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Abstract: Casing coupling location signals provided by the magnetic localizer in retractors 

are typically used to ascertain the position of casing couplings in horizontal wells. 

However, the casing coupling location signal is usually submerged in noise, which will 

result in the failure of casing coupling detection under the harsh logging environment 

conditions. The limitation of Shannon wavelet time entropy, in the feature extraction of 

casing status, is presented by analyzing its application mechanism, and a corresponding 

improved algorithm is subsequently proposed. On the basis of wavelet transform, two 

derivative algorithms, singular values decomposition and Tsallis entropy theory, are 

proposed and their physics meanings are researched. Meanwhile, a novel data mining 

approach to extract casing status features with Tsallis wavelet singularity entropy is put 

forward in this paper. The theoretical analysis and experiment results indicate that the 

proposed approach can not only extract the casing coupling features accurately, but also 

identify the characteristics of perforation and local corrosion in casings. The innovation of 

the paper is in the use of simple wavelet entropy algorithms to extract the complex 

nonlinear logging signal features of a horizontal well tractor. 

Keywords: casing coupling location signal; Shannon wavelet time entropy; Tsallis wavelet 

singularity entropy; data mining; feature extraction 
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1. Introduction 

In horizontal well production logging, it is necessary to detect casing status, including the position 

of casing couplings, perforations and any local corrosion [1–3]. The acquisition of accurate casing 

status information is significant for safe production and prognostication of the casing service life [4]. 

During horizontal well production logging, the retractor is an essential device to transport the logging 

instruments to testing points through horizontal well casings. To ascertain the creep speed and the 

position of the retractor in a horizontal well, a magnetic localizer in the retractor transmits casing 

coupling location (CCL) signals to data terminal equipment. According to the W-characteristic 

waveforms in the CCL signal, the operator can figure out the speed and position of the retractor in oil 

well casings. However, some negative impacts, such as multiphase flow and hidden flaws in well 

casings [5–7], can cause a decrease in the SNR of CCL signals, which may even result in the failure of 

casing coupling detection. If we could develop a novel data mining method to analyze CCL signals 

with low SNR further, the casing status feature information, including casing couplings, perforations, 

and local corrosion could be extracted, the logging procedure could be simplified, the logging 

efficiency increased, and the logging costs could be reduced. 

In recent years, wavelet entropy is receiving growing attention for analyzing nonlinear signals [8,9]. 

As a novel data mining approach, wavelet entropy algorithm is employed to perform entropy 

operations on wavelet coefficients (or reconstruction signals) under various wavelet scales on the basis 

of wavelet transform and entropy theory. The main advantage of wavelet entropy is that it can realize 

the time-frequency localization of wavelet transforms and complexity estimation of entropy on 

nonlinear signals. Because wavelet entropy inherits the advantages of multi-scale wavelet transform 

and entropy, it has been applied in biological medicine, machinery, power system fault diagnosis and 

so on [10–16]. As a derivative approach of wavelet entropy, Shannon wavelet time entropy (WTE) has 

been used to analyze nonlinear signals. The Shannon WTE algorithm was introduced in detail and 

applied to diagnose transient faults in power systems, when power system transient disturbances 

including capacitor switching, lightning strikes and load start-stop occur, the features of transient 

signals can be extracted by analyzing the voltages and currents in the power grid by using Shannon 

WTE [12,13]. After discerning the similarities or differences among transient features, the transient 

disturbances can be classified into several categories and finally be verified with various classification 

methods. However, feature extraction based on Shannon WTE is not so effective, especially for 

original signals with low SNR, because the data dispersion partition is not reasonable. At the same 

time, Shannon entropy, as one portion of the Shannon WTE algorithm, is not adapted to evaluate the 

complexity of nonextensive systems. 

