
Entropy 2014, 16, 418-442; doi:10.3390/e16010418
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Quantifying Compressibility and Slip in Multiparticle Collision
(MPC) Flow Through a Local Constriction
Tahmina Akhter 1 and Katrin Rohlf 2,*

1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada;
E-Mail: takhter@uwaterloo.ca

2 Department of Mathematics, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada

* Author to whom correspondence should be addressed; E-Mail: krohlf@ryerson.ca;
Tel.: 1-416-979-5000, Fax: 1-416-598-5917.

Received: 27 October 2013; in revised form: 13 December 2013 / Accepted: 16 December 2013 /
Published: 2 January 2014

Abstract: The flow of a compressible fluid with slip through a cylinder with an asymmetric
local constriction has been considered both numerically, as well as analytically. For the
numerical work, a particle-based method whose dynamics is governed by the multiparticle
collision (MPC) rule has been used together with a generalized boundary condition that
allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal
gas and behaves like a compressible, viscous flow on average, an approximate analytical
solution has been derived from the compressible Navier–Stokes equations of motion coupled
to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is
assumed to have a polynomial form, and the location of maximum constriction is varied
throughout the constricted portion of the cylinder. Results for centerline densities and
centerline velocities have been compared for various Reynolds numbers, Mach numbers,
wall slip values and flow geometries.

Keywords: multiparticle collision (MPC) dynamics; constriction; slip; Karman–Pohlhausen
method; compressible; ideal gas

1. Introduction

Flows through microchannels and microtubes have become recent areas of interest due to new
developments in the fabrication technology of microfluidic devices. Examples of applications include
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micro-gas turbine generators and bio-analytical devices. In order to implement flow control measures
or to optimize the design of bio-analytical devices, for example, a proper understanding of the flow
through the device has to be developed. On the other hand, in gas microflows, compressibility effects
can be important, and wall slip can be measurable, requiring incorporation of these in any numerical
or analytical studies in this field. Particle-based methods, such as multiparticle collision dynamics
(MPCD), are a means to simulate flows of a Newtonian, compressible, ideal gas, and slip effects
can be incorporated very easily. Additionally, a constricted geometry is an ideal flow domain where
compressibility effects can be important, for which an analytical solution is feasible. Our goal in
this paper is to develop a better understanding, both theoretically and numerically, of the effects of
compressibility and wall slip in a flow through a local constriction.

Flows through constrictions are popular in blood flow studies, and the analytical method used in this
paper is an extension of the pioneering analysis carried out in [1–3]. The method used is called the
Karman–Pohlhausen method, which essentially leads to the determination of the axial velocity profile.
In [1–3], the fluid is considered to be Newtonian and incompressible, and the no-slip assumption is
used, as would be common for blood flow applications. A more accurate pressure distribution was later
developed for the same flow problem and presented in [4]. The same method was also used in [5],
where the flow of an incompressible couple-stress fluid through a constriction was developed. In [6], a
modified Karman–Pohlhausen method was proposed, and a general (2M)-degree polynomial was used
for the flow field rather than a fourth degree polynomial, as per the original Karman–Pohlhausen method.
In [7], slip was incorporated for incompressible, Newtonian flow through a local constriction. Weakly
compressible flow with slip was later considered by [8,9], who also allowed for a flow geometry that is
not necessarily symmetric about the location of maximum constriction. The results presented here are
extensions of the results given in [8,9], giving more accurate expressions for the axial velocity profile.

Numerical works for flow through constrictions are two-fold. Discretization of the Navier–Stokes
equations of motion for steady flow through stenoses was carried out by a number of authors for a
Newtonian fluid [10–16]. Non-Newtonian models were considered numerically in [17–19] to name
a few. All but [19] used the no-slip boundary condition. All of these works are for incompressible
flows as they are applied to blood flow studies. Particle-based numerical methods, such as the
Lattice-Boltzmann method [20], dissipative particle dynamics (DPD) [21,22] and multiparticle collision
(MPC) dynamics [8,9,16], have more recently led to numerical solutions for flow through a local
constriction. The Lattice-Boltzmann method has also recently been used for blood flow studies in
complex flow geometries for realistic cardiovascular flow domains [23–25]. The method has been
reviewed recently in [26], and its use for complex flows has been reviewed in [27]. Except for [8,9],
the results are numerical. Since compressible flows through constrictions can exhibit significant
compressibility effects and since particle-based methods have compressibility built-in, such methods
are ideal numerical means for simulating compressible flow through local constrictions.

Additional particle-based methods applied to blood flow studies in microvessels, for which
deformable particles are modeled separately from the fluid in which they are suspended, include
simulations with MPC [28,29] and DPD [30–33]. In [32], a Y-shaped bifurcation is considered, and [29]
consider a complex flow domain. The simulations in this paper differ from these references in that the
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MPC fluid in this paper has point particles that neither deform nor aggregate, and there is only one type
of particle in the system.

