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Abstract:

 A method is known by which any integer n ≥ 2 in a metric Cantor space of right-infinite words [image: there is no content] gives a construction of a non-injective cellular automaton [image: there is no content], which is chaotic in Devaney sense, has a radius r = 1, continuum of fixed points and topological entropy log(n). As a generalization of this method we present for any integer n ≥ 2, a construction of a cellular automaton [image: there is no content], which has the listed properties of [image: there is no content], but has no fixed points and has continuum of periodic points with the period 2. The construction is based on properties of cellular automaton introduced here [image: there is no content] with radius 1 defined for any prime number p. We prove that [image: there is no content] is non-injective, chaotic in Devaney sense, has no fixed points, has continuum of periodic points with the period 2 and topological entropy log(p).
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1. Introduction

The dynamics of cellular automata have been investigated widely in mathematics, physics and theoretical computer science. Presently, there are many constructions of cellular automata in metric Cantor space of right infinite words [image: there is no content], which are:


	positively expansive and topologically conjugated to a one-sided full shift or a one-sided subshift of finite type (SFT) [1,2]


	bijective, expansive and topologically conjugated to a two-sided full shift or a two-sided SFT [3–5]


	strongly transitive with non-zero memory [6].




The dynamics of transitive cellular automata in metric Cantor spaces [image: there is no content] and [image: there is no content] has been intensively investigated [6–9]. It has been established that any positively expansive cellular automaton in [image: there is no content] is topologically conjugated with a one-sided, topologically mixing SFT [1,2], is non-injective [1,10,11], E-chaotic [12] and has topological entropy [image: there is no content] [1]. In particular, a one-sided full shift defined over n−elementary alphabet A is a positively expansive cellular automaton and has topological entropy log(n).

In our papers [13–15], for any integer n ≥ 2 we have presented a construction of non-injective, D-chaotic [16] cellular automaton [image: there is no content], which has radius r = 1, continuum of fixed points and topological entropy equal to log(n). This means that it can achieve the topological entropy of any fixed positively expansive cellular automaton in [image: there is no content]. Cardinality of the set of periodic points with the fixed period m ≥ 1 is an invariant of topological conjugacy [17] which asserts that for any integer n ≥ 2 an automaton [image: there is no content], is not topologically conjugated to any positively expansive cellular automaton defined in [image: there is no content] [1,2]. Additionally, a positively expansive cellular automaton defined in [image: there is no content] need not be topologically conjugated to a one-sided full shift [2,18]. Hence in this context it is natural to ask whether there exists in [image: there is no content] a non-injective, D-chaotic cellular automaton with continuum of periodic points with a fixed period m ≥ 1 and topological entropy log(n) for an integer n ≥ 2 which is not topologically conjugated to [image: there is no content].

In the paper we present a cellular automaton [image: there is no content] with radius 1 defined for any prime number p. We prove that this automaton is not injective, is D-chaotic, has no fixed points, but has continuum of periodic points with the period 2 and topological entropy log(p). Thus we obtain a positive answer for the above question and additionally for any integer n ≥ 2, we are able to construct a cellular automaton [image: there is no content], which has the listed properties of [image: there is no content], but its topological entropy is equal to log(n). In fact, if n = p, then Fn = F and An = B. For a non-prime integer n ≥ 2 and p any fixed prime from the factorization of n (for example the least one) we have n = p · k. For this k a one-sided full shift σ, defined over k−elementary alphabet, is a topologically mixing cellular automaton with radius r = 1, which has topological entropy log(k) and k fixed points. Now basing on the properties of F for a prime p, we conclude from Theorem 2 in [19] and Theorem 7.10 in [20] that the cartesian product F ×σ is topologically conjugated to a cellular automaton [image: there is no content], which has the expected properties.

The obtained results coincide with research directions pointed out by papers [1,2,6,7,11,13–15,18].



2. Preliminaries

This section contains all notions and notations to be used in the paper. We denote by ℕ, ℤ, ℝ the sets of non-negative integers, integers and real numbers, respectively. #Y stands for the cardinality of a set Y. A finite (non-empty) word w over an alphabet B, that is a finite and non-empty set, is a function [image: there is no content] defined on a discrete interval [0, k], where k ≥ 0. The set of all such defined words with concatenation of words is a free semigroup (B+, ·). The length of a word w, denoted by |w| is equal to the cardinality of its domain. The set of all words in B+ with the length equal to n is denoted Bn. (B∗, ·) stands for a free monoid of words after the empty word λ , the unit element of concatenation, is added. By the definition |λ| = 0 and B0 = {λ}. A right infinite word is a function on ℕ or equivalently on a discrete interval [0, ∞) with values in B. The set of all right infinite words is denoted by [image: there is no content]. It is convenient to extend naturally concatenation to pairs of words in [image: there is no content] with values in [image: there is no content]. We will use also in the sequel words defined on finite discrete intervals of the form I = [i, j], where i ≤ j, are non-negative integers. If i = j, then we denote such degenerated interval by [i, i], [i] or {i}. For two discrete intervals I, J such that J ⊂ I and for a word u defined on I we denote by uJ the restriction of u to J.

