for planning, design and management of urban drainage 

systems. These models have become very complex. Sensitivity analysis of models has been identified 

to be an essential component in building models and evaluating the performance of models [1]. 

Sensitivity analysis can be applied to identify the relative influence of each model input parameter on 
the model outputs. Generally speaking, there are two main groups of sensitivity analysis: local and 

global approaches [2]. Local sensitivity analysis evaluates how the outputs change by varying one input 

parameter at a time. On the contrary, the global sensitivity analysis (GSA) considers a variation of all 

parameters simultaneously and evaluates their contribution to the uncertainty. The local approach has 

apparent limitations in complex hydrological models (e.g., SWMM), which often involve many 

nonlinear relationships between input and output variables [3,4]. 

This study is focused primarily on the global sensitivity analysis (GSA) methods. There are 

numerous methods available for performing sensitivity analyses. Widely used GSA methods include 

variance-based methods [5], sampling-based methods such as Latin hypercube sampling with partial 

rank correlation coefficient index (LHS-PRCC) [6], global screening methods [7], regression-based 

methods and others [8]. 

Storm Water Management Model (SWMM) [9] by the U.S. Environmental Protection Agency 

(EPA) is chosen for this study to simulate various hydrologic/hydraulic processes in urban areas. It is 

designed for single event or long-term (continuous) simulation of rainfall-runoff transformation, 

hydraulic performance and water quality. SWMM has four principle hydrologic/hydraulic processes: 

precipitation, rainfall losses, runoff transformation and flow routing. It is necessary to conduct a detailed 

sensitivity analysis to evaluate the main parameters of the SWMM which are the most sensitive 

parameters affecting the rainfall-runoff-routing simulation in the model. 

Although several global sensitivity analysis (GSA) methods have been proposed in many fields of 

science and engineering, there are not many reports on global sensitivity analysis in the urban drainage 

field [10]. The Morris screening and the standardised regression coefficients (SRCs) were applied to a 

sewer flow and water quality model by Gamerith et al. [11]. Vezzaro and Mikkelsen [12] recently 

applied a variance decomposition GSA method combined with the General Likelihood Uncertainty 

Estimation (GLUE) in order to identify the major sources of uncertainty in a storm-water quality 

model. Freni et al. [13] briefly discussed parameter sensitivity in urban stormwater quality modeling 

within general likelihood uncertainty estimation (GLUE) approach; Dotto et al. [14] analyzed 

parameter sensitivities using the formal Bayesian approach. Prat et al. [15] investigated sensitivities in 

an integrated model study of the sewer system and the waste water treatment plant with Monte Carlo 

simulations and Partial Correlation Coefficients (PCC). 

One of the methods of global analysis is the Partial Rank Correlation Coefficient Analysis, a 

method that is based on the Pearson correlation coefficient and that assumes a monotonic relationship 

between the input and the output variables [16]. The partial rank correlation coefficient (PRCC) is 

widely used for sensitivity analysis [17,18]. 

While there are several approaches to quantify the magnitude (strength) of relations between 

variables, the mutual information, derived from information theory, provides a general measure of 

dependencies between variables. The concept of mutual information proposed by Shannon and Weaver 
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in 1949 [19] was developed to quantify shared information between data sets. Unlike correlation that is 

only applicable to the linear relationship between two variables, the mutual information is theoretically 

able to identify various types of relations [20]. Mutual information is well suited for solving the 

hydrological problems, because there rarely exists the linear relationship between any two hydrological 

variables [21]. This problem can be avoided by analyzing mutual information which measures the 

statistical dependence between two hydrological variables. Bonnlander et al. [22] demonstrated the 

application of mutual information for selecting the key input variables of neural network models. 

Mishra et al. [23] described three global sensitivity methods, that is, stepwise regression, mutual 

information analysis and classification tree for determining uncertainty importance, and showed some 

sample applications for ground water models. Zeng et al. [24] compared stepwise regression analysis 

and mutual entropy analysis for identifying the key uncertainty variables affecting the parameters of 

normal groundwater level series. 
In this study, two GSA methods—LHS-PRCC and mutual information (entropy) analysis—are 

applied to a conceptual hydrologic-hydraulics model (SWMM) in order to, (i) provide a compare of 

both methods concerning the similarity of results and their effectiveness; (ii) identify and rank the 

important model parameters for selected model output variables. The two methods are selected for 

comparison because these potentially powerful sensitivity analysis techniques are not well known in 

the hydrologic modeling literature. 