In this paper, the Karman–Pohlhausen method is used to develop the axial velocity distribution for
steady, Newtonian flow through a stenosed vessel, allowing for slip at the wall, as well as compressibility.
The analysis is a natural extension of [1] and an improvement to the results given in [8,9]. The flow
geometry considered is axisymmetric, but asymmetric about the location of maximum constriction.
Effects of compressibility, slip and flow geometry are assessed. Numerical results for flow through
the same geometry using multiparticle collision (MPC) dynamics are also obtained and compared to the
analytical solution.

2. Multiparticle Collision Dynamics

The particle system contains N identical point particles of unit mass that are distributed uniformly
over cells on a regular three-dimensional lattice. Each cell, ξ, contains n particles on average. At discrete
time intervals, ∆t, the continuous positions, ri, and velocities, vi (i = 1, . . . N ), are updated according
to the multiparticle collision (MPC) dynamics originally developed in [34]. So as to ensure Galilean
invariance, a random grid shift is implemented prior to each collision step as first introduced in [35].
The idealized collisions of the MPC algorithm then update the velocity of particle i according to:

v→ Vξ + ω̂ξ(vi −Vξ) (1)

where ω̂ξ is a stochastic rotation matrix that rotates the velocities by either +π/2 or −π/2 about a
randomly chosen axis that varies from cell to cell and in time, and Vξ is the average velocity of all
particles in cell ξ in the pre-collision state [34].

Next, a constant external force accelerates the post-collision velocity of particle i in the z-direction
according to:

viz → viz + g∆t (2)

where viz is the z-component of the velocity of particle i and g is the acceleration value.
To simulate isothermal flow conditions, a thermostat is applied to the system, so as to remove the

energy that the external force pumps into the system. The velocity of each particle is rescaled according
to a profile-unbiased Galilean invariant thermostat first introduced by [36], the details of which can be
found in [8,9,16].

Finally, free-streaming of the particles updates the positions according to:

ri → ri + vi∆t (3)

where the velocity here is the velocity after the collision, acceleration and thermostatting steps have
taken place.
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2.1. Boundary Conditions

Periodic boundary conditions are applied in the z-direction, and collisions with the cylinder walls
follow the generalized boundary condition [8,9,16,37,38]:

vn → −vn (4)

vt → (2λ− 1)vt (5)

which is capable of incorporating macroscopic slip by means of changing the value of λ ∈ [0, 1]. No-slip
flow is obtained with the λ = 0 bounce-back rule, while elastic collisions (λ = 1) would result in uniform
flow through the pipe. For our simulations, we use λ ∈ [0, 0.5].

In order to compare the particle-based method with the analytical results, the particle-system is
subjected to a cumulative averaging procedure as outlined in [16], where it was found that the averaging
method is ideal for determining the macroscopic velocity profile for MPC flows.

Theoretical expressions for the viscosity coefficient of an MPC flow have been developed, and it has
been shown that for our choice in ω̂:

µ = µkin + µcoll (6)

where:

µkin =

(
nkBT

m(∆x)3

)
∆t

[
5n

6(n− 1 + e−n)
− 1

2

]
(7)

µcoll =
m

18∆x∆t
(n− 1 + e−n) (8)

and kB is the Boltzmann constant, T the system temperature, ∆x the length of a cubic cell in the lattice
and n the average number of particles in a cell [34,35,39–43].

3. Theoretical Analysis

The governing equations of motion for a compressible, isothermal, viscous flow of an ideal gas are
given by:

∂ρ

∂t
+∇ · (ρu) = 0, (conservation of mass) (9)

ρ
D

Dt
u = −∇P + ρf + µ∇2u + (κ− 2

3
µ)∇(∇ · u)

(conservation of momentum) (10)

P =
kBT

m
ρ, (equation of state) (11)

where ρ is the density, t is time, D/Dt = ∂/∂t+u ·∇ is the material derivative, u is the velocity vector,
P is the pressure, f corresponds to an external force, µ is the viscosity, κ is the bulk viscosity, m is the
mass of the fluid particle, kB is the Boltzmann constant and T is the constant fluid temperature.

Assuming steady-state and axisymmetry, the velocity vector in cylindrical coordinates is assumed to
have the form:

u = (ur, uθ, uz) = (u(r, z), 0, w(r, z)) (12)
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together with ρ = ρ(r, z). Under the Stokes assumption (κ = 0), the governing equations, with an
external force in the form f = (fr, fθ, fz) = (0, 0, ρg) become:

∂

∂r
(ρu) +

∂

∂z
(ρw) +

ρu

r
= 0, (mass) (13)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂P

∂r
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
− u

r2

)
+
µ

3

∂

∂r
(∇ · v), (r-momentum) (14)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= ρg − ∂P

∂z
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
+
µ

3

∂

∂z
(∇ · v), (z-momentum) (15)

P (r, z) =
kBT

m
ρ(r, z), (equation of state) (16)

where:

∇ · v =
u

r
+
∂u

∂r
+
∂w

∂z
(17)

and the θ-momentum equation is identically satisfied.
As per [1], for a mild stenosis geometry, the r-momentum Equation (14) can be approximated as

∂P
∂r

= 0, in which case, Equation (16) implies ρ = ρ(z), which can be used in Equation (13) to give:

u

r
+
∂u

∂r
= −1

ρ

∂

∂z
(ρw) (18)

Using this in the last term of Equation (15), together with the assumption that u∂w
∂r
� w ∂w

∂z
allows us to

write the system for determining w(r, z) and P (z) as:

ρw
∂w

∂z
= ρg − dP

dz
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
− µ

3

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
(19)

P (z) =
kBT

m
ρ(z) (20)

Following [1], we now assume that the radial dependence of the axial velocity, w, is a fourth-order
polynomial in the form:

w

W
= Aη +Bη2 + Cη3 +Dη4 + E (21)

where η = R−r
R

, and W = W (z) is the as yet unknown centerline velocity. Constants A to E are
determined by imposing:

(i) w = ws√
1+R′2 at r = R (slip boundary condition),

(ii) ∂w
∂r

= 0 at r = 0 (axisymmetric flow),
(iii) w = W at r = 0 (by definition of centerline velocity W ),
(iv) ∂2w

∂r2
= −2(W−ws)

R2 at r = 0 (nearly parabolic flow with slip),

(v) dP
dz
≈ ρg + µ

(
∂2w
∂r2

+ 1
r
∂w
∂r

)
at r = R (using (19)).
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Condition (i) follows from solving u ·n = 0 (the vanishing normal component of velocity) and u · t =

ws (the tangential component of velocity is ws) for w, while (iv) comes from the velocity profile:

wpoi(r) = (W − ws)
[
1− r2

R2

]
+ ws (22)

which is Poiseuille flow in an unconstricted tube with slip, ws, at the wall (r = R) and W is
centerline velocity.

Imposing (i)–(v) and solving for the unknown constants gives:

A =
1

7

(
−λ+ 10− 12E + T + 2

ws
W

)
(23)

B =
1

7

(
3λ+ 5− 6E − 3T +

ws
W

)
(24)

C =
1

7

(
−3λ− 12 + 20E + 3T − 8

ws
W

)
(25)

D =
1

7

(
λ+ 4− 9E − T + 5

ws
W

)
(26)

E =
ws

W
√

1 +R′2
(27)

where:

λ =
R2

µW

dP

dz
(28)

and:

T =
ρgR2

µW
(29)

By definition, the flow rate is given by:

Q = πρR2W =

R∫
0

2πρwr dr (30)

Substituting Equation (21) for w, using Equations (23)–(27) and solving for W in terms of W , gives
the relationship:

W =
210

97
W +

2

97

R2

µ

dP

dz
− 2

97

R2ρg

µ
− 11

97
ws −

102

97

ws√
1 +R′2

(31)

The details pertaining to the next step involving the derivation of the equation for dP
dz

are outlined in
Appendix A. The result is:

R2

µW

dP

dz

(
1− 388

225
Ma2 +

97

225

ws

W
Ma2 − 194

225

ws

W

R′√
1 +R′2

Ma2

Re

)
=

388

225
R′Re+

gR

W
2Re

−8− 8

25

ws

W
− 97

225

w2
s

W
2R
′Re+

ws

W

1√
1 +R′2

(
208

25
− 194

75

d

dz
(RR′)

)
(32)

+
97

75

R′

1 +R′2
w2
s

W
2Re−

388

75
RR′

ws

W

d

dz
(1 +R′2)−1/2
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where we have defined the local Reynolds and Mach numbers as:

Re =
ρWR

µ
(33)

and:

Ma =
W√
kBT
m

(34)

respectively.
Finally, substitution of Equations (31) and (32) in Equation (21) and subsequent simplification gives

the axial velocity as:

w(η, z)

W
=

Gη +Hη2 + Iη3 + Jη4(
1− 388

225
Ma2 + 97

225
ws

W
Ma2 − 194

225
ws

W
R′√
1+R′2

Ma2

Re

) +K (35)

where G, H , I , J and K are given in Appendix B.
Substituting η = 1 and simplifying gives the centerline velocity as:[

w(η = 1, z)

W
− ws

W
√

1 +R′2

](
1− 388

225
Ma2 +

97

225

ws

W
Ma2 − 194

225

ws

W

R′√
1 +R′2

Ma2

Re

)
= 2 +Re

dR

dz

[
8

225
− 2

225

w2
s

W
2 +

6

225

1

1 +R′2
w2
s

W
2

]
+

1

75

ws

W

[
−9− 141√

1 +R′2
− 4√

1 +R′2
(R′2 +RR′′) + 8

RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
−56

15
+

2

225

gR

W
2

(
4Re− ws

W
Re+ 2

ws

W

R′√
1 +R′2

)
(36)

+
1

225

ws

W

(
254− 11

ws

W
+

796√
1 +R′2

− 199√
1 +R′2

ws

W

)
+

2

225

1

Re

ws

W

(
−210

R′√
1 +R′2

+ 11
ws

W

R′√
1 +R′2

+ 199
ws

W

R′

1 +R′2

)]
Note that substituting Ma = 0 and dR

dz
= 0 leads to W

W
= 2 − ws

W
, which agrees with Equation (A9) for

w = wpoi, as it should, and that substitution of Ma = 0 and ws = 0 for dR
dz
6= 0 in the above solution

gives Forrester and Young’s [1] result for incompressible no-slip flow.