In the sequel we assume that #B ≥ 2.

We define metric [image: there is no content] putting for any [image: there is no content]



d(x,y)={2−iifx≠y0otherwise








where i = min{j ≥ 0 : x(j) ≠ y(j)}.

The obtained topological space [image: there is no content] is a Cantor space [6,10,21] and the family of balls [image: there is no content] is its base. For [image: there is no content], every open ball in [image: there is no content] with the radius 2−n, is of the form [image: there is no content], where w = x[0,n] ∈ Bn+1. We denote by Xω an infinite concatenation of a set of words X.

Let us fix [image: there is no content] and assume that there is given a mapping F′ : Br+1 → B. For any [image: there is no content], [image: there is no content] there exists w ∈ Br+1 such that w(j) = x(i + j) for any j ∈ [0, r]. We put in this case F′(x[i,i+r]) = F′(w). A mapping [image: there is no content] such that F (x)(i) = F′ (x[i,i+r]) for any [image: there is no content] and [image: there is no content] is referred to as one-sided cellular automaton [1,22]. F′ : Br+1 → B is called the local rule of F. Any cellular automaton F is continuous. If for u ∈ B+, it holds |u| > r, then we define F′(u) putting F′ (u)(i) = F′(u[i,i+r]) for any i ∈ [0, |u| − r). If [image: there is no content] and for any w ∈ Br, b ∈ B there exists exactly one a ∈ B such that F′(aw) = b (F′(wa) = b), then F is referred to as left (right) permutative [1,21]. If [image: there is no content] is left (right) permutative then it is surjective [23]. A cellular automaton F is right-closing, if for any [image: there is no content] equalities: F (x) = F (y), x[0,i] = y[0,i] for some i ≥ r, imply x = y (compare [24]).

Assume, in what follows that S is a closed subset of [image: there is no content]. Let ψ : S → S be a continuous mapping. A pair (S, ψ) is referred to as a symbolic dynamical system, SDS in the abbreviated form [21]. A point y ∈ S is periodic for ψ if and only if there exists [image: there is no content] such that ψn(y) = y. The set of all periodic points of ψ is denoted Per(ψ). If ψ(y) = y, then y is a fixed point of ψ. If there exists ε > 0 such that for any x, y ∈ S, y ≠ x there exists [image: there is no content] such that d(ψn(x), ψn(y)) ≥ ε, then ψ is positively expansive. A mapping ψ is transitive, if it is surjective and for any not empty open sets U, V ⊂ S there exists an integer [image: there is no content] such that U ∩ ψ−n(V) ≠ θ [1,20]. If additionally S is infinite and ψ : S → S is surjective then SDS (S, ψ) is referred to as D-chaotic (or chaotic in the Devaney’s sense) [16,21,25] if and only if


	the set Per(ψ) is dense in S, that is for any y ∈ S, and n ∈ N, Per(ψ) ∩ K(y, 2−n) ≠ θ (K(y, 2−n) ⊂ S ),


	for any [image: there is no content], K(y, 2−n) ⊂ S, and for any K(x, 2−n) ⊂ S, there exists [image: there is no content] such that K(y, 2−n) ∩ ψ−m(K(x, 2−n)) ≠ ∅, that is ψ : S → S is transitive.




If (S, ψ) is D-chaotic and additionally ψ : S → S is positively expansive, then (S, ψ) is referred to as E-chaotic [12]. In particular a cellular automaton [image: there is no content] is SDS. A mapping π : [image: there is no content] is a surjective SDS morphism if it is surjective, continuous and π ◦ F = ψ ◦ π. In this case (S, ψ) is a factor of [image: there is no content]. If additionally π is a bijection, then it is a topological conjugacy. In this case SDS (S, ψ), [image: there is no content] are topologically conjugated.

Assume that σ(x)(i) =σ′(x[i,i+1]) = x(i + 1) for any [image: there is no content] and [image: there is no content]. In such a case a cellular automaton [image: there is no content] is called a one-sided full shift. If S is a closed subset of [image: there is no content] and σ(S) ⊂ S, then a SDS (S, σ) is called a one-sided subshift [10,21].

Two objects are associated with a cellular automaton [image: there is no content] defined by a local rule F′: B2 → B. The first, a one-sided subshift (SF, σ) where SF={y∈Bℕ:∃x∈Bℕ,Fk(x)(0)=y(k),k∈ℕ} [6,26]. The second, a surjective SDS morphism [image: there is no content] [1]. In such a case topological entropy [image: there is no content] of SDS [image: there is no content]is given by the equality [image: there is no content] [1,22,27].



3. Cellular Automaton F

This section starts from the introduction of a one-sided cellular automaton F, whose form depends on the chosen prime number p. The main objective of the section is to describe its basic properties.

