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Abstract: Since most experimental observations are performed at constant temperature
and pressure, the isothermal-isobaric (NPT ) ensemble has been widely used in molecular
simulations. Nevertheless, the NPT ensemble has only recently been placed on a rigorous
foundation. The proper formulation of the NPT ensemble requires a “shell” particle to
uniquely identify the volume of the system, thereby avoiding the redundant counting of
configurations. Here, we review our recent work in incorporating a shell particle into
molecular dynamics simulation algorithms to generate the correct NPT ensemble averages.
Unlike previous methods, a piston of unknown mass is no longer needed to control the
response time of the volume fluctuations. As the volume of the system is attached to the
shell particle, the system itself now sets the time scales for volume and pressure fluctuations.
Finally, we discuss a number of tests that ensure the equations of motion sample phase space
correctly and consider the response time of the system to pressure changes with and without
the shell particle. Overall, the shell particle algorithm is an effective simulation method
for studying systems exposed to a constant external pressure and may provide an advantage
over other existing constant pressure approaches when developing nonequilibrium molecular
dynamics methods.
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1. Introduction

The molecular dynamics (MD) simulation method can be straightforwardly applied to the analysis of
an isolated system or a system described by the microcanonical ensemble in which the energy, volume V
and particle number N are held fixed. The equations of motion that describe the time evolution of
the positions and momenta of the particles, i.e., the resulting microcanonical ensemble phase space
trajectory, follow directly from Newtonian mechanics. Energy, however, is not a variable of choice
for experiments. Many experimental observations are carried out under conditions of constant pressure
and temperature, such that the system is no longer isolated from its environment. Therefore, while
the generation of dynamic information about these systems is of interest, how to modify the equations
of motion to describe a system at constant temperature and/or constant pressure is arguably not an
obvious task.

An extension of the MD method to systems not described by the microcanonical ensemble was
presented by Andersen in 1980 [1]. Andersen showed, for example, that by modifying the Lagrangian
of the system, a constant external pressure could be imposed within MD. Specifically, additional control
variables were introduced into the Lagrangian, beyond the standard coordinate and momentum vectors
needed to describe the classical N -particle system. The new variables served to drive the fluctuations of
those variables no longer held fixed within the ensemble of interest. For a system in which a constant
external pressure is imposed, the system volume is now introduced as a dynamic variable that serves to
maintain, on average, mechanical equilibrium between the external and system pressure. Consequently,
the system is exposed to a barostat, whereby a “piston” of arbitrary “mass” controls the dynamics of the
volume. While ensemble averages are independent of the piston mass, the fictitious mass does affect the
response time for volume fluctuations.

Andersen’s extended Lagrangian approach was later adapted by Nosé [2,3] to simulate systems
in contact with a thermostat using MD. Hoover [4,5] proposed another isothermal-isobaric (NPT )
MD algorithm using a modification of Andersen’s piston method for maintaining constant pressure
and the thermostating method of Nosé. As Hoover was aware of, and as discussed in detail by
Tuckerman et al. [6], this algorithm does not yield ensemble averages consistent with the then accepted
form of the NPT ensemble partition function. Consequently, several new NPT MD algorithms have
been introduced in the literature (a non-exhaustive list is given here [7–11]).

Yet, starting nearly 20 years ago, the foundation of the NPT ensemble (when the volume is
considered to be a continuous variable) has been reconsidered [12–14]. What was noted was that the NPT
partition function redundantly counts the configurations of the system. This problem of over-counting
was removed by requiring that the volume, V , of the system be defined by a “shell” particle, where at
least one particle resides in the volume, dV , encapsulating V . All of theNPT MD algorithms mentioned
above are not, however, consistent with the proper shell-particle formulation of the NPT ensemble (we
will show later that Hoover’s algorithm does give the correct distribution of volumes if periodic boundary
conditions are employed). As such, new NPT MD algorithms should be introduced in order to generate
the correct NPT ensemble averages.

Corti [15] previously modified the Monte Carlo NPT algorithm to be consistent with the correct
NPT partition function. The current authors performed a similar reformulation for the constant pressure



Entropy 2013, 15 3943

MD algorithm for systems whose particles interact via continuous [16,17] and discontinuous [18]
potentials. In these new MD algorithms, a shell particle is used to uniquely define the volume of a
system exposed to a constant external pressure. Consequently, since the shell particle sets the volume of
the system, no piston mass needs to be specified. In other words, the system itself controls the response
time of volume fluctuations, as the mass of the shell particle is known, and not the user through the
introduction of an arbitrary piston mass. Various benefits arise from the removal of this ambiguity in the
NPT MD algorithm.

As a side note, Evans and Morriss [19,20] utilized constrained dynamics to develop an NPT MD
algorithm. In this method, both the instantaneous pressure and kinetic energy are made strict constants
of motion, and so, the Andersen piston is not employed. Nevertheless, this algorithm does not yield
ensemble averages consistent with the NPT partition function (either with or without the shell particle),
as the instantaneous pressure fluctuates within the NPT ensemble [15]. Even though the constraint
dynamics also does not utilize a piston, the resulting equations of motion do not generate the proper
NPT ensemble averages.

In this paper, we review our previous work on employing the shell particle to generate equations
of motion that are consistent with the proper shell-particle formulation of the NPT ensemble. To
begin, we provide in Section 2 an overview of the reformulation of the NPT ensemble partition
function and the need to employ the shell particle to eliminate the redundant counting of configurations.
In Section 3, the equations of motion required to properly generate a system within the NPT ensemble
are presented, in which the piston of arbitrary mass is replaced with a shell particle of known mass.
We include the previously derived equations in which an external temperature is imposed via the
use of the Nosé-Hoover thermostat chains, as well as recently developed equations making use of a
thermostat based on the configurational temperature. The Trotter expansion to the Liouville operator
formalism [21–26] is used to factorize the classical propagator into analytically solvable operators. We
also provide simulation results for the Lennard-Jones fluid, particularly for small system sizes, where
interesting differences between the old and new NPT partition function appear for various ensemble
averages. ‘Nonequilibrium’ simulations are presented in Section 4, in which the external pressure is
changed after the system has equilibrated. As the system evolves to a new equilibrium state, we compare
the dynamics of the volume as defined via the shell particle to that when the Hoover algorithm is used
with different piston masses. Conclusions are provided in Section 5, as well as a discussion of some
particular dynamic systems of interest that may benefit from the use of the shell-particle formalism.