4. Equation for Density

In order to plot the velocity profile obtained in the previous section, the explicit solution for ρ(z) has
to be found, since Re and Ma depend on ρ(z), due to their local nature. To achieve this, the ideal gas
equation of state Equation (20) can be used to replace pressure terms with density in Equation (A2),
while constant flow rate can be used to replace local Re and Ma numbers with upstream values and ρ(z)

terms. Specifically, constant flow rate implies (see Equation (30)):

W =
W 0ρ0R

2
0

ρR2
(37)
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where the zero subscript indicates constant upstream values in the unconstricted portion of the cylinder.
Thus:

Re =
ρWR

µ
=

ρW 0ρ0R
2
0R

ρR2µ

= Re0
R0

R
(38)

and:

Ma =
W√
kBT
m

=
W 0ρ0R

2
0

ρR2

√
kBT
m

= Ma0
ρ0
ρ

(
R0

R

)2

(39)

Lastly, the dimensionless slip velocity can be written as:

ws

W
=

ws

W 0

(
R

R0

)2
ρ

ρ0
(40)

It follows that the pressure equation can be written in terms of ρ(z) using the equation of state,
Equation (20), giving:

− R2
0

µW0

(
R

R0

)4
ρ

ρ0

kBT

m

dρ

dz

[
1− 388

225
Ma20

(
ρ0
ρ

)2(
R0

R

)4

+
97

225

ws

W0

Ma20
ρ0
ρ

(
R0

R

)2

−194

225

ws

W0

R′√
1 +R′2

Ma20
Re0

ρ0
ρ

R0

R

]
=

388

225
R′Re+

gR

W
2Re

−8− 8

25

ws

W
− 97

225

w2
s

W
2R
′Re+

ws

W

1√
1 +R′2

(
208

25
− 194

75

d

dz
(RR′)

)
(41)

+
97

75

R′

1 +R′2
w2
s

W
2Re−

388

75
RR′

ws

W

d

dz
(1 +R′2)−1/2

where Re and Ma must be written in terms of Re0, Ma0 and ρ as given by Equations (38)–(40).

5. Flow Geometry

In order to be able to consider an asymmetric stenosis, the radius is taken to have the idealized
polynomial form:

R(z) =


R0, for z ≤ z1

az3 + bz2 + cz + d, for z1 ≤ z ≤ z2

ez3 + fz2 + gz + h, for z2 ≤ z ≤ z3

R0 for z ≥ z3

(42)

where z2 = z1 + l1 and z3 = z2 + l2.
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Imposing that R(z) be continuously differentiable and that R(z2) = R0 − δ and R′(z2) = 0 requires:

a =
2δ

l31
(43)

b = −3δ(2z1 + l1)

l31
(44)

c =
6δz1(z1 + l1)

l31
(45)

d = −2δz31 + 3δz21l1 −R0l
3
1

l31
(46)

e = −2δ

l32
(47)

f =
3δ(2z1 + 2l1 + l2)

l32
(48)

g = −6δ(z1 + l1)(z1 + l1 + l2)

l32
(49)

h =
3δl2(z

2
1 + l21) + 6δz1l1(z1 + l1 + l2) + 2δ(z31 + l31) + (R0 − δ)l32

l32
(50)

The resulting axisymmetric flow domain is shown in Figure 1. As can be seen from the figure, by
construction, δ controls the severity of the constriction, while l1 can be used to create the asymmetry
about the z2 location.

Figure 1. Flow geometry.
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2
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z
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δ
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For all results that follow, R0 = 10.5, z1 = 600.5 and l1 + l2 = 30.

6. Numerical Results and Discussion

For all (dimensionless) MPC simulations that follow, there were approximately N = 8.5 million
particles of unit mass m = 1 in the system, ∆x = 1 = ∆y = ∆z; there were 1, 200 cells in the z
direction and 25 cells in the x and y directions, respectively. The time step was taken to be ∆t = 1 and
kBT = 1, together with n = 20. For the cumulative average, the averaging started after 5, 000 time steps
and was performed for 35, 000 time steps thereafter. The initial system was set up with x and y velocities
drawn from a Maxwellian velocity distribution, and z velocity drawn from the steady velocity profile of
flow through a cylinder of fixed radius R0.
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A length of 1, 200 cells in the z-direction was chosen so as to ensure that periodic boundary conditions
are valid. For this cylinder length, the velocity settled back to the expected parabolic profile in an
unconstricted cylinder prior to reaching the exit for all constrictions considered here. In addition, since
the velocity and density were found to be affected upstream in some simulations, starting the constriction
at z = 600.5 ensured that there was a region upstream for which this effect was not present. Although
some constrictions did not require a length of 1,200, this length was fixed for all simulations, so as to
ensure that the most severe constriction with the highest Reynolds number would satisfy the periodic
boundary condition.