In the sequel p is a fixed prime number. We use the following notation:



B={0,1,2,…,2p−1},A={0,2,4,…,2(p−1)}⊂B,E={0,1}⊂B.








We introduce a mapping φ′ : B → A, defining φ′(a) = 2 ⌊a/2⌋ , where ⌊ ⌋ denotes the floor function. Notice that φ′(a) is the closest integer in A not greater than a ∈ B.

Define a function f′ : B2 → E such that f′(a, b) = f′(a, φ′(b)), f′(a, b) ≠ f′( φ′(a)+(a+1)mod 2, b) for any a, b ∈ B. We define a cellular automaton [image: there is no content] with a local rule G′ : A2 → A given by G′(a, b) =2 ((a/2 + b/2) mod p) for any a, b ∈ A.

The main object of our considerations in [13–15] are properties of some cellular automata [image: there is no content] having a local rule F′: B2 → B of the form F′ (a, b) = f′(a, b)+ G′(φ′ (a), φ′(b)).

Notice that this form of F′: B2 → B does not guarantee transitivity of [image: there is no content] (see Example 1 in [15]). Observe that a cellular automaton [image: there is no content] is right-permutative [21] and thus surjective and positively expansive [1]. Additionally it is a factor of a linear and transitive cellular automaton defined on [image: there is no content] [26,28].

As a continuation of our research we consider, in what follows, a cellular automaton [image: there is no content] of the same type. Its local rule F′: B2 → B is defined by a mapping f′ : B2 → E of the form: f′(a, b) = (a + 1 + [φ′(a)/2 + q][φ′(b)/2 + 1 − q]) mod 2 for q = b(p + 1)/2c mod 2 and p ≠ 3, f′(a, b) = (a + ρ(a)) mod 2 for [image: there is no content] and p = 3.

We extend φ′: B → A to a morphism φ′ : B∗ → A∗. Additionally we introduce [image: there is no content] putting φ(x) = y if and only if for any x∈Bℕy(i)=φ(x)(i)=φ′(x(i))∈A for every [image: there is no content].

In a later part of this section we present basic properties of cellular automata [image: there is no content], [image: there is no content] and relationships between them. It follows just from the definition that the dynamics of [image: there is no content] is closely related to the dynamics of [image: there is no content]. As a consequence of this dependance there are some generalized properties from [15] proved in the following lemma.

Lemma 1. For the defined above mappings F, G, φ′, φ it holds:


	φ′ : B∗ → A∗ is surjective and |φ′(u)| = |u| for any u ∈ B∗.


	[image: there is no content]is a surjective SDS morphism.


	for any a ∈ B we have


	for any b ∈ A, there exists a unique c ∈ B such that for every b′ ∈ φ′−1(b), it holds F′(a, b′) = c,


	φ′({F′(ab) : b ∈ A}) = A.





	if[image: there is no content]and for any k ∈ [0, n) there exists c ∈ A such that F′(y(k)c) = y(k + 1) ∈ B then there exist 2n words w ∈ Bn and exactly one word φ′(w) ∈ An such that y =y(0) · F′(y(0) φ′(w))(0) · F′2(y(0) φ′(w))(0) · … · F′n(y(0)φ′(w))(0) = y(0) · F′(y(0)w)(0) · F′2(y(0)w)(0) · … · F′n(y(0)w)(0).




Proof. Assertions of Points 1 and 2 are obvious.

From these assertions and the fact that F′(a φ′(b)) = F′(ab) for any a, b ∈ B follows directly Point 3.

We prove the statement 4. We start for n = 3. According to Point 3 there are two possibilities of y1(l) ∈ B, one of φ′(y1(l)) ∈ A for l = 0, and then again one of y1(l) ∈ B for any l ∈ (0, 2] such that



F′(y(l)y1(l))=y(l+1)∈B,F′(y1(l)c)=y1(l+1)∈B,forl<2,somec∈A.








As the result we obtain a word y1 ∈ B3. Analogically we obtain a subsequent word y2 ∈ B2.

According to Point 3. there are two possibilities of y2(l) ∈ B and one of φ′(y2(l)) ∈ A for l = 0, and then again one for y2(l) ∈ B for any l ∈ (0, 1] such that



F′(y1(l)y2(l))=y1(l+1)∈B,F′(y2(l)c)=y2(l+1)∈B,forl<1,somec∈A.








Analogically we construct the last, in this case, word y3 ∈ B. According to Point 3, there are two possibilities of y3(0) ∈ B and one of φ′(y3(0)) ∈ A such that F′(y2(0)y3(0)) = y2(1) ∈ B.

Finally we obtain exactly one word φ′(w) ∈ A3 and 23 words w = y1(0)y2(0)y3(0) ∈ B3.

Now we assume that the assertion of the Point 4 is true for n ≥ 3. Assume that z ∈ Bn+2 and for any k ∈ [0, n] there exists c ∈ A such that F′(z(k)c) = z(k + 1) ∈ B. Let us assume that y = z[0, n] ∈ Bn+1. It follows from the assumption that the assertion of Point 4 is true for y.