2. The Volume Scale in Constant Pressure Ensembles

The original formulation of the isothermal-isobaric ensemble can be traced back to 1939, where
Guggenheim [27] wrote the partition function, ∆(N,P, T ), as:

∆(N,P, T ) =
∑
V

Q(N, V, T )e−PV/kBT (1)

where kB is Boltzmann constant, Q(N, V, T ) is the canonical ensemble partition function of a system
composed of N particles held in a volume, V , and at a temperature, T , and P is the external pressure
to which the system is exposed as the volume is allowed to fluctuate. Although Equation (1) is formally
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correct, an ambiguity arises when dealing with systems in which the volume is a continuous variable. In
the late 1950s, several authors [28–31] attempted to remove the conceptual difficulty associated with the
sum over an unspecified set of discrete volumes by expressing ∆(N,P, T ) as:

∆0(N,P, T ) =
1

V0

∫ ∞
0

Q(N, V, T )e−PV/kBTdV (2)

The replacement of the sum in Equation (1) by an integral enables the inclusion of all volumes, but
at the expense of generating a partition function that has the dimensions of volume. Consequently,
this partition function must be rendered dimensionless through division by some constant with units
of volume denoted by V0 in Equation (2). Note that we wrote the partition function with a subscript
(∆0(N,P, T )) in Equation (2) to signify that this partition function uses V0 as its volume scale. The
constant, V0, does cancels out when determining the ensemble average of a given variable and, so, need
not be specified. Even so, Sack [30] showed in the thermodynamic limit that:

V0 =
kBT

P
(3)

Hill [31] noted that in the thermodynamic limit, the choice of V0 is arbitrary, due in part to
the equivalency of the ensembles in the thermodynamic limit. Evaluation of ensemble averages of
macroscopic systems using Equation (2) yields only a completely negligible error. Yet, the precise
value of the volume scale is important when dealing with systems of sufficiently small size [12–14].
The volume scale must be chosen carefully, since it depends upon the properties of the boundary
separating the system of interest from the surroundings [14]. The boundary serves to define the volume
of the system and allows the system volume to fluctuate against the external pressure imposed by the
surroundings. Hence, the boundary cannot be chosen arbitrarily, particularly when the system is not in
the thermodynamic limit. In other words, the properties assigned to the boundary must conform to the
actual physical situation in which the system is found.

As shown by Koper and Reiss [12] using the microcanonical ensemble, verified later by Corti and
Soto-Campos [13] and Corti [14] using the canonical ensemble, when the boundary is not a physical
object to which a mass or momentum can be assigned (i.e., a mathematical construct to aid in the
specification of the system volume), then the partition function in Equation (2) counts configurations
of the system redundantly (whether or not V0 is specified). The problem of over-counting is removed
by requiring that the volume, V , of the system be specified by a “shell” molecule, where at least one
molecule resides in the volume, dV , surrounding V . To illustrate this problem, turn to Figure 1, which
demonstrates how several volumes may enclose the same configuration of n particles surrounded by
N − n particles. In the rigorous formulation of the NPT ensemble, each configuration of the system
must correspond to only one specific volume state of the n particles. Otherwise, the same configuration
will be counted more than once in Equation (2) [14]. The problem of over-counting, or redundancy,
is resolved by defining a “shell” particle [12–14], in which at least one of the system particles resides
in the shell that encapsulates the system volume. Defining the n-particle system with the shell particle
means that a new and distinct state of the total N -particle system is necessarily created when the volume
of the n-particle system is varied (whether or not the configuration of the surrounding N − n particles
changes), since the position of the shell particle changes, as well [14]. Consequently, the inclusion of
configurations of the n particles common to larger values of the volume is explicitly avoided.
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Figure 1. One particular configuration of N particles enclosed within a total volume, V ,
demonstrating how to uniquely define one specific volume state of n particles (shaded
circles). The unshaded circles represent the surrounding N − n particles that comprise the
bath. Each particle center is marked by a dot and is surrounded by an effective diameter.
The first step in determining the volume occupied by the n particles is to choose a particular
reference point in V as the origin, rc. Yet, several volumes (dashed circles) centered at
rc still enclose the n particles and, therefore, include common configurations. The exact
volume, v (bold circle), of the n particles is defined by the presence of a shell particle that
is farthest from rc and resides in the shell, dv, encapsulating v. (Adapted from Figure 2
in reference [14].)

rc 

Shell Molecule 

Therefore, the proper form of ∆(N,P, T ), in which interactions between the system and surroundings
are neglected, as in Equation (2), should be [12–14]:

∆(N,P, T ) =

∫ ∞
0

Q∗(N, V, T )e−PV/kBTdV (4)

where Q∗(N, V, T )dV represents the number of configurations in which at least one of the N particles
resides in the shell, dV , surrounding V . Note that the above partition function is dimensionless, since
Q∗(N, V, T )dV is a pure number (or Q∗(N, V, T ) is a density of states). The shell particle is the correct
volume scale when there is not a physical boundary to attach the volume of the system. Koper and
Reiss [12] demonstrated that the states summed in Equation (4) do not contain common configurations,
because the shell particle sets the volume. As shown above, all redundancies are eliminated by equating
the system volume to the shell molecule.

2.1. Cubic System Volume

The application of the constant pressure ensemble to small systems also reveals the effects
of additional variables, such as surface area and curvature, on the system’s properties. In the



Entropy 2013, 15 3946

thermodynamic limit, the shape of the container enclosing the system has no influence on its properties.
As the size of the system is decreased, additional independent thermodynamic variables (e.g., surface
area, curvature) must be introduced to ensure that the system’s properties are described properly. These
additional parameters are a function of the “shape” of the system volume. Therefore, the constant
pressure ensemble partition function must be formulated differently in order to describe a system in
which its volume is always either spherical (e.g., physical cluster) or cubic (the standard shape used
to apply periodic boundary conditions). As a result, ensemble averages within the constant pressure
ensemble will depend upon the shape of the system volume. This dependence upon shape, of course,
becomes negligible in the thermodynamic limit. A reader interested in spherical systems is referred
to [15]. However, since we are focusing on MD simulations with periodic boundary conditions, we are
going to present results for a cubic volume [15].

The mathematical representation of Q∗(N, V, T )dV for a cubic volume, V = L3, whose length, L,
lies between L and L+ dL with at least one particle in the shell, dL, is given by [15–18]:

Q∗cub(N,L, T )dL =
3dL

(N − 1)!Λ3N

∫
A

dy1dz1

∫
V N−1

dτ12...dτ1Ne
−βUN (5)

where β = 1/kBT , Λ is the de Broglie wavelength, A represents the area of a face of the cube, dy1

and dz1 represent the differential change in the y and z coordinates of particle 1 (the shell particle),
respectively, τ12...τ1N are the coordinates of the remaining N − 1 particles relative to the position of
particle 1, and UN is the interaction potential of all the N particles. The number three is required by
the switch from dV to 3L2dL, since volume changes occur with constant shape, and indicates the three
sets of equivalent configurations generated if a particle is held fixed in the shell in either the x, y or
z direction. Particle 1 cannot be integrated throughout the entire shell, but due to symmetry, can be
integrated separately in the x direction (or the y or z direction). The above integral is therefore evaluated
with the x coordinate of particle 1 held fixed in the plane that corresponds to one of the two faces of the
cube perpendicular to the x-axis of the coordinate system.