The initial velocity distribution in the z direction was chosen, so as to reduce the simulation time.
Test simulations (not reported here) were performed using a Maxwellian velocity distribution in all three
directions as the initial state. The system maintained the Maxwellian velocity distribution in the x and
y directions, and on average, the expected z velocity distribution that was later chosen as the initial
state. In this way, the system reached equilibrium earlier, and the cumulative averaging could start after
5,000 time steps in all cases considered.

Simulations were done using serial code on an Intel Xeon X5482 3.2 GHz machine with 8 GB RAM.
Typical run times were 3–4 days.

To obtain the required upstream values for ρ0, the particle-based numerical results were averaged over
the centerline density values for z ∈ [0, 100], and a best parabolic fit to the cross-section at z = 100.5

gave rise to the values for W 0 and ws, as provided in Tables 1 and 2. These values were then used to
determine the density from numerical integration of Equation (41).

Table 1. Parameter values used in the analytical solution in Figure 2 for comparison with
the particle-based method for compressible no-slip flow (λ = 0, ws = 0).

g ρ0 ρequil ρ0−ρequil

ρ0
W 0 Re0

0.005 20.025321 20.55929025 −0.0267 0.168938215102975 4.126

0.01 20.187479 20.73938113 −0.0273 0.338610045766591 8.277

0.02 20.9408427 21.57604487 −0.0303 0.683610724092841 16.770

Table 2. Parameter values used in the analytical solution in Figure 3 for comparison with
the particle-based method for compressible flow with slip (λ = 0.5).

g ρ0 ρequil ρ0−ρequil

ρ0
ws W 0 Re0

0.005 12.3602273 12.70014982 −0.0275 0.0358641 0.164985484616928 3.784

0.01 12.4565002 12.57105274 −0.0092 0.0733492 0.331580364858540 7.616

0.02 12.8636085 12.53377480 +0.0256 0.145642 0.670483591369728 15.479
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Figure 2. Comparison of analytical results with the particle-based method for variation in the
Reynolds number in a constriction for which δ = 0.5, l1 = 20, λ = 0 (no slip) and ws = 0.
(a) Numerical and theoretically-predicted scaled centerline densities; and (b) corresponding
numerical and analytical scaled centerline velocities. See also Table 1.
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Figure 3. Comparison of analytical results with the particle-based method for variation in the
Reynolds number in a constriction for which δ = 0.5, l1 = 20, λ = 0.5 (slip). (a) Numerical
and approximate scaled centerline densities; and (b) corresponding numerical and analytical
scaled centerline velocities. See also Table 2.
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It can be seen in Figure 4 that the bounce-back rule (MPC-BB, λ = 0) correctly leads to the expected
zero velocity at the wall, while slip is clearly present in the MPC-LIT(λ = 0.5) case.

Figure 4. Cross-section velocity profile at various z locations far upstream of the
constriction for λ = 0 (bounce-back, multiparticle collision (MPC)-BB) and for λ = 0.5

(loss-in-tangential, MPC-LIT) together with a best parabolic fit. MPC-BB correctly leads to
the no-slip boundary condition, while MPC-LIT clearly has finite slip at the wall.
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The differential equation for density was found to have a stable positive steady state, ρequil, that
differed slightly from the ρ0 determined from the MPC results. The values have been added to the
Tables, as well as the relative errors from ρ0. The density equation was solved numerically using the
fourth-order Runge–Kutta scheme with ∆z = 0.001 using MAPLE. Since the geometry is a piecewise
defined function, the equation was solved one piece at a time, and instead of imposing ρ0 as an initial
condition at z = 0, ρequil was used. The differential equation was then solved on [0, z1] with the value
at z1 becoming the initial condition for the differential equation on [z1, z2], and so on. In this way, the
numerical solution was found for z ∈ [0, 1200]. Since the system has a steady state, the density settled
back to the equilibrium value downstream of the constriction, thus ensuring that periodic boundary
conditions are obtained in the analysis allowing comparison with the MPC results.

6.1. Compressible No-Slip Flow

In Figure 2a, a comparison of the theoretically-predicted centerline density arising from the numerical
solution of Equation (41) is made with the particle-based MPC density results in the no-slip case.
It can be seen that although there are some discrepancies between the predicted density curves and those
obtained from the MPC simulations, both predict a density increase through the constriction, and the
best agreement is found for the lowest Reynolds number considered (g = 0.005 curves). Worth noting
in Table 1 is the increase in ρ0 as Re0 increases, which is consisted with the increase in ρequil.