Now, Point 3 implies that there is one possibility of a0 ∈ B such that



F′(y(n),a0)=z(n+1),F′(F′n−1(φ′(w))(0),c)=a0,forsomec∈A








and then for any k ∈ [1, n − 1] there is one possibility of ak ∈ B such that



F′(F′n−k(φ′(w))(k−1),ak)=ak−1,F′(F′n−k−1(φ′(w)),c)=ak,for somec∈A.








Finally Point 3 implies that there are two possibilities of an ∈ B and one possibility of φ′(an) ∈ A such that



[image: there is no content]








Now, from the assumption there exist 2n+1 words wan ∈ Bn+1 and exactly one word φ′(wan) ∈ An+1 such that



z=y(0)⋅F′(y(0)φ′(wan))(0)⋅F′2(y(0)φ′(wan))(0)⋯F′n(y(0)φ′(wan))(0)⋅F′n+1(y(0)φ′(wan))(0)=y(0)⋅F′(y(0)(wan))(0)⋅F′2(y(0)(wan))(0)⋯F′n(y(0)(wan))(0)⋅F′n+1(y(0)(wan))(0).








□

The following lemma simplifies the description of infinite words—elements of a one-sided subshift (SF, σ).

Lemma 2.SF={y∈Bℕ:∀i∈ℕ,∃c∈A,F′(y(i)c)=y(i+1)∈B}.

Proof. Inclusion “⊂” is obvious. The inclusion in the opposite direction follows according to Point 4 of Lemma 1. □

The obtained result simplifies the computation of a topological entropy [image: there is no content] [1,22] of a cellular automaton [image: there is no content].

The following lemma presents basic properties of F. Notice that all properties listed in the below lemma except for left-permutativity, are invariants of a topological conjugacy.

Lemma 3. Cellular automaton F


	has topological entropy[image: there is no content],


	is left-permutative, surjective and not injective,


	has continuum of periodic points with the period 2,


	has no fixed points.




Proof. Lemma 2 assures that y ∈ SF if and only if for any [image: there is no content] there exists c ∈ A such that F′(y(i)c) = y(i + 1). Now from Lemma 1 we have for any a ∈ B, #{F′(ac) : c ∈ A} = p. Hence starting from these #B words of the length 1, in the subsequent steps from 1 to n it is possible to construct exactly #B · pn words z ∈ Bn+1 fulfilling the following condition: for any i ∈ [0, n − 1] there exists c ∈ A such that F′(z(i)c) = z(i + 1). According to the above remarks and the definition of topological entropy of SDS [image: there is no content] the equality of point 1. holds.

For the proof of Point 2, notice that just from the definition of F′ : B2 → B, for any fixed b, c ∈ B, there exists exactly one a = φ′(a) + amod 2 ∈ B such that F′(ab) = c. Hence [image: there is no content] is left-permutative [21] and surjective [23].

To prove that F is not injective observe that for p = 2, we have F (1111⋯) = F (3333⋯) = 000⋯, for p = 3, we have F (242424⋯) = F (424242⋯) = 00000⋯.

Now consider p ≥ 5 and assume that a = p − 1 and b = p + 2. Thus



F′(ab)=(p+[⌊(p−1)/2⌋+q][⌊(p+2)/2⌋+1−q]mod2+2((⌊(p−1)/2⌋+⌊(p+2)/2⌋)modp)=(p+[(p−1)/2+q][(p+1)/2+1−q)mod2+2(((p−1)/2+(p+1)/2)modp)=(p+[(p−1)/2+q][(p+1)/2+1−q)mod2.








Notice that p mod 2 = 1 and [(p + 1)/2 + 1 − q] mod 2 = 1. If q = 0, then ((p − 1)/2) mod 2 = 1 and consequently F′(ab) = 0. If q = 1, then ((p − 1)/2) mod 2 = 0 and consequently F′(ab) = 0.

Similarly for a = p + 2, b = p − 1, we obtain F′(ab) = 0 for q = 0 or q = 1.

Finally, if [image: there is no content], x′(2i + 1) = x(2i) = p − 1, x′(2i) = x(2i + 1) = p + 2 for any [image: there is no content], then [image: there is no content].

Thus in these three cases F is not injective for any prime number p.

For Point 3 observe that F′(ac) = 1 − a for any a, c ∈ E. Hence, if [image: there is no content], then F 2(x) = x. Observe that the cardinality of the set [image: there is no content] is equal to continuum.

Finally for the assertion number 4. let us assume that there exist a, b, c ∈ B, [image: there is no content] such that F (x) = x. Hence F′(ab) = a. From Points 1 and 2 in Lemma 1, we have G′(φ′(ab)) = φ′(a) and (φ′(a) + φ′(b)) mod 2p = φ′(a). Thus φ′(b) = 0 and b ∈ E. Analogically F′(bc) = b and G′(φ′(bc)) = φ′ (b), (φ′(b) + φ′(c)) mod 2p = φ′(b).