In this paper, after analyzing the limitations of Shannon WTE used in casing status feature 

extraction, a novel data mining approach based on Tsallis wavelet singularity entropy (WSE) is 

proposed, and the physics meaning of the WSE derivative algorithms is researched. With the approach, 

the features of coupling, perforation, and local corrosion are extracted from CCL signals with noise 

and analyzed. Finally the results of our experimental research have been shown and are discussed. 
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2. Working Principle of Magnetic Localizer in Retractor and CCL Signal 

To ascertain the speed and position of retractors creeping in horizontal well casings, a magnetic 

localizer including two Nd-Fe-B permanent magnets and a multi-turn induction coil are fixed in the 

retractor to supply the induced voltage of the CCL signal for the data acquisition module. In this paper, 

a 5000-turns induction coil is mounted between two magnets, its diameter and length are respectively 

25.4 mm and 50.8 mm (Figure 1). A TMS320LF2812 DSP with a high-speed 12-bit ADC module, the 

key chip of the data acquisition module, is used to convert the induced voltage of the CCL signal into 

digital information and transmit it to data terminal equipment. 

Figure 1. Magnetic localizer and its inner structure. 

 

When the magnetic localizer passes by casing couplings, the magnetic flux changes immediately, 

which induces a fluctuation in the inductive-electromotive force in the induction coils (Figure 2), that 

indicates the number of casing couplings and provides original data for the calculation of the speed and 

position of the retractor. 

Figure 2. The creeping retractor in casings and the generation of an ideal CCL signal. 

 

Under realistic logging conditions, the SNR of CCL signals is very low, because there are a mass of 

noises caused by negative factors such as oil corrosion, multiphase flow, the compositional variety of 

the rock stratum and hidden flaws in well casings. Therefore the casing status feature information is 

sometimes submerged in noise and cannot be resolved directly as in Figure 3. We attempt to 

decompose the CCL signal into various scales using db4 wavelets in order to eliminate the high 

frequency interference and extract the casing coupling features, but the experimental results are still 

not desirable, which is analyzed in detail in Section 5. In order to solve this problem, Tsallis 
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singularity entropy is proposed and applied to extract the casing status features from CCL signals with 

low SNR. 

Figure 3. CCL signal with low SNR. 

 

3. Disadvantage of Shannon WTE 

According to Shannon WTE definition [11,12], divided the sliding-window under wavelet 

coefficients (or reconstruction signals) into the following L segments (
1

( , , )
L

l
l

W m w Z


 ), therein 

1,{ [ ], 1,2,..., }l l lZ s s l L   do not intersect. Moreover, 0 1 ... Ls s s   , 0 min[ ( ; , )]s W m w  , and 

max[ ( ; , )]Ls W m w  . Suppose that lSum is the amount of wavelet coefficients (or reconstruction 

signals) in Zl, we obtain: 

( )m l
l

Sum
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Therefore Shannon WTE under j scale is defined as follows: 

W ( ) ( ) log( ( ))j m m
TE l lm p Z p Z   (2)

where w is the width of the sliding-window, 1,2,...,m M  and ( ) /M N w N   . 

After CCL signal in Figure 3 is transformed on the db4 wavelet basis, when w = 100 and δ = 1, the 

Shannon WTE of A3 (approximate reconstruction signal under third scale) is obtained like Figure 4. 

According to Equations (1) and (2) from Figure 4, it is found that the casing coupling features are not 

extracted, despite the use of the Shannon WTE for A3. 

Figure 4. The Shannon WTE curve. 

 

Through the statistical calculation of data-dispersion density of Zl in the sliding-window, about  

70 percent of the total data exist from Z6 to Z15 in the approximate density, therefore: 
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where Suma is the amount of reconstruction signals in Za. The other scatter is in the different densities 

from Z3 to Z5 and from Z16 to Z18 .While the tractor is passing through casing couplings, about 5~7 

percent of the total data appear in Z1, Z2, Z19, and Z20. According to Equation (1), we can obtain: 
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From Equation (5), we can know that the information feature is not extracted by using Shannon 

WTE as the most of data exist in the most fixed ranges while a few data corresponding to information 

features scatter in different densities in the special ranges. In view of the abovementioned facts, we 

make the following proposals to improve Shannon WTE algorithm. According to the data-dispersion 

density of the total range, the data range is divided into several asymmetric segments. The data range 

where there exists a large of noise information is roughly separated, while the data range where there 

exists little feature information is divided in a meticulous way. With the aid of this, the feature 

discernment will be promoted to a certain extent. However, the computational complexity is increased 

sharply with the improvement of the Shannon WTE algorithm. 