Using the theoretically-predicted density curves in the centerline velocity expression (36) gives
rise to the theoretically-predicted centerline velocity curves in Figure 2b. It can be seen that the
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theoretically-predicted centerline velocity agrees fairly well with the MPC result for g = 0.005, but
as the Reynolds number increases, the agreement worsens. Worth noting is the appearance of a dip in
the centerline velocity in both the theoretically-predicted and MPC results as a result of the constriction
for the largest Reynolds number considered (g = 0.02).

6.2. Compressible Flow with Slip

For compressible flow with slip at the wall, relevant parameter values arising from the theoretical and
numerical results are shown in Table 2. Theoretical scaled centerline densities and centerline velocities
are compared to MPC results in Figure 3. It can be seen in (a) of the figure that there is some discrepancy
between the theoretically predicted and MPC density results, but that the agreement is somewhat better
than in the no-slip case. Likely due to the better agreement between the density curves, the scaled
centerline velocities agree better, as well, and the dip for the largest Reynolds number (g = 0.02) is
slightly overestimated by the theoretical predictions, contrary to the no-slip case.

Worth noting here is that, although the density curves seem to match better in the slip case, glancing at
Table 2, ρ0 is found to increase as the Reynolds number increases, while the reverse is predicted
with ρequil.

6.3. Effect of the Severity of the Constriction

For the smallest Reynolds number considered (g = 0.005), the severity of the constriction is varied for
both slip (λ = 0.5) and no-slip (λ = 0) flow. Corresponding parameter values are given in Table 3, and
resulting scaled centerline velocity plots are shown in Figure 5. It can be seen that there is relatively good
agreement between the theoretically-predicted curves and those from the MPC results for the mildest
constriction (δ = 0.5) and that there is some discrepancy as the constriction becomes more severe. The
appearance of a dip in the scaled centerline velocity for the more severe constrictions is captured in the
slip case, while the decrease in scaled centerline velocity upstream of the constriction is found in the
MPC no-slip results, but not in the theoretical predictions. On these same no-slip plots, the theoretical
results predict a lower scaled centerline velocity in the post-constriction region, while MPC results do
not show this feature.

Table 3. Parameter values used in the analytical solution in Figure 5 for comparison with
particle-based method for compressible flow through constrictions of varying degrees.

δ λ ρ0 ρequil ws W 0 Re0

0.5 0 20.025321 20.55929025 0 0.168938215102975 4.126

0.5 0.5 12.3602273 12.70014982 0.0358642 0.164985484616928 3.784

1.5 0 19.9307477 20.43003857 0 0.168324883949003 4.109

1.5 0.5 12.3319318 12.67373252 0.0379518 0.165379390657969 3.792

2 0 19.8767493 20.32769045 0 0.167506930369402 4.088

2 0.5 12.3103817 12.61661932 0.0356837 0.163995726106273 3.759
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Figure 5. Comparison of analytical results with the particle-based method as the severity of
the constriction varies with g = 0.005, l1 = 20. (a) Scaled centerline velocities for no-slip
flow (λ = 0); (b) scaled centerline velocities for flow with slip (λ = 0.5). See also Table 3.
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6.4. Effect of Increasing Slip

Increasing the slip parameter, λ, and, thus, the wall slip, ws, leads to Figure 6. Parameter values used
in the analytical velocity profiles are provided in Table 4. There is very good agreement between the
analytical and the numerical results as the slip is varied, and the equilibrium density values from the
theoretical predictions agree well with the centerline densities obtained in the MPC results.

Table 4. Parameter values used in the analytical solution in Figure 6 for comparison with the
particle-based method for compressible flow through a constriction with δ = 0.5, g = 0.005,
l1 = 20 and variable slip parameter values.

λ ρ0 ρequil ws W 0 Re0

0 20.025321 20.55929025 0 0.168938215102975 4.126

0.2 14.9570845 14.90941499 0.00852200 0.155209851730363 3.663

0.4 12.6323301 12.66736550 0.0242417 0.155669931290677 3.583

0.5 12.3602273 12.70014982 0.0358642 0.164985484616928 3.784

Figure 6. Comparison of analytical and numerical scaled centerline velocities for varying
values of the wall slip through a constriction with g = 0.005, δ = 0.5 and l1 = 20. See also
Table 4.
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6.5. Contour Plot Comparison

Figure 7 shows contour plots for the scaled centerline velocity for both the analytical and numerical
particle-based method results for a constriction with δ = 2, g = 0.005, l1 = 20 and λ = 0.5. For the
analytical results, the values of the last row of Table 3 were used.