Hence φ′(c) = 0 and consequently b, c ∈ E.

Just from the definition of a local rule we have F′(bc) = 1 − b for any b, c ∈ E which creates the contradiction. □

If a ∈ B, w ∈ B+, then F′(aw) = F′(a φ′(w)). Additionally, if a, a′∈ B, a 6= a′, w ∈ B+, φ′(a) = φ′(a′) (φ′(a) ≠ φ′(a′)), c = F′(aw)(0), c′ = F′ (a′w)(0), then c ≠ c′, φ′(c) = φ′(c′) (φ′(c) ≠ φ′(c′)).

These properties are generalized in the lemma below, which can be proved exactly in the same way as its counterparts in [14,15].

Lemma 4. (1) if a ∈ B, w ∈ B+, [image: there is no content], a0 = a, ai = F′(ai−1G′i−1(φ′(w)))(0) for i ∈ [1, n], then ak = F′k(aw)(0) for any k ∈ [0, n],

(2) if w ∈ B+, [image: there is no content], a, a′ ∈ B and for any k ∈ [0, n] :


	a′ ≠ a, φ′(a) = φ′(a′), F′k(aw)(0) = c ∈ B, F′k(a0w)(0) = c′ ∈ B, then c′ ≠ c, φ′(c) = φ′(c′),


	φ′(a) ≠ φ′(a′), F′k(aw)(0) = c ∈ B, F′k(a′w)(0) = c′ ∈ B, then φ′(c) ≠ φ′(c′).




Similarly as in [14] the above result could be used in the proofs of Lemmas 7, 8, 10, 11 and 13.

It is not difficult to show that for any a, b ∈ A, [image: there is no content], w ∈ A∗, |w| = pn − 1 the formula [image: there is no content] takes values G′(ab). This implies hat the value [image: there is no content] does not depend on a chosen word [image: there is no content].

Exactly such a case is presented in the following lemma and its easy, inductive proof is left to the reader.

Lemma 5. If a, b, c ∈ A, G′(ab) = c, thenG′pn(awb)=cforanyn∈ℕ, w ∈ A∗, |w| = pn − 1.

Similarly as in [14] the above result could be used in the proofs of Lemmas 7, 8, 10 and 11.

The greatest difficulty in the proof of transitivity of [image: there is no content] (see Theorem 5.1) is the case p ≥ 5. Possibility of defining a local rule F′ : B2 → B without applying a function ⌊ ⌋ is the first step to overcome this difficulty. An alternative possibility of defining F′ : B2 → B is presented in the lemma below.

Lemma 6. (compare [14]) For p ≥ 5 and any j, k ∈ [0, p − 1] and αk, γ ∈ [0, 1], F′(2k + ((j + 1 − q)(q + k) + 1 + αk)mod 2, 2j + γ) = 2((j + k)mod p) + αk.

Proof. Let



a=2k+((j+1−q)(q+k)+1+αk)mod2,b=2j+γ.








We have



2((⌊a/2⌋+⌊b/2⌋)modp)=2((k+j)modp).








Additionally



(a+1+[⌊a/2⌋+q][⌊b/2⌋+1−q])mod2=(2k+(j+1−q)(q+k)+1+αk+1+(k+q)(j+1−q))mod2=(2(k+(j+1−q)(q+k)+1+αk)mod2=αk.










4. Transitivity of F for p ≥ 5

The main goal of this section is to prove transitivity of the cellular automaton [image: there is no content] for p ≥ 5. We present also lemmas and some properties that lead to the justification of Corollary 14. All along this section it is assumed that p ≥ 5.

The lemma presented below can be considered as a counterpart of Lemma 5 but it is formulated for [image: there is no content].

In contrast to the formula for [image: there is no content] in Lemma 5 the formula presented below for [image: there is no content] depends on a chosen word [image: there is no content]. The choice of [image: there is no content] determines values of coefficients i ∈ [0, p − 1] and ik ∈ [0, 1] which occur in the formula for any k ∈ [0, p − 1].

The lemma could be proved exactly in the way as its counterpart in [14] making use of Lemmas 1 and 4–6.

Lemma 7. Let us assume that[image: there is no content], w ∈ B∗, |w| = pn − 1. For any j, k ∈ [0, p − 1], αk ∈ [0, 1], and some fixed i ∈ [0, p − 1], ik ∈ [0, 1],



F′pn(2((k+i)modp)+((j+1−q)(q+k)+ik+1+ak)mod2,φ′(w),2((j+p−i)modp))=2((j+k)modp)+αk








The following conclusions can be derived from Lemma 7 for any fixed m ∈ [1, p − 1].