The structure of this paper is as follows. In Section 2, we describe two GSA methods: partial rank 

correlation coefficient (PRCC) and mutual information analysis. We also introduce our working 

example. SWMM model is described briefly. In Section 3, the applicability of PRCC and mutual 

information analysis is demonstrated using results from SWMM model application at the Ya-hua 

garden district in Changsha city. The Latin Hypercube Sampling (LHS) method is used to generate 1000 

sets of parameter samples. Sensitivities are evaluated using different model outputs. Finally, some 

conclusions of the study are given in Section 4. 

2. Materials and Methods 

2.1. Study Site 

The selected study area was Ya-hua garden district in Changsha city, and the drainage area was 
approximately 11.7 ha (Figure 1). Mean annual precipitation in the region is between 1200-2000 mm, 

and the maximum recorded daily precipitation was 338mm in 1996. 

The total impervious area of the study area was 56%, and pervious area was 44%. The overland 

average slope was 0.3%. The study area was subdivided into 24 sub-catchments with the size of each 

varying from 0.24–0.96 ha, based on the existing land use, conduit diameter, topography and drainage 

characteristics, etc. The total number of conduits was 23, and the number of node was 24. The 

catchment was drained by a separate sewage drainage system, and the storm water runoff flowed past 

23 conduits to the catchment outlet labeled OUT1 (Figure 1). Rainfall was measured by rain gauges 

installed within the catchment. Table 1 presents the total runoff volume and peak discharge of the 

monitored rainfall events. The parameters of SWMM model are calibrated by three measurement data 

on 12/08/01, 28/07/02, 25/08/03. A detailed description of the catchment is given in Ren [25]. 
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Figure 1. Generalized distribution of the study area. 

 

Table 1. The total runoff volume and peak discharge in the district. 

Event 
Rainfall  

Duration (h) 
Rainfall Volume 

(mm) 
Total Runoff  

Volume (103m3) 
Peak Discharge 

(L/s) 

12/08/01 11 114 13.11 1308 
23/09/01 6.3 94 5.73 983 
28/07/02 9.0 98 13.63 1656 
16/08/02 5.5 92 3.56 956 
06/09/02 5.5 105 6.28 1108 
20/07/02 8.4 112 10.56 1486 
25/08/03 10 137 18.86 2015 
10/09/03 5.5 95 5.17 1032 
21/07/04 10 117 10.32 1185 
09/08/04 5.4 87 4.64 936 

2.2. Model Description 

The Environment Protection Agency (EPA) Storm Water Management Model (SWMM) is chosen 

for this study. SWMM is a physically-based distributed model, which means that a study area can be 

subdivided into any number of irregular sub-catchments. The model is capable of simulating all the 

hydrologic-hydraulic processes that occur in the urban drainage system [26]. SWMM consists of four 

functional program blocks, plus a coordinating executive block. SWMM has been widely applied to 

plan and design of the urban drainage system. 

In the present study, two primary functional blocks, the Runoff block and the Extran block, are 

considered to route flows. The Runoff block is designed to simulate continuous runoff hydrographs for 

each sub-catchment in the drainage basin. Runoff hydrographs from the various sub-catchments are 

taken as input to the Extran block. The Extran block completes complex hydraulic analysis of the open 

and closed conduit systems. The Extran block solves the complete Saint-Venant equations accounting 

for channel storage, backwater effects, surcharged flow and reverse flow. 

SWMM generates catchment’s surface runoff from rainfall using a distributed non-linear reservoir 

model, taking into account depression loss, infiltration and evaporation. Infiltration is rain water that 

soaks into the ground from precipitation. This water is considered removed from the runoff process. 
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The major loss considered in the rainfall and runoff modeling is infiltration loss. In SWMM, each  

sub-catchment is further divided into three subareas: an impervious area with depression storage, an 

impervious area without depression storage and a pervious area with depression storage. The 

infiltration losses is considered only from the pervious areas. For the pervious areas of a sub-catchment, 

SWMM has three different methods for computing infiltration loss: the Horton, Green-Ampt and 

Curve Number models. The Horton model will be used in this study. 