Figure 7. (Color online) Contour plots for the scaled velocity with δ = 2, λ = 0.5, l1 = 20

and g = 0.005 for (a) the analytical results and (b) the particle-based method.

z

x

(a)

 

 

570 580 590 600 610 620 630 640 650 660 670
−10

−5

0

5

10

0

0.5

1

(a)

z

x

(b)

 

 

570 580 590 600 610 620 630 640 650 660 670
−10

−5

0

5

10

0

0.5

1

(b)

7. Discussion and Conclusions

An approximate analytical solution for the density, and for the axial velocity distribution, in an
asymmetric constriction have been developed and compared to the numerical solution of a particle-based
system governed by the multiparticle collision (MPC) dynamics. The solutions in all cases correspond
to compressible flow with slip at the cylinder wall. Reynolds numbers varied from approximately
four to 17.

Analysis of results revealed that increasing the Reynolds number in a fixed geometry leads to the
appearance of a dip in the scaled centerline velocity in the entry region of the constriction, together with
more pronounced flow acceleration following the location of maximum constriction. This is true with
and without slip. In addition, as the Reynolds number increases, there is an increase in scaled centerline
density, ρ0, in all cases considered, except in the analytical results with slip that predict a decrease in
centerline density (ρequil) instead. As the severity of the constriction increases, both slip and no-slip
results show acceleration through the constriction, although the analytical and MPC results agree best
for the mildest constriction (δ = 0.5) considered. Consistent with theory and MPC is the appearance of a
dip in the scaled centerline velocity in the post-constriction region that is more pronounced as the severity
of the constriction increases. This dip is, however, missing from the no-slip MPC results, which, instead,
show a dip in the upstream section that is not captured in the theoretical predictions. Lastly, increasing
slip has the effect of leading to faster flow through the constriction with the appearance of a dip in the
post-constriction region that is consistent with the MPC results.
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Figure 8. Comparison of W versus Wapprox = 2W − ws for both (a) no-slip; and (b) slip.
The best agreement is found for g = 0.005.
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Since many key features compare well between the theoretically predicted results and those obtained
by MPC, it is expected that improvements in the theory will lead to even better agreement in the
constriction region and thereafter. In particular, an approximation was made for

∫ R
0
rw2dr, which led

to some errors in the pressure equation and all equations in the subsequent analysis. In Figure 8, plots
of W and Wapprox = 2W − ws can be found for the constrictions considered in Figure 2 and 3. It can
be seen that relationship Equation (A9) is true for the smallest constriction considered and fails to hold
for the higher Reynolds numbers, more so for the no-slip case in (a). This is likely a key reason as to
why the agreement between MPC and theory is worse for larger Reynolds numbers. Furthermore, all
quadratic (dP/dz)2 and second-order d2P/dz2 terms were dropped in the analysis, which likely led to
some errors, as well. It would be interesting to explore whether or not keeping such terms in the analysis
leads to significant improvements over what was found here, and this is currently under investigation.
An additional source of discrepancy between the results could be the use of a thermostat in the MPC
simulations that is applied uniformly, rather than locally, and whether or not using a local thermostat
leads to better agreement is currently under investigation. A discussion on the use of thermostats in
MPC simulations has been given in [43,44], and it would be interesting to see whether or not changing
the thermostat in the simulations can lead to better agreement with the theoretical results.

In summary, an analytical solution for the flow of a compressible Newtonian fluid with slip at the
wall was developed and found to compare fairly well to a numerical solution for a particle-based fluid
governed by MPC in mild constrictions with low Reynolds numbers. Various Reynolds numbers, Mach
numbers, wall slip values and flow geometries were considered in the analysis for asymmetric flow
domains.
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Appendix A

In this Appendix, the details of obtaining pressure Equation (A19) are shown.
To obtain an expression for dP

dz
, we first integrate Equation (19) across the cylinder to get:

1

2

R∫
0

ρr
∂

∂z
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R2

2
− dP

dz

R2

2
+ µR

(
∂w

∂r

)∣∣∣∣
r=R

+
4

3
µ

R∫
0

∂2w

∂z2
dr (A1)

− µ

3

R∫
0

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
(A2)

Next, we divide by ρ = ρ(z) and take all z-derivatives outside of the integral using:
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to get:
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where ν = µ
ρ
. Taking w ≈ wpoi in the integral on the left-hand side gives,
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(A8)

where:

W =
1

2
(W + ws) (A9)

has been used in Equation (A6) to replace W in terms of W , and Equation (30) has been used in
Equation (A7) to replace W in terms of Q. The relationship in Equation (A9) follows from using wpoi

as given in Equation (22), in flow rate Equation (30). Although this relationship is exact for w = wpoi

in an unconstricted portion of the cylinder, it is also assumed to hold throughout the constriction, thus
potentially giving rise to some error in the analysis.