Under the assumptions of the lemma, if j = (i + m)mod p, b = 2(mmod p), a = 2((k + i)mod p) + (ik + 1 + αk)mod 2 for k = q and some αq ∈ [0, 1], then for the following equalities a0 = a, [image: there is no content] for any l ∈ [1, p], we obtain al = 2((lm + q + i)mod p) + α((l−1)m+q)modp for k = ((l − 1)m + q) mod p and for any l ∈ [1, p], α((l−1)m+q) mod p = ((j + 1 − q) [q + k] + ik + 1 + αk) mod 2 for k = (lm + q) mod p and for any l ∈ [1, p−1]. Notice that in view of Point 1 in Lemma 4 and Lemma 5 to calculate al for any l ∈ [1, p], we can apply [image: there is no content] to a word [image: there is no content].

A generalization of this observation leads to the lemma formulated below. The formulation is preceded by the introduction of some denotations.

We will use in the sequel the following notations: e∞(a) = a000… = a0ω, e0(a) = a, ek(a) = a0k for any a ∈ A, [image: there is no content], θ(d) = d mod 2 for any d ∈ B. Assume now that [image: there is no content], w ∈ B∗, |w| = pn − 1. Lemma 7 implies that for any j, k ∈ [0, p − 1], αk ∈ [0, 1],



F′pn(2((k+i)modp)+((j+1−q)(q+k)+ik+1+ak)mod2,φ′(w),2((j+p−i)modp))=2((j+k)modp)+αk








for some fixed i ∈ [0, p − 1], ik ∈ [0, 1].

Now, let us fix m ∈ [1, p − 1] and j = (i + m)mod p, b = 2((j + p − i)mod p), a = 2((q + i)mod p) + (iq + 1 + αq)mod 2 for αq ∈ [0, 1]. Additionally let [image: there is no content], s=(j+2−q+Σl=0p−1il)mod2.

Lemma 8. The following statements are true:


	[image: there is no content],


	



F′pn+1(aφ′(we(p−1)pn(b)))=2((q+i)modp)+α((p−1)m+q)modp,α((p−1)m+q)modq=(iq+1+o)mod2,o=(s+αq)mod2,









	F′2pn+1(aφ′(we(2p−1)pn(b)))=a,Δ0∩Δ1=∅,Δ0∪Δ1=B,



F′lpn(aφ′(we(l−1)pn(b)))}l∈[1,2p]={Δαq,ifs=0B,ifs=1.









	if s = 0, thenθ(F′2lpn(aφ′(we(2l−1)pn(b))))=α((2l−1)m+q)modpforl∈[1,p],


	if s = 1, then:



θ(F′2lpn(aφ′(we(2l−1)pn(b))))={α((2l−1)m+q)modp,forl∈[1,(p−1)/2],(1+α((2l−1)m+q)modp)mod2,forl∈[(p+1)/2,p].











Proof. The first statement is left to the reader.

From Point 1 in Lemma 4 and Lemma 5 follows that for any l ∈ [0, p − 2],



α(lm+q)modp=(i((l+1)m+q)modp+1+α((l+1)m+qmodp+(j+1−q)[q+((l+1)m+q)modp)])mod2,










F′pn(aφ′(we0(b)))=2((m+q+i)modp)+(i(m+q)modp+1+α(m+q)modp+(j+1−q)[q+(m+q)modp])mod2,



(1)






F′2pn(aφ′(wepn(b)))=2((m+q+i)modp)+(i(2m+q)modp+1+α(2m+q)modp+(j+1−q)[q+(2m+q)modp])mod2,



(2)






F′3pn(aφ′(we2pn(b)))=2((3m+q+i)modp)+(i(3m+q)modp+1+α(3m+q)modp+(j+1−q)[q+(3m+q)modp])mod2,⋮



(3)






F′(p−1)pn(aφ′(we(p−2)pn(b)))=2(((p−1)m+q+i)modp)+(i((p−1)m+q)modp+1+α((p−1)m+q)modp+(j+1−q)[q+((p−1)m+q)modp])mod2,



(4)






F′pn+1(aφ′(wepn(p−1)(b)))=2((pm+q+i)modp)+α((p−1)m+q)modp=2((i+q)modp)+(iq+1+o)mod2forsomeo∈[0,1].



(5)




To finish the proof of Point 2, observe that the following equation holds:



(iq+1+αq)mod2=(j+1−q+p+∑l=0p−1il+α((p−1)m+q)modp)mod2=(j+2−q+∑l=0p−1il+iq+1+o)mod2.








Thus



o=(s+αq)mod2.








The Point 3 follows according to Point 2, Lemmas 4, 5 and Equations (1)–(4). We have for l ∈ [1, (p − 1)/2],



θ(F′2lpn(aφ′(we(2l−1)pn(b))))=α((2l−1)m+q)modp








For Point 4 observe that putting o = αq, the Equation (5) gives



F′ppn(aφ′(we(p−1)pn(b))))=2((i+q)modp)+iq+1+αq)mod2=a.








Thus from the Equations (1)–(4), we obtain



F′(p+1)pn(ap′(weppn(b)))=F′pn(ap′(we0(b)))F′2lpn(ap′(we(2l+1)pn(b)))=F′(2l−p)pn(ap′(we(2l−(p+1))pn(b)))








for l ∈ [(p + 1)/2, p]. Consequently θ(F′2lpn(aφ′(we(2l−1)pn(b))))=α((2l−1)m+q)modqforl∈[1,p].