2.3. Model Parameters 

In general, uncertainty sources in urban drainage modeling include parameter, data and model 

structure. Only model parameters are used as factors in the sensitivity analysis in this study, neglecting 

the contribution of model structure. The model hydrology parameters within the SWMM Runoff Block 

are: sub-catchment slope, sub-catchment width, sub-catchment area, Manning roughness coefficient (n) 

for pervious and impervious area, minimum and maximum infiltration rates, impervious area with 

depression storage, and impervious area without depression storage. Whereas in the Extran Block the 

principal input parameters are: conduit length, Manning’s n for the conduit, cross-sectional geometry. 

In this study, three scaling factors (i.e., Pct-Area, K-Width, K-Slope) [27] are introduced to replace 

sub-catchment area, sub-catchment width and sub-catchment slope. The actual values of the model’s 

input parameters are equal to the product of the scaling factor and the measured values of parameters. 

Sub-catchment area is greatly affected by the subjectivity of model generalization, especially in the case 

of small study area; uncertainty of sub-catchment area is more obvious. The model parameters and their 

variation ranges are shown in Table 2. Parameter values have been set at reasonable values based on 

results coming from the literature and from the field measurements of the study site. For assessing the 

influence of varying inputs on model outputs, all model parameters are assumed to be uniformly 

distributed, and thus the parameters have the same probability of taking any value within a specified range. 

The parameter values of SWMM model vary from sub-watershed to sub-watershed depending on soil 

types, land cover (percent impervious, etc.), topography and/or other characteristics of the sub-watershed. 

Table 2. Key model parameters involved in this study. 

No. Parameter Description Range 

1 N-Imperv Manning’s N for impervious area 0.005~0.05 
2 N-Perv Manning’s N for pervious area 0.05~0.50 
3 Dstore-Imperv Depth of depression storage on impervious area (mm) 1.3~2.5 
4 Dstore-Perv Depth of depression storage on pervious area (mm) 2.5~7.6 
5 Zero-Imperv Percent of impervious area with no depression storage (%) 50~80 
6 Max.Infil.Rate Maximum rate on the Horton infiltration curve (mm/hr) 3~5 
7 Min.Infil.Rate Minimum rate on the Horton infiltration curve (mm/hr) 1~3 
8 Decay Constant Decay constant for the Horton infiltration curve(/hr−1)  2~7 
9 Con-Mann Manning’s N for the conduit 0.011~0.024 
10 Pct-Area Sub-catchment area percentage (%) 50~80 
11 K-Width Sub-catchment width scale factor 0.5~2 
12 K-Slope Sub-catchment slope scale factor 0.5~2 
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2.4. Sensitivity Analysis Methods 

2.4.1. Latin Hypercube Sampling 

In this paper, the Latin Hypercube Sampling method (LHS) is adopted to generate samples of input 

variables, which can avoid the repeated sampling. The LHS method is one of the stratified sampling 

methods, and was first introduced by McKay et al. [28]. The LHS can significantly reduce the required 

number of simulations compared to the conventional Monte Carlo (MC) method [29]. In LHS the 

range of each of the model inputs is divided into N equivalent intervals, where N is the number of 

simulations. One representive parameter value from each interval is randomly selected. The 

representative values for each random variable are then combined so that each representative value is 

considered only once in the simulation process. The objective of LHS is to ensure the full coverage of 

the range of the input variables. In this way, all possible values of the random variables are represented 

in the simulation. As the number of parameters increases, the sample size required generally increases. 

For uncertainty analysis, the number of simulation samples should be at least k+1, where k is the 

number of model input parameters, but much larger sample sizes are usually necessary to obtain 

reasonable results [16]. 

In this study, we used the LHS method to generate 1000 parameter samples from the range of values 

for each uncertain parameter in Table 2. Ranges of parameter values were determined based on either 

literature values or field measurements (Table 2). Correlations between parameters were neglected 

when performing the sampling and each uncertain parameter was assumed to follow a uniform 

distribution. This assumption can led to some overestimation of uncertainty and a reduction in 

confidence in model results [30]. 