4. The Tsallis Entropy and Wavelet Singularity Entropy 

4.1. Tsallis Entropy 

Tsallis entropy put forward by Tsallis in 1988, as nonextensive entropy, is the extension and 

deploitation of the extensive entropy (B-G entropy) in statistical physics [17]. It can explain some 

abnormal experiment phenomena, such as the complexity of non-additive systems, which cannot be 

explained by the theory of extensive entropy. Tsallis entropy in a discrete expression is defined  

as follows: 

1

k
S (1 ( ) )

1

n
q

q
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 
  ( )q R  (6)

where k is Boltzmann constant,   
1

n

i
p i


 is a probability distribution with i and  

1
1

n

i
p i


  .  

Different from extensive entropy, q is introduced as a parameter, so it is called nonextension index, 

and it represents the extent of nonextension of the system in Tsallis entropy. The nonadditivity of 

Tsallis entropy of a nonextensive system, composed of A and B subsystems, is defined as follows: 
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Note that q < 1 and q > 1 correspond respectively to the ultra-extensity and sub-extensity of the 

system. For researching the mathematical concave and convex nature of Tsallis entropy, let P and Q be 
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. Suppose that 0 ≤ α ≤ 1, when Sq satisfies: 

S ( (1 ) ) S ( ) (1 ) S ( )P Q P Qq q q         (8)

The Tsallis entropy function represents the concave nature. At the same time, Tsallis entropy 

function has a definite concavity for all q values (Sq is concave for q > 0 and convex for q < 0). 

Furthermore, we consider Tsallis entropy statistical characteristics as two independent subsystems. 

According to Equation (6), we have a curves trace like Figure 5 which indicates the change law of 

Tsallis entropy with the probability distribution under different q values. 

From Figure 5, the variation of q value has considerable effects on the statistical characteristics of 

Tsallis entropy. When q > 0 and q ≠ 1, the function curves take on the appearance of concavity, and 

there exists corresponding maximum values for all. When q → 1, Tsallis entropy is equivalent to B-G 

entropy and it can describe the complexity of an extensive system [18,19]. Moreover, when q < 0, the 

function curves are contrary to the former for q > 0, and there exists the corresponding minimum 

values. Based on the above analysis, Tsallis entropy with appropriate q value is not only more flexible 

in information measurement but more widespread in the statistical range of entropy. 

Figure 5. Relation between entropy with q and probability distribution under a two-level system. 

 

4.2. Tsallis Wavelet Singularity Entropy 

Let the wavelet coefficients (or reconstruction signals) of tested signal form DL × w matrix, 

according to singular values decomposition principle, DL × w is decomposed to:  

L w L l l l l w   D U Λ V  (9)

where DL × w is L × w matrix, UL × l is L × l matrix, Vl × w is l × w matrix and Λl × l is l × l diagonal 
singular matrix. Let the elements of the principal diagonal of Λl × l be  1,2, ,i i l    and λ1 ≥ λ2 ≥ … ≥ 

λl ≥ 0. At (m + w/2) moment, the discrete expression of Tsallis WSE is 

/
Sq

k

p
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where  
1

l

m i j
j

p i  


   According to the different elements chosen in DL × w, two applications of the 

algorithm are presented as follows: 

No. 1. Let   , 1, 2, ,d k k N A   be single wavelet coefficients (or reconstruction signals) under one 

wavelet scale, to form DL × w (shown as Figure 6) at a length of w in the sliding-window. According to 

Equations (9) and (10), the No. 1 Tsallis WSE algorithm is obtained. The physical meaning of the No. 