With Equation (5), the isothermal-isobaric ensemble partition function for a cubic volume is now
represented by [15–18]:

∆cub(N,P, T ) =

∫
Q∗cub(N,L, T )e−PL

3/kBTdL (6)

Within the NPT ensemble, the instantaneous pressure, P ′′, of the system fluctuates. The instantaneous
pressure is defined as [15–18]:

P ′′ =
kBT

3L2

(∂lnQ∗cub
∂L

)
T,N

(7)

and is calculated during a simulation via the following equation [15]:

P ′′ =
(N − 1/3)kBT

V
+
〈
∑

i

∑
j>i ~rij · ~fij〉
3V

(8)

where the second term on the right side is the standard virial of the system, ~rij is the vector between the
centers of particles i and j and ~fij is the corresponding force. The ideal, or kinetic, term now reflects the
loss of one, out of 3N , translational degree of freedom. By defining the system volume and, therefore,
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being directly coupled to the barostat via the changes in the volume, the shell particle does not translate
freely, that is, independently of the volume, in the x direction and, so, does not impart any momentum
in the x direction to the surface of the cube. The shell particle translates freely in only two directions
(y and z). The virial term in Equation (8) remains unchanged, since the shell particle still interacts with
the other particles in the system. The ensemble average of 〈P ′′〉 is related to the externally imposed
pressure, P , as follows [15]:

〈P ′′〉 = P +
2kBT

3N
〈ρ〉 (9)

where 〈ρ〉 is the average density of the system.
While revising the Monte Carlo NPT algorithm to incorporate the shell particle, Corti [15] derived

several relations that describe how ensemble averages obtained within the new NPT partition function,
Equation (4) or (6), relate to ensemble averages obtained with the old no-shell NPT (Equation (2))
partition function, ∆0, [15]. If 〈V 〉 represents the ensemble-averaged volume defined via the shell
particle and 〈V 〉0 represents the ensemble-averaged volume defined via the old definition, then [15]:

〈V 〉 = 〈V 〉0 −
kBT

P
(10)

Consequently, 〈V 〉 < 〈V 〉0; the difference between these two average volumes is only apparent at small
system sizes, since in the thermodynamic limit, 〈V 〉 → 〈V 〉0 (kBT/P is intensive).

2.2. Ideal Gas Results

The ideal gas offers a unique opportunity to obtain a closed form solution for the partition function.
Using the shell molecule definition (Equation (4)), we obtain [14]:

∆(N,P, T ) =

∫ ∞
0

Q∗id(N, V, T )e−βPV dV =

∫ ∞
0

V N−1

(N − 1)!Λ3N
e−βPV dV =

( 1

βPΛ3

)N
(11)

Using the following definition [31,32]:

〈V 〉 = −kBT
(∂ln∆

∂P

)
β,N

(12)

we get the following expression for the equation of state [14]:

P 〈V 〉 = NkBT (13)

Now, we can use the older partition function (Equation (2)) and perform the same analysis. The
partition function is [14]:

∆0(N,P, T ) =
1

V0

∫ ∞
0

Qid(N, V, T )e−βPV dV =
1

V0

∫ ∞
0

V N

(N)!Λ3N
e−βPV dV =

1

V0

1

Λ3N(βP )N+1
(14)

We then get the following equation of state, noting that V0 is a constant [14]:

P 〈V 〉0 = (N + 1)kBT (15)

The use of (N + 1) or N is clearly inconsequential in the thermodynamic limit. Yet, the difference
between Equations (13) and (15) is significant when the system is sufficiently small. In general, the
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ensemble averages calculated within different ensembles will not be the same for small systems. In
contrast, ensemble averages are independent of the particular ensemble chosen to evaluate them when
the system is in the thermodynamic limit. One exception, however, is the ideal gas. Due to the absence
of inter-particle interactions, identical results should be obtained within all ensembles and for all system
sizes. Hence, the small system NPT partition function of the ideal gas should yield Equation (13) and
not Equation (15).

3. Shell Molecule Equations of Motion

In order to simulate the NPT ensemble, a technique for maintaining a constant temperature needs
to be introduced into the equations of motion. As mentioned earlier, Nosé [2,3] and Hoover [4]
proposed a completely dynamic method for maintaining constant temperature in an MD simulation.
An additional variable, which serves to couple the system to a thermostat of fixed temperature T , is
added to the Lagrangian of the N -body system. An effective mass is then associated with this new
variable and controls the time scale for temperature fluctuations. While this scheme is usually effective,
it does not always perform well [23]. In some cases, the resulting equations of motion do not generate
phase-space trajectories that are ergodic [4]. To overcome this potential problem, the Nosé- Hoover
chain method [23] was later developed. In this method, multiple thermostats are themselves successively
coupled to adjacent thermostats, thereby forming a chain of thermostats.

The equations of motion for the NPT ensemble with the shell particle are straightforwardly obtained
by employing an extended Lagrangian approach. The full derivation is presented in appendix A of
reference [16]. For a cubic volume in which V = L3, we let the +x coordinate of particle 1, or the shell
particle, define half the box length, L/2, of the simulation cell. We also choose qi and pi to represent
the 3N -generalized coordinates and conjugate momenta, respectively. Note that we always have that
q1 = L/2. We therefore get the following equations of motion for an isothermal-isobaric ensemble
consistent with Equation (6) using a single thermostat chain for all of the particles [16]:

q̇i =
pi
mi

+
( q̇1

q1

)
qi

ṗi = Fi −
( q̇1

q1

)
pi − ξ̇1pi

q̇1 =
p1

m1

ṗ1 = 24q2
1(Pint − P )− ξ̇1p1

ξ̇k =
pξk
Qk

ṗξ1 =
3N∑
j=1

p2
j

mj

− ξ̇2pξ1 − gkBT

ṗξk =
p2
ξk−1

Qk−1

− (ξ̇k+1)pξk − kBT

ṗξC =
p2
ξC−1

QC−1

− kBT (16)
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where i = 2, ..., 3N , and the overdots signify time derivatives. Fi is the x, y or z component of the force
acting on the particle represented by the ith-generalized coordinate, and mi is the corresponding mass
of the particle. Each ξk is a thermodynamic friction coefficient introduced to simplify the equations,
and pξk is the corresponding momentum of ξk, whose effective mass is Qk. C is the total number of
coupled thermostats in the chain, so that k = 1, ..., C, and g denotes the total number of degrees of
freedom of the momenta of the particles. The expression for the internal pressure, Pint, which follows
from Equation (6), is:

Pint =
1

24q3
1

[ 3N∑
i=2

p2
i

mi

+
3N∑
i=1

qiFi

]
(17)

where the first summation runs from two to 3N , indicating that the x momentum of the shell particle
does not contribute to the internal pressure.

The extended Hamiltonian, Hext, for this system is [16–18]:

Hext =
3N∑
i=1

p2
i

2mi

+
∑
i

∑
j>i

U(rij) + 8q3
1P +

C∑
k=1

p2
ξk

2Qk

+ gkBTξ1 +
C∑
k=2

kBTξk (18)

where V = 8q3
1 , U(rij) is the interaction potential between particles i and j and

∑
i

∑
j>i is a sum

over all distinct pairs of particles. Although the equations of motion cannot be obtained directly from
Equation (18), Hext is a conserved quantity.

With the exception of those equations of motion that describe the velocity and acceleration of q1, the
proposed equations are the same as those of Andersen’s method [1]. The expression for the acceleration
of q1 provides an interesting physical interpretation. Given that the area of a single face of the simulation
cell is 4q2

1 (since L = 2q1), the total surface area of the cube is 24q2
1 . When multiplied by the difference

between the internal and external pressures, we obtain the net force that drives the acceleration of q1.
This connection between the acceleration of q1 and the pressure difference is more physically appealing
than what appears in other methods [1,5,8]. Another benefit to the shell formulation is that the system
itself sets the time scale for volume and pressure fluctuations, since the mass of the shell particle is
known. In Andersen’s method, there is an unknown piston mass that sets the response time of volume
and pressure fluctuations.

In the simulations performed in this work, the forces acting in the y and z directions on each particle
sum to zero when there are no external forces in the y and z directions. The sum of forces in the x
direction will not be zero, since the x directional momentum of the shell particle is directly coupled to
the barostat. Therefore, only the linear momenta in the y and z directions are conserved. Furthermore, to
avoid particle drift during simulations when periodic boundary conditions are applied, the center-of-mass
momentum in the y and z directions is set equal to zero. Again, the center-of-mass momentum in the
x direction is driven by the external pressure and cannot be held fixed at a zero value, though volume
fluctuations ensure that the total momentum in the x direction averages to zero. Consequently, it can be
shown that g = 3N − 2 [16,33], indicating that the above equations of motion yield trajectories in phase
space that are consistent with a (3N − 2)PT partition function (there are 3N − 2 momentum degrees
of freedom) [16].