2.4.2. Partial Rank Correlation Coefficient (PRCC) 

The choice of the sensitivity analysis method to use significantly depends on the assumed relationship 

between the input parameters and model output. For nonlinear but monotonic relationship between two 

variables, PRCC [16,31] appears to be the best choice, because it provides a measure of monotonicity 

between parameters and model output after removing the linear effects of all parameters except the 

parameter of interest. We have chosen in the present work to use PRCC as the preferred method for 

sensitivity analysis, as one of the most efficient and reliable sampling-based techniques. A correlation 

coefficient (CC) between input xj and output y is calculated as follows: 

( )( )

( ) ( )
1

2 2

1 1

, 1, 2, ,

N

i j i
i

N N

i j i
i i

x x y y
CC j k

x x y y

=

= =

− −
= =

− −



 
  (1)

It ranges from −1 and +1. x  and y  are the mean values of x and y, respectively. N is the number of 

sampling. The partial correlation coefficient (PCC) provides a measure of the strength of the linear 

relationship between input xj and output y after the linear influence of the other variables has been 
eliminated. The PCC between xj and y is defined by the CC of ˆj jx x− and ˆy y− , where ˆ jx  and ŷ  are 

represented in the following linear regression models: 
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To measure the potential nonlinear but monotonic relationships between xj and y, we calculated 

the PRCC, which is a robust sensitivity measure as long as little to no correlation exists between 

the inputs [16]. It represents a partial correlation on rank-transformed data: xj and y are first rank 

transformed, then the linear regression models described in Equation (2) are built. A higher positive 

PRCC indicates that the parameter has a greater positive control on the response variable of interest, 

while a higher (absolute value) negative PRCC indicates a greater negative control [32]. In contrast, a 

PRCC value close to 0 indicates a poor effect on the response variable of interest. 

PRCC is often combined with LHS for conducting sensitivity analysis. By combining the 

uncertainty analyses with PRCC, we are able to reasonably assess the sensitivity of our output variable 

to parameter variation. 

2.4.3. Mutual Information (Entropy) Analysis 

Entropy is a measure of the uncertainty associated with random variables, or, alternatively, a 

measure of the amount of information contained in a distribution [33]. It is closely related to sensitivity, 

since it is expected that a model will be more sensitive to a parameter carrying more information than to 

another one carrying less. Mutual information, which is based on the concept of entropy, provides a 

general framework for dealing with possible non-monotonicity in input-output relationships—which 

cannot be handled by linear correlation and regression based approaches [22,34]. 

As suggested by Mishra and Knowlton [35], the combination of the mutual information concept and 

contingency table analysis can be used to perform global sensitivity analysis. Table 3 is an example of 

n m× contingency table [36]. A contingency table such as Table 3 is used to examine whether or not the 

two variables are independent. 

Table 3. A n m× contingency table. 

x  
y  

Total 
 1  2  3 … m   

1 11f  12f  13f  … 1mf   1.f  

2 21f  22f  23f  … 2mf   2.f  

3 31f  32f  33f  … 3mf   3.f  

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

n  1nf  2nf  3nf  … nmf   n.f  

Total .1f  .2f  .3f  … .mf  xf or yf  

Table 3 consists of n rows and m columns that correspond to the n categories of the variable x and the m 
categories of the variable y. We let ijf denote the joint frequency for (i, j), where the first subscript refers 

to the row number and the second is the column number. The marginal frequencies represent the row-wise 
and column-wise sums of the frequencies in the table, denoted by .if and .jf , respectively. 
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The entropies of input variable x and output variable y can be defined by: 

( ) ( ) ( ) ( ) ( )
1 1

( ) ln ; ln
n m

i i j j
i j

H x p x p x H y p y p y
= =

= − = −   (3)

The values of discrete random variable x take ix , 1, 2, ,i n=  ; And the values of discrete random 

variable y take jy , 1, 2, ,j m=  . The conditional entropy ( )H x y  is the average additional 

information provided by observing the variable x when the variable y is already known. The 

conditional entropy ( )H x y of x given y is defined as: 

( ) ( )
1 1

( ) , ln
n m

i j i j
i j

H x y p x y p x y
= =

= −  (4)

where ( )i ip x y  is the conditional probability of ix x= given iy y= , ( ),i jp x y is the joint probability 

of xi , yj. 
The joint entropy ( ),H x y of x and y denotes the average total information gained by observing both 

x and y. The joint entropy ( ),H x y of x and y is defined as:  