Now:
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= 0. (A16)

Thus, Equation (A8) gives:

1

2

d

dz

R∫
0

rw2 dr ≈ 2Q

3π2ρ2R2

(
dQ

dz
− Q

ρ

dρ

dz
− Q

R

dR

dz

)

− ws
6πρ

(
dQ

dz
− Q

ρ

dρ

dz

)
+

1

6
w2
sR

dR

dz
(A17)

= −4

3
RW u|r=R −

2

3
R2W

2 m

ρkBT

dP

dz
− 2

3
W

2
R
dR

dz

+
1

3
Rws u|r=R +

1

6
R2Wws

m

ρkBT

dP

dz

+
1

6
R
dR

dz
w2
s (A18)

where we have also used equation of state Equation (16) to write dρ
dz

in terms of dP
dz

and flow rate
Equation (30) to write Q in terms of W .
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Substituting Equation (A18) in Equation (A4), writing all integrals in terms of Q and differentiating,
noting that dQ/dz = 0, using

(
∂w
∂r

)∣∣
r=R

= −AW
R

from Equation (21) together with Equations (23),
(28), (29) and (31), and u|r=R = wsdR/dz√

1+R′2 , gives:

R2

µW

dP

dz

(
1− 388

225
Ma2 +

97

225

ws

W
Ma2 − 194

225

ws

W

R′√
1 +R′2

Ma2

Re

)
=

388

225
R′Re+

gR

W
2Re

−8− 8

25

ws

W
− 97

225

w2
s

W
2R
′Re+

ws

W

1√
1 +R′2

(
208

25
− 194

75

d

dz
(RR′)

)
(A19)

+
97

75

R′

1 +R′2
w2
s

W
2Re−

388

75
RR′

ws

W

d

dz
(1 +R′2)−1/2

where we have defined the local Reynolds and Mach numbers as:

Re =
ρWR

µ
(A20)

and

Ma =
W√
kBT
m

(A21)

respectively.
This is the pressure equation provided in Equation (32).

Appendix B In this Appendix, we provide the coefficients of η in axial velocity Equation (35):

G = 4 +Re
dR

dz

[
− 44

225
+

11

225

w2
s

W
2 −

33

225

1

1 +R′2
w2
s

W
2

]
+

2

75

ws

W

[
6− 156√

1 +R′2
+

11√
1 +R′2

(R′2 +RR′′)− 22
RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
−16

3
+

11

225

gR

W
2

(
−4Re+

ws

W
Re− 2

ws

W

R′√
1 +R′2

)
(A22)

+
4

75

ws

W

(
21 +

ws

W
+

104√
1 +R′2

− 26√
1 +R′2

ws

W

)
+

8

75

1

Re

ws

W

(
−25

R′√
1 +R′2

− ws

W

R′√
1 +R′2

+ 26
ws

W

R′

1 +R′2

)]
H = −2 +

43

225
Re

dR

dz

[
4− w2

s

W
2 +

3

1 +R′2
w2
s

W
2

]
+

2

75

ws

W

[
−3 +

78√
1 +R′2

− 43√
1 +R′2

(R′2 +RR′′) + 86
RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
−8

3
+

43

225

gR

W
2

(
4Re− ws

W
Re+ 2

ws

W

R′√
1 +R′2

)
(A23)

+
2

75

ws

W

(
21 +

ws

W
+

104√
1 +R′2

− 26√
1 +R′2

ws

W

)
+

4

75

1

Re

ws

W

(
−25

R′√
1 +R′2

− ws

W

R′√
1 +R′2

+ 26
ws

W

R′

1 +R′2

)]
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(A24)

I = Re
dR

dz

[
−4

5
+

1

5

w2
s

W
2 −

3

5

1

1 +R′2
w2
s

W
2

]
+

2

5

ws

W

[
−2 +

2√
1 +R′2

+
3√

1 +R′2
(R′2 +RR′′)− 6

RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
32

5
+

1

5

gR

W
2

(
−4Re+

ws

W
Re− 2

ws

W

R′√
1 +R′2

)
(A25)

+
4

225

ws

W

(
2− 23

ws

W
− 452√

1 +R′2
+

113√
1 +R′2

ws

W

)
+

8

225

1

Re

ws

W

(
90

R′√
1 +R′2

+ 23
ws

W

R′√
1 +R′2

− 113
ws

W

R′

1 +R′2

)]
(A26)

J = Re
dR

dz

[
4

15
− 1

15

w2
s

W
2 +

3

15

1

1 +R′2
w2
s

W
2

]
+

1

5

ws

W

[
3− 3√

1 +R′2
+

2√
1 +R′2

(R′2 +RR′′)− 4
RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
−32

15
+

1

15

gR

W
2

(
4Re− ws

W
Re+ 2

ws

W

R′√
1 +R′2

)
(A27)

+
1

75

ws

W

(
−44 + 21

ws

W
+

244√
1 +R′2

− 61√
1 +R′2

ws

W

)
+

2

75

1

Re

ws

W

(
−40

R′√
1 +R′2

− 21
ws

W

R′√
1 +R′2

+ 61
ws

W

R′

1 +R′2

)]
K =

ws

W
√

1 +R′2
(A28)
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