1 Tsallis WSE is analyzed as follows: 

According to singular values decomposition theory and the definition of No. 1 Tsallis WSE, we find 
that the similarity among 1 2{ },{ }, { }Ld d d  in the sliding-window is inversely proportional to the amount 
of  1,2, ,i i l   . When no feature information appears during this period of time, the similarity degree 

is to increase and the amount of λi not equal zero is to decrease contrarily, which results in the decline 

in the No. 1 Tsallis WSE value. On the contrary, when some feature information exists in the  

sliding-window, the similarity decreases and the amount of λi increases contrarily, which results in an 

increase of the No. 1 Tsallis WSE value. 

Figure 6. Sliding-window and matrix structure in No. 1 Tsallis singular values decomposition. 

 

No. 2. Let   , , 1, 2,..., , 1, 2, ,d g k g L k N  B    be wavelet coefficients (or reconstruction signals) under 

L wavelet scales, a L × w sliding-window is built on B, and  ,d g k   of B in the sliding-window form  

DL × w (shown as Figure 7). 

According to Equations (9) and (10), the No. 2 Tsallis WSE algorithm is obtained. The physical 

meaning of No. 2 Tsallis WSE is analyzed as follows: 

According to the wavelet transform principle and relative knowledge, the correlation between 

wavelet coefficients (or reconstruction signals) under the neighboring scales is directly proportional to 

the similarity in their information components. From Equation (9), the amount of non-zero λi is to 

decrease as wavelet coefficients (or reconstruction signals) are approximately in accordance with each 

other, which results in a decline in the No. 2 Tsallis WSE value. On the contrary, as wavelet 

coefficients (or reconstruction signals) are distinctly different from each other, the amount of λi 

(1)d (2)d ( )d w (2)d (( 1) 1) d L w ( )d Lw ( )d N

(1)d (2)d ( )d w

(2)d (( 1) 1) d L w ( )d Lw

( 1)d w ( 2)d w (2 )d w



 L wD
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increases sharply, which results in an increase of the No. 2 Tsallis WSE value and proves that the 

amount of λi varies directly with the signal complexity. By using the No. 2 Tsallis WSE, the law of the 

change of signal complexity is described in detail.  

Figure 7. Sliding-window and matrix structure in No. 2 Tsallis singular values decomposition. 

 

From the above analysis, it can be concluded that the physical meaning of the Tsallis WSE is clear, 

and its algorithm is flexible and concise to meet the requirement of application, therefore, Tsallis WSE 

is applied to extract the features of coupling, perforation, and local corrosion from CCL signals with 

low SNR in this paper. 

5. The Experimental Results 

We establishs a testing platform, where three casings are connected together through casing 

couplings, to simulate the status of horizontal well casings. When a retractor creeps in the three 

casings, a CCL signal is collected by the magnetic localizer and transmitted to the data terminal 

equipment. The creep speed of the retractor, the sampling frequency, and the total time of data 

acquisition are respectively fixed at 100 mm/s, 1024 Hz and 180 s, and the parameters of the three 

casings are shown in Table 1. The induction voltage of the CCL signal is presented in Figure 8.  

As shown in Figure 8, the induction voltage of CCL signal is close to 2.5 v without fluctuation in 

the No. 1 casing, while an obvious impulse signal occurs corresponding to the casing coupling between 

No. 1 casing and No. 2 casing. We can also find that the consecutive fluctuation of the induction 

voltage of the CCL signal, which occurs from 40 s to 180 s when the retractor creeps into the No. 2 

casing and No. 3 casing. Furthermore, the signal features, corresponding to the casing coupling and the 

perforations between the No. 2 casing and No. 3 casing, are submerged in the noise caused by the 

serious corrosion of the two casings. 

Table 1. Parameters of casings on the testing platform. 

Casing 
number 

Corrosion 
extent 

Casing 
Length [mm] 

Casing 
Diameter [mm] 

Perforation
number 

Perforation 
Diameter [mm] 

Perforation 
Interval [mm] 

No. 1 slight 8000 140 0 / / 
No. 2 serious 8000 140 6 7 100 
No. 3 serious 8000 140 0 / / 

(1,1)d (1,2)d (1, )d N (1, )d w 

(2,1)d (2,2)d (2, )d N (2, )d w 

( ,1)d L ( ,2)d L ( , )d L N ( , )d L w 

 L wD
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Figure 8. CCL signal from the magnetic localizer in the retractor. 