( ) ( )
1 1

( , ) , ln ,
n m

i j i j
i j

H x y p x y p x y
= =

= −  (5)

The mutual information ( ),I x y of x and y is the amount of information shared by x and y. The mutual 

information ( ),I x y  is defined in terms of their entropies: 

( ) ( ) ( ) ( )( , )

( ) ( ) ( , )

I x y H x H x y H y H y x

H x H y H x y

= − = −

= + −
 (6)

The mutual information is always non-negative: ( ), 0I x y ≥  for any two random variables x and y. 

The mutual information is zero if and only if x and y are independent. So, the mutual information 

between the random variables x and y can be considered a measure of dependence between these 

variables, or better yet, the statistical correlation of x and y. 

In mutual entropy method, the sensitivity of the output to input variables is estimated by the 

following two indicators [24]. 

The first indicator is the uncertainty coefficient as a quantitative measure of association, defined by 

the two limits identified above: 

( ) ( ),
, 2

( ) ( )

I x y
U x y

H x H y

 
=  + 

 (7)

This measure lies between 0 (corresponding to no association between the x and y) and 1 

(completely association). 

R-statistic is another alternative measure of association defined on the basis of mutual information:  
2( , ) [1 exp{ 2 ( , )}]R x y I x y= − −  (8)
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where R varies between 0 and 1. R has a value of zero if there is no association between x and y. R is 1 

if there is perfect association between x and y. R can be used to provide a computational representation 

of variable importance. 

3. Results and Discussion 

In the following sections, the results are presented and discussed in detail for the investigated  

model outputs. 

3.1. Statistics Analysis of Model Outputs 

The LHS method was used to explore the effects of the input parameter uncertainty on the three 

output variables: the peak discharge (Qp), the total runoff volume (V) and the time to peak (Tp). Using 

Latin hypercube sampling, 1000 samples were generated from a uniform distribution of the parameter 

ranges. The model parameters had been assigned as uniform distributions and the parameters were 

changed within the ranges of Table 2. 

Table 4. Descriptive statistics from the uncertainty analysis. 

 
Peak Discharge Time to Peak Total Runoff Volume 

Qp (L/s) Tp (h) V (106 L) 

Minimum 2141.1 0.50 101.31 
Maximum 4608.5 3.75 311.29 
Mean 3071.9 2.91 179.92 
Median 2933.0 3.73 174.31 
Variance 4.3 × 105 1.31 1.39 × 103 

5th percentile 2245.2 1.23 125.31 
95th percentile 4299.0 3.75 247.77 

Figure 2. The cumulative distribution functions (CDF) of total runoff volume and  

peak discharge. 
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The results of the simulation runs of the SWMM model consist of N observations of each output 

variable. Distribution functions for each of the output variables can be directly derived and 

characterized by simple descriptive statistics. The empirical frequency distribution for three output 

variables were directly derived from the results of the uncertainty analysis, these distributions are 

presented in Figure 2. The descriptive statistics for these distributions are given in Table 4. The results 

show high output variability due to the high degree of estimation uncertainty for the initial value of the 

input parameters. The sample size N is set to 1000. Figure 2 shows the cumulative distribution functions 

(CDFs) for the outputs of the SWMM model. These descriptive statistics cannot be used to identify 

which of the input variables are the most important in contributing to the model output; consequently, 

partial rank correlation coefficients were calculated in order to identify these key variables. 

3.2. PRCC Analysis 

The primary model outputs of interest for the sensitivity analyses were the peak discharge (Qp), the 

total runoff volume (V) and the time to peak (Tp). PRCC were calculated between each of the  

12 input parameters and three output variables. Based on the magnitude of the absolute value of the 

PRCC, we ranked the relative importance of the 12 input parameters. PRCC values of the parameters 

are presented in Table 5. Figure 3 shows partial rank scatter plots of the ranks for the total runoff 

volume and each of the 12 input parameters. This visualisation shows how strongly an output variable 

is influenced by the input parameters. The visual analysis shows a negative impact of Con-Mann and 

total runoff volume (a high parameter leads to a low total runoff volume value). 

Table 5. Result of sensitivity analysis. 