Point 5 could be proved as above putting o = (1 + αq) mod 2 in the Equation (5). □

The results proved above can be applied in the proofs of Lemmas 9, 10, 11, 13.

For a, b which fulfills exactly the assumptions introduced before Lemma 8 and for a fixed word w ∈ B∗, such that |w| = pn − 1, [image: there is no content], let us consider the following set



[image: there is no content]








If the set is independent of choosing and fixing m ∈ [1, p − 1] (remind that in fact b depends on m) we put [image: there is no content] and say, that the Condition (*) is fulfilled for any m ∈ [1, p − 1].

In a similar way as in [14] the properties established in Lemma 8 give reason for an indirect proof of the lemma presented below. A contradiction is obtained by considering a system of linear equations formulated over [image: there is no content] assuming that the Condition (*) is fulfilled for any m ∈ [1, p − 1].

Lemma 9. If[image: there is no content], w ∈ B∗, |w| = pn − 1, then Condition (*) does not hold.

The statement of the lemma means that there exist m1, m2 ∈ [1, p − 1], m1 ≠ m2, [image: there is no content] such that



[image: there is no content]








Consequently,


	there exist [image: there is no content], l2 ∈ [1, p] such that, [image: there is no content],


	[image: there is no content],


	[image: there is no content] (Lemma 8, point 3)




Similarly as in [14] the above property and Lemma 11 play a key role in the proof of transitivity of [image: there is no content] (see Lemma 13).

A subsequent lemma, rather a technical one, can be proved exactly as its counterpart in [14] and in the proof Lemma 4, 5 and 8 are used.

Lemma 10.


	If a ∈ B, w ∈ B+, pn − 1 > |w| ≥ pn−1, [image: there is no content], then[image: there is no content]


	If w ∈ B+, |w| = pn − 1, [image: there is no content], then


	if a ∈ B, then[image: there is no content],


	if a ∈ B, [image: there is no content], [image: there is no content]for any l1 ≠ l2, l1, l2 ∈ [0,p−1], k ∈ [0, 2pn − 1], then φ′(c) ≠ φ′(c′).







It is easy to notice that for any fixed b ∈ A \ {0}, any expression of the form ek(p − 1) for some [image: there is no content], which occurs in the assertion of the above Lemma could be replaced by ek(b).

The same observation is true for Lemma 11.

Let us denote [image: there is no content] for any [image: there is no content]. Notice that, if [image: there is no content], [image: there is no content] then |w| = pn.

Lemmas 4, 8 and 10 play a key role in an inductive proof of the following lemma. The proof is left to the reader.

Lemma 11. For any[image: there is no content]the following assertions are true:


	[image: there is no content]

for every [image: there is no content],


	[image: there is no content].




The result of the above lemma is used later when we prove that [image: there is no content] is D-chaotic. For [image: there is no content] and [image: there is no content], let us denote:



Qpn,w={Fk(we∞(p−1))∈Bℕ:k∈[0,2pn+1−1]}Qpn=∪w∈RpnQpn,w.








From Lemma 11 for any [image: there is no content] we have [image: there is no content] for any [image: there is no content] and [image: there is no content]. Since the family [image: there is no content] is a base of [image: there is no content] then we obtain the following corollary.

Corollary 12. Per(F) is dense in[image: there is no content].

For [image: there is no content], [image: there is no content], c ∈ B, i ∈ [0, pn) define a word [image: there is no content] putting for j ∈ [0, pn)



w[i,c](j)={w(j)ifj>i,cifi=j








and w[i, c](j) ∈ B for j < i.

The above denotation facilities presentation of the following observations.

According to Lemma 9 Condition (*) does not hold. Thus Point 1 of Lemma 4 implies that for i ∈ [1, pn), there exist m1, m2 ∈ [1, p − 1], m1 ≠ m2, [image: there is no content] such that



{F′k2pn(w[i,c]ei−1(p−1)ek2pn−i−1(bm1))(i)}k∈[1,p]=Ωm1,{F′k2pn(w[i,c]ei−1(p−1)ek2pn−i−1(bm2))(i)}k∈[1,p]=Ωm2,whereΩm1≠Ωm2.








Additionally, from Lemma 11 we have



F′k2pn(w[i,c]ei−1(p−1)ek2pn−i−1(bm))=w[i,d],form=m1orm=m2and fork∈ℕ\{0}.








Observations made above, the possibility of choosing bm∈{bm1,bm2} and the fact that i varies in the range from i = pn − 1 to i = 0 play an essential role in the proof of the subsequent lemma. This proof, based also on Lemmas 4, 8, 9 and 11 is analogical to the proof of its counterpart in [14].

Lemma 13. Let us assume that



n∈ℕ\{0},x,y∈Qpn,t=x[0,pn),t′=y[0,pn)∈Bpn.