The new equations of motion that employ a shell particle to define the system volume provide another
example of a non-Hamiltonian system, in that Equation (16) cannot be derived from the extended
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Hamiltonian in Equation (18). A systematic procedure for extending classical statistical mechanics to
non-Hamiltonian systems was proposed by Tuckerman et al. [6,34]. The crux of their analysis relies on
the notion that non-Hamiltonian phase space is compressible, as opposed to its Hamiltonian counterpart.
For a non-Hamiltonian system, the Jacobian describing the transformation from an initial phase-space
vector to a phase-space vector at time t is not equal to unity. The invariant phase-space metric for
a non-Hamiltonian system is therefore not the same as the Hamiltonian system. Nevertheless, using
the procedure of Tuckerman et al. [6,34], where the compressibility of the phase space is taken into
account, the extended system partition function can still be derived from the equations of motion and
the various constraints, or conservation relations, on the system. The detailed phase space analysis of
Equation (16) presented in reference [16] shows that the proposed shell particle equations of motion are
completely consistent with the shell particle partition function (Equation (6)) with and without periodic
boundary conditions.

3.1. The Hoover Algorithm and Periodic Boundary Conditions

The NPT partition function in Equation (6) can be rewritten if the system is homogeneous and
periodic boundary conditions are applied. Han and Son [35] showed that since periodic boundary
conditions yield a transitionally symmetric system, particle 1 does not need to be held fixed inside the
shell, dL. If all of the relative distances between the particles remain fixed, identical configurations will
be generated if particle 1 is allowed to sample the entire instantaneous volume. Thus [15]:

Q∗cub(N,L, T )dL =
3dL

(N − 1)!Λ3N

∫
A

dy1dz1

∫
V N−1

dτ12...dτ1Ne
−βUN

=
3dL

(N − 1)!Λ3N

1

L

∫
V

dτ1...dτNe
−βUN =

N

V
Q(N, V, T )dV (19)

where Q(N, V, T ) is the canonical partition function without the shell molecule. Using Equation (19),
we can write the isothermal-isobaric partition function as:

∆PB(N,P, T ) =

∫
N

V
Q(N, V, T )e−βPV dV (20)

where the PB subscript signifies that the partition function is only valid under the symmetry imposed
by periodic boundary conditions [15,16]. This volume scale was derived earlier using the information
theory by Attard [36].

Let us now consider the following equations of motion proposed for the NPT ensemble by
Hoover [4,5] with a single chained thermostat:

q̇i =
pi
mi

+
( V̇

3V

)
qi

ṗi = Fi −
( V̇

3V

)
pi − ξ̇1pi

V̇ =
3pε
Mp

V

ṗε = 3V (Pint − P )− ξ̇1pε

ξ̇k =
pξk
Qk
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ṗξ1 =
3N∑
j=1

p2
j

mj

+
p2
ε

Mp

− ξ̇2pξ1 − gkBT

ṗξk =
p2
ξk−1

Qk−1

− (ξ̇k+1)pξk − kBT

ṗξC =
p2
ξC−1

QC−1

− kBT (21)

where i = 1, ..., 3N and:

Pint =
1

3V

[ 3N∑
i=1

p2
i

mi

+
3N∑
i=1

qiFi

]
(22)

The extended Hamiltonian for the Hoover NPT algorithm is:

Hext =
3N∑
i=1

p2
i

2mi

+
∑
i

∑
j>i

U(rij) +
p2
ε

2MP

+ PV +
C∑
k=1

p2
ξk

2Qk

+ gkBTξ1 +
C∑
k=2

kBTξk (23)

Tuckerman et al. [6] already performed the phase-space analysis on Hoover’s equations of motion,
in which they obtained a 1/V weighting in the volume distribution function when all three directional
linear momenta are conserved, as well as the three center-of-mass momenta being set to zero. The
appearance of the 1/V weighting of the volume distribution makes it completely consistent with the
partition function introduced by Attard (Equation (20)). The Hoover algorithm does in fact lead to the
correct sampling of volume states, but only for homogenous systems with periodic boundary conditions.
In the absence of external forces, Hoover’s algorithm yields a (3N − 2)PT ensemble: there are a total
of (3N + 1) momentum degrees of freedom (3N particles and one volume), but now, the total linear
momentum in each of the three directions is conserved. Therefore, g = 3N − 2 in Equation (21).

Although the Hoover algorithm does sample phase space correctly (but only for periodic boundary
conditions), there is still an unknown piston mass, which sets the response time of volume and pressure
fluctuations, which must be specified. On the other hand, when the shell particle formulation is used,
the system itself sets the time scale for volume and pressure fluctuations, since the mass of the shell
particle is known. Furthermore, since the piston mass associated with the Hoover algorithm can have
very different dynamics compared to the particles in the system, it is the suggested form of the equations
of motion to use two separate chained thermostats, one coupled to the particles and the other to the
volume [8]. The need to introduce another set of chained thermostats to drive the volume fluctuations in
the Hoover algorithm requires that another set of unknown parameters, the additional thermostat masses,
be specified [8]. This separate thermostat chain is not necessary with the shell particle algorithm, as the
momentum of the shell particle is on the same scale as the rest of the particles of the system [16,17].

As a final point of interest and, again, to focus on the effects of the different barostats, we
briefly consider the results of the phase-space analysis of the NPT equations of motion for the shell
(Equation (16)) and the Hoover algorithm (Equation (21)). The explicit partition functions are derived
in reference [16], where the influence of each barostat is clearly seen. By definition, the enthalpy, H ,
of the system is equal to H = H(q, p) + PV , where H(p, q) =

∑3N
i=1 p

2
i /2mi + U(q). Hoover’s

algorithm generates an extended Hamiltonian (Equation (23)) that contains an additional term associated
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with the kinetic energy of the volume (p2
ε/2MP ), a quantity that should not appear in the enthalpy

if the boundary used to describe the system volume is a mathematical construct to which a mass or
momentum cannot be assigned [14]. In contrast, each configuration in the shell particle partition function
corresponds to one and only one volume state, since the non-extended Hamiltonian is directly coupled
to the volume (i.e., there is a one to one correspondence with the non-extended Hamiltonian and the
volume states) [16]. The redundant counting of volume states is not eliminated in the other algorithms,
because those non-extended Hamiltonians are decoupled from the volume. Note that whenever we use
the extended variables approach to thermostat systems in this manuscript that there is always a kinetic
term associated with the thermostat variables in the extended Hamiltonian. We are focusing here on
how the positions and momenta are sampling the correct distribution, and the preceding argument on the
enthalpy is independent of this kinetic term, due to the thermostat variables.

We conclude this section by noting that the ensemble average pressure for a system whose partition
function is described by Equation (20) obeys the following relation [15]:

〈P ′′〉 = P +
kBT

N
〈ρ〉 (24)

The correction to the ensemble average volume is the same as is given in Equation (10).