Rank 
Total Runoff Volume(V) Peak Discharge(Qp) Time to Peak(Tp) 

Parameter PRCC Parameter PRCC Parameter PRCC 

1  Con-Mann −0.9672 Con-Mann −0.9817 N-Imperv 0.7277 

2  Pct-Area 0.7913 Pct-Area 0.1867 K-Width −0.2955 

3  K-Width −0.7802 N-Perv −0.1825 N-Perv −0.1901 

4  N-Imperv 0.7250 K-Width 0.1466 K-Slope −0.1745 

5  Min.Infil.Rate −0.6985 N-Imperv −0.0679 Pct-Area 0.1471 

6  N-Perv 0.6865 Zero-Imperv −0.0424 Min.Infil.Rate −0.0904 

7  K-Slope −0.5671 Dstore-Perv −0.0281 Max.Infil.Rate −0.04 

8  Dstore-Perv −0.0755 Decay Constant 0.0244 Dstore-Imperv 0.0281 

9  Max.Infil.Rate 0.0362 Max.Infil.Rate −0.0185 Con-Mann −0.0244 

10  Dstore-Imperv 0.0308 Dstore-Imperv 0.0138 Dstore-Perv −0.0175 

11  Decay Constant −0.0307 Min.Infil.Rate −0.0006 Decay Constant 0.0147 

12  Zero-Imperv −0.0016 K-Slope −0.0001 Zero-Imperv 0.0033 

The PRCC results for the total runoff volume show that the Con-Mann has the highest influence on 

the results, followed by the Pct-Area and K-Width. Pct-Area, N-Imperv and N-Perv are strongly 

positively correlated with the total runoff volume. On the other hand, Con-Mann, K-Width, Min. Infil. 

Rate and K-Slope are strongly negatively correlated to the total runoff volume. Table 4 shows that the 

ranking of relative importance of parameter could vary among different output variables. For example, 

Con-Mann has a relatively low influence on the time of peak, but a high influence on the peak 

discharge and total runoff volume. 
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Figure 3. Partial rank scatter plots of the ranks for the total runoff volume and each  

of the 12 input parameters from 1000 Monte Carlo simulations. The y-axis represents the 

output variable residuals while the x-axis represents the residuals for each of the 12  

input parameters. 
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3.3. Mutual Entropy Analysis 

Mutual entropy analysis can be conducted using contingency tables. A contingency table is a statistical 

table that shows the relationships between two variables. To construct a contingency table, the first step is 

to bin the range of values, and then count the number of observations in each bin. Since Mishra et al. [23] 

pointed out that 10–15 classes for each variable give stable results, we used a 10 × 10 table. The 1000 

calculated output values and the corresponding sampled values of all input parameters were divided 

into 10 equiprobable intervals. Mutual information were calculated from the contingency table based 

on the data. R statistic to determine the importance ranking of input parameters is shown in Table 6–8. 

In Table 6–8, the first column and the second column show the variables in order of decreasing 

importance. The third column denotes the values of the joint entropy H(x,y) as given by Equation (4). 

The mutual entropy I (x,y) (given in the fourth column) and the uncertainty coefficient U(x,y) (given in 

the fifth column) are calculated from Equations (6) and (7), respectively. The sixth column shows the 

R statistic value calculated using Equation (8). 

The most important parameter for total runoff volume and peak discharge identified via the  

R statistic is Con-Mann, which clearly dominates the importance ranking. For the time to peak, both 

methods identify N-Imperv as the most important parameter. For the other parameters, however, 

ranking from PRCCs and mutual information slightly differs. 

The entropy analysis indicates the similar parameter importance ranking as PRCCs analysis, 

indicating the absence of any important non-monotonic relationships between inputs and outputs. 
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Table 6. Results of mutual entropy analysis for total runoff volume. 