 

In the experiment, based on the retractor’s speed, the range of CCL signal frequencies 

corresponding to the casing couplings and the perforations is from 0.5 Hz to 2 Hz. If the sampling 

frequency is 1024 Hz and the normalized CCL signal is transformed to four scales by using the Mallat 

algorithm on db4, the casing coupling and perforation features in the CCL signal should exist in A4 

(approximation reconstruction signal). However, during the time period of 112~122 s, the features in 

A4 from Figure 9, corresponding to the casing coupling and perforations, are also submerged in the 

noise due to wavelet aliasing and noise in the same frequency band. 

Figure 9. Reconstruction signals of the db4 wavelet transform. 

 

5.1. Feature Extraction Result with Shannon WTE 

Through analyzing the mathematic structure of the Shannon WTE, we find that the relation between 

sliding-window width and transient signal duration is given as follows: 

max (1 2)

1
c sw k T f k

w
    

  
 (11)

where Tc is transient signal duration. 
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In Equation (11), the reason why the range of w and δ are limited is to keep the feature information 

integrity and avoid the loss of key data in detected signals. Considering the retractor creep speed, the 

sampling frequency, the diameter of couplings and perforations, and the reasonable range of w and δ 

can be calculated out from Equation (11). Here, we set w = 120, δ = 1, and L = 20, where L is the 

segment number in the sliding-window. 

Taking the approximation reconstruction signal A4 in Figure 9 as the analysis object, because there 

the casing coupling and perforations features exist in A4, we calculate the Shannon WTE of CCL 

according to Equations (1) and (2), and the normalized calculation results of the Shannon WTE are 

shown in Figure 10a. 

Figure 10. (a) Feature extraction curve of casing coupling and perforation with Shannon 

WTE; (b) Feature extraction curve of casing coupling and perforation with the improved 

Shannon WTE.  

 
(a) 

 
(b) 

From Figure 10a, although the Shannon WTE algorithm is used, the casing coupling and 

perforation features are still not extracted. Based on the improved Shannon WTE, the similar 

calculation process is done again, and the normalized calculation results of the improved Shannon 

WTE are shown in Figure 10b. Comparing Figure 10a with Figure 10b, it is found that a great 

improvement has been made in perforation feature extraction by the novel method, in comparison with 

the traditional way, as the improved Shannon entropy divides the data range into several asymmetric 

segments according to the data-dispersion density. However, the loss of features of perforation No. 2 

and No. 3 still occurs in Figure 10b, and there is no obvious difference between coupling features and 

perforation features, which could result in feature recognition errors. 

To explain the reason why the improved Shannon WTE failed to extract the features of the No. 2 

and No. 3 perforation, we do the following: first of all, we get the A4 signal shown in Figure 9.  
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Then, we calculate the data distribution statistics of the A4 signal, by utilizing the improved Shannon 

WTE which divides the data range into uneven segments. The statistics result is shown in Figure 11. 

The uneven data distribution is to merge subsegments 5 to 16, by the even data distribution method, 

into one subsegment, and divide the rest into 20 segments, according to the principle that the data 

range, where there exists larger data density, is separated roughly, while the data range, where there 

exist smaller data density, is divided in a meticulous way. From Figure 11, the data distribution range 

of No. 1, 4, 5 and 6 perforations is mainly in segments 1 to 10, however, the noise data is distributed in 

segments 11 to 13. On the basis of the related proofs of Equation (5), for perforation data (the data of a 

small probability event), the uneven data distribution will have a larger entropy than the even 

distribution method, but for the noise data, the opposite is true, which has been shown in Figure 10b. 