3.2. Multicomponent Systems

In this section, we discuss the extension of the shell particle MD algorithm to multicomponent
systems. In particular, we consider a binary mixture comprised of species A and B. In this case, the
isothermal-isobaric partition function must include configurations in which the shell particle is of type
A and configurations in which the shell particle is of type B. Therefore, the isothermal-isobaric partition
function, ∆AB, is given by (only the case of a cubical volume is considered) [15,17]:

∆AB(N,P, T ) =

∫
Q∗Acub(N, V, T )e−βPL

3

dL+

∫
Q∗Bcub(N, V, T )e−βPL

3

dL (25)

where Q∗Acub(N, V, T ), for example, is the total number of configurations of NA particles of type A and
NB particles of type B contained in a volume V = L3 in which at least one of the NA particles resides
in the shell, dL, encapsulating V .

When periodic boundary conditions are applied, one can show that the probability of a given
configuration having a shell particle of type A is simply equal to the mole fraction of A. Begin with the
partition function, ∆A, that includes only those configurations in which the shell particle is of type A:

∆A(N,P, T ) =

∫
Q∗Acub(N, V, T )e−βPL

3

dL (26)

For a homogeneous fluid in which periodic boundary conditions are employed, one can rewrite ∆A,
following the argument presented by Han and Son [35], as:

∆A(N,P, T ) = NA

∫
Q(N, V, T )

V
e−βPV dV (27)

where Q(N, V, T ) is the canonical ensemble partition function for NA and NB particles without a shell
particle used to define the volume. The fraction of configurations containing a shell particle of type A is
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therefore given by NA/(NA +NB) = xA [17]. It was shown in reference [17] that the ensemble average
of F (F being any given quantity) is given by:

〈F 〉 = xA〈F 〉A + xB〈F 〉B (28)

where 〈F 〉A is the ensemble average obtained with only A as the shell particle and 〈F 〉A is the ensemble
average obtained with only B as the shell particle. Hence, two separate simulations can be run, each
with different identities of the shell particle, with the resulting ensemble averages simply weighted by
the mole fractions of each component. Yet, one can proceed even further and demonstrate that only one
simulation per state point is ultimately required, with the identity of the shell particle being completely
arbitrary. With periodic boundary conditions, we showed in reference [17] that 〈F 〉 = 〈F 〉A = 〈F 〉B.
Therefore, only one single simulation is required; the choice of which species to be the shell particle
is solely a matter of convenience [17]. This conclusion also holds for mixtures with more than two
components, again, only when periodic boundary conditions are employed.

3.3. Collision Dynamics for Discontinuous Potentials

In this section, we discuss the implementation of the shell particle formalism to simulate systems
that have discontinuous intermolecular potentials [18]. Discontinuous molecular dynamics (DMD) have
been widely used for quite some time, beginning with the initial work of Alder and Wainwright [37,38]
in the microcanonical ensemble. Gruhn and Monson [39], following an analysis by de Smedt et al. [40],
extended DMD for the hard-sphere potential to the NPT ensemble. Their method, however, was
based on Andersen’s constant pressure algorithm [1], which does not yield averages consistent with
Equation (6). Gruhn and Monson [39] derived expressions for the discontinuous change of the momenta
of two hard spheres upon collision, as well as the change of the velocity of the piston (or system volume)
upon that same collision.

We use the shell particle equations of motion provided in Equation (16) to develop a constant pressure
DMD algorithm for both the hard-sphere and square-well fluids that are consistent with the proper NPT
ensemble partition function, Equation (6). Momentum changes upon the collision of any two particles,
including those changes for the shell particle, whether or not it participates in the collision, were derived
in reference [18] and presented below. Our method is based on that of Gruhn and Monson [39], though
we utilize the conservation of the extended Hamiltonian to obtain the collision dynamics. We simply
present the results below, so the reader interested in the detailed derivations are referred to [18].

In an additive hard-sphere system, the potential of interaction between two particles, i and j, with
diameters, σi and σj , respectively, is represented by:

u(r) =

∞, r < σ

0, r ≥ σ
(29)

where r is the distance between the particle centers and σ = (σi + σj)/2. In between collisions, the
hard-sphere fluid evolves dynamically without any force interactions. When applying the shell particle
equations of motion to a hard-sphere collision, one must consider two separate cases: (1) neither particle
i nor particle j is the shell particle and (2) either i or j is the shell particle. Furthermore, even if the shell
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particle does not participate in a collision, its x momentum will still change, since the acceleration of the
shell particle is proportional to the internal pressure, which varies upon any collision.

There are several variables that are present in all of the expressions for the collision dynamics. These
are the reduced mass, µ, the center-to-center vector, ~q, and ṙ. The reduced mass is

µ =
mimj

mi +mj

(30)

where mi and mj are the masses of particles i and j, respectively. ~q is defined as ~q = ~qi − ~qj , and ṙ is
ṙ = (~q · ~̇q)/σ, which is the time rate of change of ~q evaluated at |~q| = σ. When neither of the colliding
particles are the shell particle, the collision dynamics are given by:

td =
−2µṙ

1 + µσ2/m1q2
1

∆~pi = td
~q

σ

∆~pj = −td
~q

σ

∆p1 = td
σ

q1

(31)

When one of the colliding particles is the shell particle, the collision dynamics are now given by:

td =
−2µṙ

1 + µσ2/m1q2
1 − µq2

x/m1σ2

∆~pi = td
~q

σ

∆p1,y = −td
qy
σ

∆p1,z = −td
qz
σ

∆p1 = td
σ

q1

(32)

where, for example, qx is the x component of ~q.
The square-well interaction potential is represented by:

u(r) =


∞, r < σ

−ε, σ ≤ r < λσ

0, r ≥ λσ

(33)

where λ is the width and ε is the depth of the square-well (and may vary depending upon the interaction
between any two particles). The interaction at r → σ is identical to the hard-sphere collision obtained
above. There are three other types of collisions that occur in the square-well system at r → λσ. The
capture interaction is the case where i and j start beyond λσ. There are two types of collision that occur
at λσ when the starting distance between i and j are within the attractive well. The dissociation collision
occurs when the molecules have enough kinetic energy to overcome the attractive potential energy and
the molecules no longer interact, and the bounce collision occurs when there is not enough kinetic
energy to overcome the attractive energy and the particle centers stay within the attractive well. The
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bounce dynamics are analogous to the hard-sphere collision presented above with the only difference
being setting σ = λσ in Equations (31) and (32). The mathematical condition for determining if the
collision is a bounce or a dissociation collision is that if µṙ2/2 ≥ ε(1 + µσ2/m1q

2
1) for the shell particle

not taking part in the collision and µṙ2/2 ≥ ε(1 + µσ2/m1q
2
1 − µq2

x/m1λ
2σ2) when the shell particle is

taking part in the collision, then the collision is a dissociation collision.
The collision dynamics for capture and dissociation differ only by a plus/minus sign, so we present

them together. When neither of the colliding particles are the shell particle, the collision dynamics are
given by:

td =
µṙ ± µ[ṙ2 ± (2ε/µ)(1 + µλ2σ2/m1q

2
1)]1/2

1 + µλ2σ2/m1q2
1

∆~pi = −td
~q

λσ

∆~pj = td
~q

λσ

∆p1 = −td
λσ

q1

(34)

with the “+” being for capture and the “−” being for dissociation. When one of the colliding particles
is the shell particle, then the collision dynamics are given by:

td =
µṙ ± µ[ṙ2 ± (2ε/µ)(1 + µλ2σ2/m1q

2
1 − µq2

x/m1λ
2σ2)]1/2

1 + µλ2σ2/m1q2
1 − µq2

x/m1λ2σ2

∆~pi = −td
~q

λσ

∆p1,y = td
qy
λσ

∆p1,z = td
qz
λσ

∆p1 = −td
λσ

q1

(35)

We integrate theNPT equations of motion in between collisions via the application of the generalized
Trotter expansion formula to the extended phase space classical Liouville operator discussed in the
appendix and [17,18,22,24,41]. Since the thermostat variables have no influence on a hard-sphere or
square-well collision, the updates of the thermostats can be completely decoupled from the updates
of the particle positions and the momentum changes upon a collision. The full integration scheme is
presented in detail in [18].