There exists



[image: there is no content]








such that



[image: there is no content]








Lemma 3 implies that [image: there is no content] is surjective. Observe that the family [image: there is no content] is a base of [image: there is no content] and thus it is enough to prove that for any [image: there is no content], t, [image: there is no content] there exists [image: there is no content] such that tBω ∩ F −m(t′Bω) ≠ θ. From Lemma 11 we have [image: there is no content] for any [image: there is no content] Thus Lemma 13 implies the following corollary.

Corollary 14. Cellular automaton[image: there is no content]is transitive.



5. Main Result

This section contains the main result concerning the cellular automaton [image: there is no content], that is a theorem presented below. It exposes these properties of F, which are invariants of a topological conjugacy.

Theorem 15. For any prime number p the considered automaton[image: there is no content]defined over an alphabet B of 2p elements has the following properties:


	is not injective,


	has no fixed points,


	has continuum of periodic points with period equal to 2,


	has topological entropy[image: there is no content],


	is D-chaotic.




Proof. From Lemma 3 follows that F is not injective, is surjective and has no fixed points, has continuum of periodic points with period 2 and finally its topological entropy is equal to log(p) > 0.

The last assertion is proved considering two subcases.

For the first subcase assume that p ≤ 3. A form of the local rule [image: there is no content] allows for a construction of oriented graphs having properties exactly as required in [13,15]. Arguing analogically as in [13,15] we finally obtain density of P er(F ) in [image: there is no content], and transitivity of F.

For the second subcase assume that p ≥ 5. From Corollary 12 P er(F ) is dense in [image: there is no content] and Corollary 14 implies that F is transitive. Hence in any case F is D-chaotic. □

The following conclusions points out some possibilities of classification of the cellular automaton [image: there is no content] in Cantor metric space [image: there is no content].

A positively expansive cellular automaton defined in [image: there is no content] is topologically conjugated with a one-sided subshift of finite type (SFT) [1,2], which has no infinite set of periodic points with the period 2. Cardinality of the set of periodic points with the period 2 is an invariant of a topological conjugacy. Hence basing on Point 3 of Theorem 15 the following corollary could be derived.

Corollary 16. Cellular automaton F is not positively expansive.

Defined for any prime p, and presented in [13–15] a one-sided cellular automaton associated to F has continuum of fixed points and topological entropy log(p). Cardinality of the set of fixed points is an invariant of a topological conjugacy. Thus Point 2 of Theorem 15 leads to the following corollary.

Corollary 17. For any fixed prime number p, the cellular automaton F is not topologically conjugated with an associated one-sided, D-chaotic cellular automaton presented in [13–15] having continuum of fixed points and topological entropy log(p).

Below we present an example of a cellular automaton [image: there is no content] which is not transitive. It is defined in [image: there is no content], by a local rule [image: there is no content] over an alphabet B = {0, 1, 2, .…, 2p − 1} for which a mapping [image: there is no content] defined in Section 3 is a surjective morphism SDS, F′(aφ′(b)) = F′ (ab) for any a, b ∈ B, and has the following properties:


	is left permutative,


	is right-closing,


	is surjective and non-injective,


	has no fixed points,


	has continuum of periodic points with the period 2,


	is non transitive.




Example 1. Let us consider



F:Bℕ→Bℕ,F′:B2→B,F′(a,b)=f′(a,b)+G′(φ′(a),φ′(b)),f′(ab)=(a+1)mod2,∀a,b∈B.








Just from the definition of F′, for any fixed b, c ∈ B there exists exactly one symbol a=φ′(a)+amod2∈B such that F′ (ab) = c. Hence [image: there is no content] is left-permutative [21] and so surjective [23].

Additionally, if F′ (da) = F′ (db) for some d, a, b ∈ B and a 6 ≠ b, then [image: there is no content] and F′ (ac) ≠ F′ (bc) for any c ∈ B. Thus [image: there is no content] is right-closing and has a dense set of jointly periodic points [24].

For p ≥ 3, if we take x,x′∈Bℕ, such that



[image: there is no content]








then



[image: there is no content]








For p = 2 we have



[image: there is no content]








Additionally F′ (ac) ≠ a for any a, c ∈ B. Consequently[image: there is no content]is not injective and has no fixed points. Notice that F′ (ac) = 1 − a for any a, c ∈ E. Hence, if[image: there is no content], then F 2(x) = x and cardinality of the set[image: there is no content] is continuum.

Just from the definition of F′ : B2 → B follows that



F′(aAA)=(B\A)2,∀a∈A,F′(b(B\A)A)=A2,∀b∈B\A.








Hence, for any t ∈ C = A2 ∪ (B \ A)2 and t′ ∈ B2 \ C we have F′ (ts) ≠ t′ for every s ∈ B. It means, that for any t ∈ C, t′∈ B2 \ C and any integer [image: there is no content] it holds tBω ∩ F −m(t′Bω) = ∅. It excludes transitivity of [image: there is no content].
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