By utilizing the improved Shannon WTE, the mean value of the corresponding CCL signal of No. 5 

perforation Ee = 1.4509, the mean value of the noise Enoise = 1.1463, the feature difference rate 

100% 27%e noise

noise

E E

E



   . However, the No. 2 and No. 3 perforations have serious peripheral 

corrosion and their apertures become narrow, so the energy of the perforation feature signal is weak 

and submerged in noise. Meanwhile, there is no data in subsegments 1 to 7. Here the mean value of the 

improved Shannon WTE of No. 2 perforation Ee = 1.1123, and δ = 2.97%, the mean value of the 

improved Shannon WTE of No. 3 perforation Ee = 1.2391, and δ = 8.1%. The feature difference is not 

obvious, so it has failed to extract the features of these two perforations. Therefore, the improved 

Shannon WTE method still relies on data scatter statistics of subsegments and the Shannon entropy 

algorithm, which makes it hard to precisely extract features of those perforation signals with low SNR. 

Figure 11. The statistics results of the uneven data distribution method. 

 

5.2. Feature Extraction Results with the No. 1 Tsallis WSE 

Through researching Tsallis WSE in Section 4, it is found that the No. 1 algorithm of the Tsallis 

WSE is better suited for extracting low-energy featurees for signals with low SNR. In order to keep the 

integrity of feature information and reduce calculative complexity, the range of w and δ are defined  

as follows: 
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max (1 1.5)

1

c sk T f
w k

L
w

    

  

 (12)

According to Equation (12), the value of w can be calculated as L = 4 and Tcmax ≈ 0.075 s. As  

w = 18, δ = 1 and L = 4, the casing coupling and perforation features are extracted from A4 with  

No. 1 Tsallis WSE, and the normalized calculation results are shown in Figure 12. Therein, six  

triangle-characteristic waveforms, which are 0.4~0.5 pu high and 0.056~0.090 s wide, appear to 

indicate the existence of six perforations when the magnetic localizer passes by the perforation zone in 

the No. 2 casing from 112 s to 119 s. A M-characteristic waveform, which is 0.6~0.7 pu high and 

1.1~1.4 s wide, and which appears from 120.1 s to 121.4 s, reflects the existence of a casing coupling 

between the No. 2 casing and No. 3 casing. According to the above analysis, the physical distance and size 

of perforation can be calculated by observing the triangle-characteristic waveform, and the position and 

junction status of casing couplings also can be figured out by observing the M-characteristic waveform.  

Figure 12. Feature extraction of casing couplings and perforations with the No. 1 Tsallis WSE. 

 

In order to further compare the difference between the improved Shannon WTE and Tsallis WSE in 

terms of feature extraction of the perforations, the magnetic localizer of the retractor is used to collect 

CCL signals of casings with perforations with different degrees of corrosion in Figure 13. In addition, 

we extract the perforation features of the collected CCL signals by using the two methods above.  

We randomly choose 60 perforation samples and 60 non-perforation samples as the testing sample 

from the feature extraction results. Because a complex process exists when extracting and recognizing 

casing features, we cannot adopt simple indicators. For instance, we take the peak feature or period 

width of a sample as the detection threshold. Since we have to start with all the perforation features 

and consider the macro and micro aspects, therefore, similarity of testing sample and standard sample 

of perforation feature is adopted as the optimal target, which not only accords with the custom of 

artificial cognition, but also overcomes the drawback of a single indicator. The similarity is taken as 

the threshold which varies from 100% to 60%, and then the parameters of TP and FP are separately 

counted as shown in Table 2. By analyzing Table 2, for the improved Shannon WTE, the number of FP 

samples increases sharply as the similarity threshold constantly decreases. For instance, there is one FP 

sample with similarity = 95% while 16 FP samples have similarity = 60%, which represents a decline 

in the feature extraction accuracy. However, the FP sample amount of the Tsallis WSE has remained at 

low levels (5 samples with similarity = 60%), its feature extraction accuracy remains above 90% 

except for slight fluctuations. As a whole, Tsallis WSE is better than the former. 
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Figure 13. A testing casing with perforations showing different degrees of corrosion. 

 

Table 2. Statistical results for feature extraction of perforations based on the two approaches. 