3.4. Shell Particle Simulations Using the Configurational Temperature

The concept of a configurational temperature was introduced in 1997 in the seminal paper
by Rugh [42], which provided a tractable statistical mechanical expression for the reciprocal of
this temperature. The expression for the configurational temperature was later generalized by
Jepps et al. [43]. Since then, several MD algorithms have been developed that make use of the
configurational temperature, but the few that are most useful for the current discussion are by Braga
and Travis [44,45]. They introduced NPT equations of motion that use the configurational temperature
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and showed the benefits of using this temperature, instead of the standard kinetic temperature, within
nonequilibrium simulations [44,45].

The equations of motion that they derived are not consistent with the shell molecule partition function,
however, and so, we reformulated their equations to account for this. The new equations of motion are:

q̇i =
pi
mi

+
( q̇1

q1

)
qi +

( q̇1

q1

)
(3N − 1)

Fi
∆′

+ ξ̇
Fi
∆′

ṗi = Fi

q̇1 =
p1

m1

ṗ1 = 24q2
1(Pint − P )

ξ̇ =
pξ
Q

ṗξ =
3N∑
i=2

F 2
i

∆′
− kBT (36)

where i = 2, ..., 3N ,

∆′ =
3N∑
i=2

(
∂2U

∂q2
i

) (37)

where U is the total potential energy, and:

Pint =
1

24q3
1

[
(3N − 1)

3N∑
i=2

F 2
i

∆′
+

3N∑
j=1

qjFj

]
(38)

The extended Hamiltonian for the configurational temperature shell molecule system is:

Hext =
3N∑
i=1

p2
i

2mi

+
∑
i

∑
j>i

U(rij) + 8q3
1P +

p2
ξ

2Q
+ kBTξ (39)

The instantaneous configurational temperature, kBTconf , is:

kBTconf =
3N∑
i=2

F 2
i

∆′
(40)

The instantaneous configurational temperature appearing in the above shell particle equations of
motion differs from that of Braga and Travis [44,45], whereby the sums appearing in Equations (37)
and (40) run from two to 3N , as compared to one to 3N . The x-component of the shell particle is not
included in these summations, although the shell particle does still contribute to the forces (and their
derivatives) of the remaining particles. Since the configurational temperature thermostating appears
to be preferred in nonequilibrium simulations, as known artifacts seen in some simulations with the
Nosé-Hoover thermostat were not exhibited with the configurational temperature thermostat [44,45],
we also include below new results for NPT MD simulations with the shell molecule using the
configurational temperature.
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4. Results and Discussion

Several tests of the new shell particle equations of motion (Equation (16)) have been published
previously. The agreement between isobars predicted by the new shell molecule molecular dynamics,
the shell molecule Monte Carlo algorithm [15] and the equation of state for the Lennard-Jones fluid
introduced by Johnson et al. [46] is shown in Figure 1 of [17]. Similar agreement between the MD
and MC results is presented in Figure 1 of [18] for the square-well potential, which also includes,
for comparison, the predictions of an equation of state introduced by Patel et al. [47]. For both
systems, the MD and MC simulation results agree with each other and with the appropriate equation
of state to high accuracy over a very broad range of pressures. On the scale of the plots, the MD and
MC results are nearly indistinguishable [17,18]. We also looked at the self-diffusion coefficients for
various binary Lennard-Jones mixtures and compared them with results from MD simulations in the
microcanonical ensemble [17]. The self-diffusion coefficients of each species were essentially identical
within both ensembles.

The differences between systems that sample the rigorously correct volume distributions and those
that do not can most readily be seen in small systems. Equations (9) and (10), for example, provide
strict tests of the validity of the shell particle equations of motion when compared against simulation
methodologies that don not employ the correct volume scale. Several state points for Lennard-Jones,
hard-sphere and square-well fluids are compared in [17,18]. In each of the conditions studied, the
relations derived earlier are found to be satisfied to a high accuracy. We also included results from
the Hoover algorithm (Equation (21), where it is important to note that the internal pressure equation for
the Hoover algorithm is given by Equation (24)).

As an additional test, we present here results for a pure component Lennard-Jones fluid with system
sizes ranging from N = 16 to 256. To avoid the use of long-range corrections, as well as force profiles
that would not sum to zero in the y and z directions, we utilized the truncated and shifted force Lennard-
Jones potential [38]:

u(r) = 4ε
[(σ
r

)12

−
(σ
r

)6]
− uLJ(rc)− (r − rc)u′LJ(rc) (41)

where rc is the cutoff distance and u′LJ(rc) is the derivative of the potential at the cutoff distance. At
the chosen truncation distance, both the potential and force smoothly vanish. To prevent the truncation
distance from exceeding half the box length at small system sizes, since periodic boundary conditions
were employed, we chose rc = 1.5σ. Up to 106 time steps of equilibration were performed, followed
by up to 108 time steps at the smallest system sizes for the determination of ensemble averages. All
simulations were run at T ∗ = 1.5. The results for a reduced external pressure of P ∗ = 0.5 are included
in Table 1. Additionally, provided in the tables are the averages obtained from MC simulations both with
and without the shell particle.
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Table 1. Comparison of various ensemble averages for the truncated and shifted
Lennard-Jones fluid with a cuttoff of 1.5σ for T ∗ = 1.5 and P ∗ = 0.5. The top dataset was
obtained with the shell particle Monte Carlo method [15]. The second dataset was generated
from the shell particle molecular dynamics (MD) algorithm using the Nosé-Hoover chained
thermostat. The third dataset was obtained from the shell particle MD algorithm using the
configurational temperature thermostat. The fourth dataset was obtained from the Hoover
algorithm. The bottom set are the results of constant pressure MC simulations without a
shell particle. The numbers in parentheses indicate the error in the final significant digits.