Rank Parameter H I U R 

1 Con-Mann 3.7389 0.5254 0.2464 0.6238 

2 K-Width 4.1653 0.0988 0.0463 0.2975 
3 Pct-Area 4.1835 0.0810 0.0380 0.2704 
4 N-Imperv 4.1874 0.0771 0.0362 0.2641 

5 Min.Infil.Rate 4.1922 0.0721 0.0338 0.2558 
6 N-Perv 4.1986 0.0658 0.0309 0.2447 
7 Zero-Imperv 4.2009 0.0636 0.0298 0.2407 
8 K-Slope 4.2098 0.0543 0.0255 0.2229 

9 Decay Constant 4.2095 0.0540 0.0253 0.2223 
10 Dstore-Perv 4.2182 0.0463 0.0217 0.2061 
11 Max.Infil.Rate 4.2231 0.0413 0.0194 0.1950 

12 Dstore-Imperv 4.2265 0.0378 0.0177 0.1867 

Table 7. Results of mutual entropy analysis for peak discharge. 

Rank Parameter H I U R 

1  Con-Mann 2.8371  1.6707  0.7413  0.8792  
2  Max.Infil.Rate 4.4609  0.0470  0.0208  0.2020  
3  Pct-Area 4.4635  0.0444  0.0197  0.1965  
4  N-Perv 4.4643  0.0437  0.0194  0.1949  
5  K-Slope 4.4654  0.0423  0.0188  0.1919  
6  Dstore-Perv 4.4667  0.0412  0.0183  0.1895  
7  K-Width 4.4668  0.0408  0.0181  0.1886  
8  Decay Constant 4.4686  0.0384  0.0170  0.1831  
9  Zero-Imperv 4.4697  0.0383  0.0170  0.1827  

10  N-Imperv 4.4747  0.0332  0.0147  0.1704  
11  Dstore-Imperv 4.4764  0.0314  0.0139  0.1658  
12  Min.Infil.Rate 4.4766  0.0313  0.0139  0.1655  

Table 8. Results of mutual entropy analysis for time to peak. 

Rank Parameter H I U R 

1 N-Imperv 2.7704 0.3475 0.2229 0.5998 

2 N-Perv 3.0284 0.0896 0.0574 0.3294 

3 K-Width 3.0868 0.0308 0.0198 0.1969 

4 K-Slope 3.0911 0.0265 0.017 0.1828 

5 Pct-Area 3.0983 0.0196 0.0126 0.1576 

6 Zero-Imperv 3.0991 0.0188 0.0121 0.1545 

7 Min.Infil.Rate 3.101 0.0169 0.0108 0.1464 

8 Dstore-Imperv 3.1016 0.0161 0.0104 0.1432 

9 Max.Infil.Rate 3.1039 0.0140 0.0090 0.1332 

10 Dstore-Perv 3.1064 0.0115 0.0074 0.1213 

11 Decay Constant 3.1056 0.0113 0.0073 0.1201 

12 Con-Mann 3.1081 0.0097 0.0063 0.1115 
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4. Conclusions 

Sensitivity analysis of an urban drainage model with respect to uncertain model-input parameters is 

presented in this paper. We review and compare two global sensitivity analysis methods that  

have proven to be among the most reliable and efficient, namely a PRCC and a mutual information 

method. One example is presented to demonstrate the applicability of the selected global sensitivity 

analysis methods. Twelve model input parameters and three model outputs are investigated. LHS is 

used to generate input data from the assigned distributions and ranges in the SWMM model. A 

sensitivity analysis based on PRCC and mutual information method has been conducted in order to 

identify the parameter importance of SWMM model. 

Statistics analysis of SWMM model outputs reveals high output variability due to uncertain 

estimates of various model parameter values. However, only a few key input parameters are important 

in contributing to the model outputs. PRCC and entropy analysis are used to identify and rank the 

importance of these key input parameters. The example demonstrates how PRCC can be used to 

identify key input parameters in sample data sets derived from numerical simulations. Scatter plots 

offer a straightforward way to visualize the relationship between input parameter and output variable. 

However, the applicability of PRCC is restricted to nonlinear but monotonic relationships between 

outputs and inputs. The mutual information has the strength of identifying non-monotonic sensitivities. 

Therefore, using mutual information on stochastic models can complement LHS/PRCC results. 

Sensitivity measures of PRCC and entropy-based are found to give similar ranking of the SWMM 

input parameters. The PRCC and mutual information are found to be sufficient to identify the most 

important parameters of the SWMM model. 

The choice of model output variables significantly influence the importance and ranking of the 

parameters. It is essential to investigate more than one model output for assessing sensitivities over the 

range of possible model responses. 
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