Similarity  
[%] 

Approach 
Testing  

sample sum 
TP FP FN TN 

ACC 
[%] 

100 
Improved Shannon WTE 120 0 0 60 60 0 

Tsallis WSE 120 0 0 60 60 0 

95 
Improved Shannon WTE 120 40 1 20 59 82.5 

Tsallis WSE 120 47 0 13 60 89.2 

85 
Improved Shannon WTE 120 43 3 17 57 83.3 

Tsallis WSE 120 52 1 8 59 92.5 

75 
Improved Shannon WTE 120 47 6 13 54 84.2 

Tsallis WSE 120 54 2 6 58 93.3 

70 
Improved Shannon WTE 120 50 10 10 50 83.3 

Tsallis WSE 120 56 3 4 57 94.2 

60 
Improved Shannon WTE 120 51 16 9 44 79.2 

Tsallis WSE 120 58 5 2 55 94.2 

The ROC plot is used to reflect the difference between two methods in perforation feature 

extraction ability. We calculate the TPR and FPR of the two feature extraction methods and draw ROC 

plots as shown in Figure 14. According to this Figure, the growth rate of FPR of the improved 

Shannon WTE is much faster than Tsallis WSE with a falling similarity threshold in a range of 

85%~60%, which means that there exists inaccuracy in the perforation feature extraction, based on the 

improved Shannon WTE. When the similarity threshold falls, some non-perforations are mistaken for 

perforations, thus the accuracy decreases, as shown in Figure 10b. The above analysis shows that 

Tsallis WSE operates better than the improved Shannon WTE in perforation feature extraction. 

Meanwhile, it can be deduced that choosing a similarity threshold in a range of 70%~85% is 

reasonable for classifying the results of perforation feature extraction with similarity theory.  

An inappropriate similarity threshold will have negative effect on the subsequent feature classification. 

Figure 14. ROC plots of the two methods. 

 



Entropy 2014, 16 402 

 

 

5.3. The Feature Extraction of Local Casing Corrosion with No. 2 Tsallis WSE 

Under the condition of w = 350, L = 4 and δ = 1, taking D1~D4 mentioned above as the analyzed 

signals, we extract casing local corrosion according to the definition of No. 2 Tsallis WSE and the its 

normalized curve is drawn as Figure 15. We can find that the magnitude of No. 2 Tsallis WSE is 

directly proportional to the complexity of the CCL signal, which reflects the extent of local corrosion 

in casings. During the three periods, 113.4 s to 113.8 s, 114.5 s to 116.3 s and 120.5 s to 122 s, three 

distinct peaks appear to indicate the local casing corrosion existing between No. 2 casing and No. 3 

casing. From these evidences, the distributed location and the extent of local casing corrosion can be 

known by taking the speed of retractor into account. 

Figure 15. Feature extraction of local casing corrosion with No. 2 Tsallis WSE. 

 

6. Conclusions 

For the above mentioned research and experiment evidence, the main conclusions are as follows: 

(1) Dividing the data dispersion range mechanically results in a declined sensitivity of the Shannon 

WTE to the feature information hidden in the original signals. When CCL signals under low SNR 

are taken as the analysis object, the casing status features cannot be extracted using the Shannon 

WTE algorithm. Although the capability to extract features is improved, the improved Shannon 

WTE algorithm still has some disadvantages in feature extraction in the strong noisy background. 

(2) Tsallis WSE, as the composition of wavelet transform, singular values decomposition and 

Tsallis entropy, inherits the advantages of wavelet transform and Tsallis entropy. The singular 

features of low SNR signals can be extracted using its derivate algorithm. As the complexity of 

Tsallis WSE algorithm and improved Shannon WTE are at the same level, the feature extraction 

effect of the Tsallis WSE algorithm is better than that of the improved Shannon WTE. 

(3) Using Tsallis WSE to complete data mining of CCL signals, we successfully extracted the 

feature information corresponding to casing couplings, perforations and extent of local 

corrosion. Consequently, the casing status detection process is simplified and can supply valid 

data for horizontal well production logging. 
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