N 〈P ∗
int〉 〈ρ∗〉 〈V ∗〉 〈U∗〉 〈T ∗〉

16 0.514(54) 0.227(43) 73(7) −0.045(32) 1.5
32 0.507(49) 0.223(34) 145(11) −0.045(18) 1.5
64 0.503(37) 0.222(16) 291(14) −0.045(12) 1.5
108 0.502(24) 0.221(8) 490(18) −0.045(10) 1.5
256 0.501(15) 0.221(2) 1161(32) −0.045(9) 1.5

16 0.514(235) 0.229(31) 72(12) −0.045(111) 1.49(31)
32 0.506(161) 0.224(27) 144(17) −0.045(78) 1.50(22)
64 0.503(111) 0.223(19) 290(25) −0.045(55) 1.50(15)
108 0.502(85) 0.221(14) 489(32) −0.045(42) 1.50(12)
256 0.501(55) 0.221(9) 1161(49) −0.045(28) 1.50(8)

16 — — — — —
32 0.506(346) 0.218(27) 148(18) −0.038(86) 1.51(15)
64 0.503(289) 0.219(21) 294(27) −0.041(55) 1.51(14)
108 0.502(203) 0.219(15) 493(36) −0.043(42) 1.50(12)
256 0.501(133) 0.220(9) 1165(50) −0.044(28) 1.50(5)

16 0.522(235) 0.230(40) 71(12) −0.047(111) 1.50(31)
32 0.511(162) 0.226(27) 144(17) −0.045(78) 1.50(22)
64 0.505(111) 0.223(19) 289(24) −0.045(55) 1.50(15)
108 0.503(85) 0.222(14) 488(32) −0.045(42) 1.50(12)
256 0.501(56) 0.221(9) 1163(48) −0.045(28) 1.50(8)

16 0.500(62) 0.220(18) 75(8) −0.045(26) 1.5
32 0.500(44) 0.220(15) 147(11) −0.045(18) 1.5
64 0.500(31) 0.220(10) 293(14) −0.045(13) 1.5
108 0.500(25) 0.220(8) 492(20) −0.045(8) 1.5
256 0.500(16) 0.220(2) 1164(36) −0.045(5) 1.5
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According to Equation (10), the average volume of the shell particle simulations should be
three units lower than the no-shell simulations in Table 1. The simulation results agree quite well
with these predictions, considering the large absolute volume fluctuations that are obtained and satisfy
Equation (10) with similar accuracy as noted in [15]. As expected, the average volume, density
and internal energy per particle obtained with the shell particle MD with the traditional Nosé-Hoover
thermostat, the shell particle MD with the configurational thermostat and the Hoover algorithms are in
agreement, at least within the error bars. Both sets of averages are nearly the same for P ∗ = 0.5. The
average internal pressures differ, but each is seen to satisfy Equations (9) and (24) to a high degree of
accuracy. Both of the shell particle results and Hoover results also agree, within the error bars, with the
MC shell particle simulations. There is, however, a slight discrepancy between the MD and MC shell
particle results at very small system sizes (N ≤ 64), particularly for the values of Pint and the average
density or volume. This difference can be attributed to the relatively large temperature fluctuations
that develop within the MD simulations, as opposed to the strictly fixed temperature during the MC
simulations. Statistical mechanics requires that the kinetic temperature of the system have a standard
deviation of:

σT =
√
〈T 2〉 − 〈T 〉2 = Tbath

√
2

3N
(42)

where Tbath is the temperature of the surrounding temperature reservoir and N is the number of particles
in the system. Equation (42) holds regardless of the usage of periodic boundary conditions [25,33]. In
Table 1, we report the standard deviation by the number in parentheses indicating the error in the final
significant digits. As an example, the number 1.50(31) means that the average is calculated to be 1.50

and the standard deviation is 0.31. The results for the temperature fluctuations in Table 1 agree very
closely to Equation (42).

Furthermore, presented in Table 1 are the results for the shell molecule configurational temperature
NPT . Note that the results for the configurational temperature are not provided for N = 16. At this
small density and small number of particles, there is a chance that no pairs of particles reside within the
cuttoff distance. As a result, ∆′ is equal to zero and the integration scheme breaks down for that time
step. This problem only arose for the smallest system size (N = 16). Additionally, note in Table 1
that the configurational temperature yields the largest temperature fluctuations as compared to the other
simulation methods. Again, at this relatively low density, the effects of adding or deleting one or two
particle pairs within the potential cutoff for each time step are greatly enhanced for the configurational
temperature (as compared to the kinetic temperature, which is based solely on the particle momenta).
The average volumes are larger than they should be and the average potential energy is lower than it
should be for the configurational temperature simulations. Interestingly, the results do seem to improve
consistently as the number of particles increases. This may be due, in some small part, to the given
expression for the configurational temperature, which as a measure of the system temperature is only
accurate on the order of (1/N ) [44,45].

4.1. Discontinuous Pressure Jumps

Ultimately, the true benefits of the shell particle algorithm may become apparent for nonequilibrium
simulations where the system itself sets the time scale for pressure/volume fluctuations. It is important
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to note that in a multicomponent system, there is freedom to choose the identity of the shell particle,
although the masses of the various components comprising the mixture are still known. To gain some
initial idea of how the shell particle equations of motion might behave in a nonequilibrium application,
we ran a pressure-jump simulation in which the external pressure is abruptly changed after the system
has equilibrated. For example, we first consider the response of the internal pressure to a sudden change
in the external pressure from P ∗ = 1.0 to P ∗ = 2.0 and then back to P ∗ = 1.0 at T ∗ = 2.0 for the
pure component Lennard-Jones fluid with N = 500 and long-range corrections applied after a potential
cutoff of 3.0σ. The resulting time evolution of the internal pressure is shown in Figure 2.

Figure 2. Time response of the internal pressure of the pure component Lennard-Jones fluid
to a sudden change of the external pressure from P ∗ = 1.0 to P ∗ = 2.0 and, then, back down
to P ∗ = 1.0. For the given choice of the time origin, the pressure is increased after 2000 time
steps and, then, reduced after another 4000 time steps. The solid line is the set external
pressure, P . The dashed lines are the simulation results. In all cases, T ∗ = 2.0 andN = 500.
The plot in the upper-left corner is the results for the shell molecule with the Nosé-Hoover
thermostat. The plot in the upper-right corner is the results for the shell molecule with the
configurational temperature thermostat; The plots in the lower-left and lower-right corner are
the results for the Hoover algorithm with M∗

p = 10.0 and M∗
p = 5.0, respectively.
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The figure includes results for the shell molecule with the Nosé-Hoover thermostat, the shell molecule
with the configurational temperature thermostat and results for the Hoover algorithm with the reduced
piston mass, M∗

p , equal to M∗
p = 10.0 and M∗

p = 5.0, respectively. Both of the shell particle simulations
and the Hoover simulation withM∗

p = 10.0 quickly adjust to the new external pressure, while the Hoover
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simulation with M∗
p = 5.0 requires a much longer time to re-equilibrate (again, the time scale obtained

from the Hoover code is directly dependent upon the mass of the piston, whereas the time scale for the
shell particle algorithm is automatically set by the system). This result is somewhat surprising, since
the two piston masses are so close in their numerical values. The fluctuations of the internal pressure
exhibited by both of the shell particle codes at the new external pressure of P ∗ = 2.0 and, then, again,
at P ∗ = 1.0 are immediately identical to the fluctuations seen from regular equilibrium simulations at
P ∗ = 2.0 and P ∗ = 1.0. The internal pressure for the Hoover simulations also adjusts to the new external
pressure, but there does appear to be a considerable “decay” to the new set point after the pressure jump.
This decay is dependent on the value of the piston mass. A smaller value of the piston mass yields a
longer decay in the instantaneous pressure to the new equilibrium point.

Figure 3. Time response of the internal pressure of the pure component Lennard-Jones fluid
to an isothermal compression from P ∗ = 1.0 to P ∗ = 4.0 in increments of 1.0 unit of reduced
pressure every 2000 time steps. For the given choice of the time origin, the pressure is
increased after 2000, 4000 and, again, after 6000 time steps. The solid line is the set external
pressure, P . The dashed lines are the simulation results. In all cases, T ∗ = 2.0 andN = 500.
The plot in the upper-left corner is the results for the shell molecule with the Nosé-Hoover
thermostat. The plot in the upper-right corner is the results for the shell molecule with the
configurational temperature thermostat. The plots in the lower-left and lower-right corner
are the results for the Hoover algorithm with M∗

p = 10.0 and M∗
p = 5.0, respectively.
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We also preformed an isothermal compression as a series of steps from P ∗ = 1.0 to P ∗ = 4.0 in
increments of 1.0 unit of reduced pressure every 2000 time steps at T ∗ = 2.0 for the pure component
Lennard-Jones fluid with N = 500 and long-range corrections applied after a potential cutoff of 3.0σ.
The results are presented in Figure 3. The value of the time steps, along with every other aspect of
the simulations, are the same as those performed for Figure 2. As before, both of the shell particle
simulations exhibit fluctuations of the internal pressure after the jumps to be almost immediately identical
to the fluctuations seen from regular equilibrium simulations at the respective set external pressures at
equilibrium. The internal pressure for the Hoover simulations also adjust to the new external pressure,
but again, there appears to be a considerable decay to the new set point after the pressure jump.
The simulation with M∗

P = 5.0 does not allow the internal pressure to equilibrate after an external
pressure jump before the system takes the next jump. This shows that the value of the piston mass is
critical to capturing the dynamics and fluctuations in nonequilibrium systems and that the results can be
considerably different for values of the piston mass that are relatively close to one another.

5. Conclusions

The MD NPT simulation method that employs the shell particle is based on equations of motion
consistent with the proper statistical mechanical formulation of the NPT ensemble. Within other MD
methods, a piston of arbitrary mass is introduced to control the response time of volume fluctuations.
Now, the shell particle of known mass determines the time scale for volume and pressure fluctuations,
in addition to performing the important function of eliminating the redundant counting of configurations
through its unique definition of the volume of the system.

There are several benefits to using the shell particle algorithm for MD equilibrium simulations. For
example, as the shell particle directly interacts with all other particles in the system, only a single
Nosé-Hoover chained thermostat need be employed. Additionally, as noted above, the mass of the
“volume”, that is, the shell particle, is a known quantity.

Allowing the system itself to control the relaxation time of property fluctuations should ultimately
provide a significant edge over piston-based methods, specifically for nonequilibrium systems (though
that has yet to be shown). Adapting the shell particle approach to a simulation of isothermal-isobaric
shear flow [44,45] or homogeneous nucleation in simple fluids [48–50] may provide another worthwhile
test of the shell particle formalism. The piston mass is not known a priori and greatly affects the response
time of the system. As such, for nonequilibrium simulations, the appropriate choice of a piston mass is
unclear. On the other hand, at least for a pure component system, there is no ambiguity as to what
should be the response time of the volume fluctuations; the mass of the shell particle is again a known
input to the simulation. For mixtures, however, the identity of the shell particle is important (though not
for equilibrium averages). Yet, the masses of the components comprising the mixture are still known.
How the identity of the shell particle controls the response time of pressure and volume fluctuations is
therefore, in the end, still a property of the system itself.

Future directions include incorporating the shell particle formalism into constant pressure molecular
dynamics algorithms for both molecular systems and systems with long-range intermolecular interac-
tions (such as electrostatic interactions). To date, we have not performed any simulations of these
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systems with the shell particle, so definitive statements would be inappropriate at this time. However, at
first sight, it would appear that selecting the center of mass of one of the molecules as the volume scale is
a logical choice for molecular systems. It also appears that the techniques already employed to deal with
long-range interactions in previous algorithms (such as the Ewald summation in electrostatic systems)
would apply equally to shell particle algorithms. There is nothing in the derivations given in this
manuscript that suggests to us that intra- or long-range intermolecular interactions would have any effect
on the validity of the shell molecule formulation.

Finally, various shape changing, or isotension, simulations [25] may also benefit from the use of the
shell particle. The introduction of a shell particle into these codes would add some complexities, such
as possibly allowing the shell particle to move along different faces of the system volume. Nevertheless,
eliminating the need to specify a piston mass might be very helpful for these simulations.
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Appendix

Integration Scheme Using the Liouville Operator

We integrate the NPT equations of motion via the application of the generalized Trotter expansion
formula to the extended phase space classical Liouville operator [25,41]. What follows from this
approach is an integration scheme that is time-reversible and volume-preserving in the appropriate
extended phase space, yielding stable trajectories with no significant drift in the extended Hamiltonian.
One begins with a unitary operator, called the classical propagator, that propagates the appropriate phase
space vector, ~Γ, from an initial state at time t = 0 to a final state at time t, i.e., ~Γ(t) → ~Γ(0). The
evolution as a function of time t can be formally written as the solution of the following equation:

~Γ(t) = exp(iLt)~Γ(0) (43)

where iL is the Liouville operator, defined as iL = ~Γ · ∇~Γ, and exp(iLt) is the classical propagator. The
Liouville operator can be expressed as the sum of other operators, for example, iL = iL1 + iL2, such
that the action of each separate classical propagator can be evaluated analytically. Since iL1 and iL2 do
not, in general, commute, exp(iLt) cannot be replaced by exp(iL1)exp(iL2). The classical propagator
can be rewritten, however, using the Trotter expansion theorem [21–26],

eiLt = e(iL1t+iL2t) = e(iL1t/2)e(iL2t)e(iL1t/2) +O(t3) (44)

Application of the above operator, along with the given equations of motion, provides a sequence of
operations on the components of ~Γ, thereby generating an integration scheme that updates ~Γ from time
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t to time t + ∆t. Since we start from the Liouville formulation of classical mechanics and the classical
propagator is a unitary operator, the resulting MD algorithm is guaranteed to be time-reversible and
(phase space) volume-preserving (within finite machine precision and to the second order in the chosen
time step, ∆t).

The phase space vector appropriate for the shell particle equations of motion with a single chain of C
thermostats is ~Γ = ~Γ(q1, p1, qi, pi, ξk, pξk), where i = 2 to 3N and k = 1 to C. In this case, the Liouville
operator is given by [17]:

iLNPT = q̇1
∂

∂q1

+ ṗ1
∂

∂p1

+
3N∑
i=2

[
q̇i
∂

∂qi
+ ṗi

∂

∂pi

]
+

C∑
k=1

[
ξ̇k

∂

∂ξk
+ ṗξk

∂

∂pξk

]
(45)

By changing the order of some of the terms and replacing the various time derivatives with their
expressions given in Equation (16), we rewrite the full Liouville operator as a sum of the following
five separate operators:

iLNPT = iLq + iLp1 + iLpi + iLp1i + iLNH (46)

in which:

iLq =
p1

m1

∂

∂q1

+
3N∑
i=2

[( pi
mi

+
( q̇1

q1

)
qi

) ∂

∂qi

]
iLp1 = Gε

∂

∂p1

iLpi =
3N∑
i=2

[
Fi

∂

∂pi

]
(47)

iLp1i =
3N∑
i=2

[(
− q̇1

q1

)
pi
∂

∂pi

]
iLNH =

3N∑
i=2

[(
− pξ1
Q1

)
pi
∂

∂pi

]
− pξ1
Q1

p1
∂

∂p1

+
C∑
k=1

pξk
Qk

∂

∂ξk
+

C∑
k=1

Gξk

∂

∂pξk
−

C−1∑
k=1

pξk+1

Qk+1

pξk
∂

∂pξk

where:

Gε =
[ 1

q1

( 3N∑
i=2

p2
i

mi

+
3N∑
i=1

qiFi

)
− 24q2

1Pext

]
Gξ1 =

[ 3N∑
i=1

p2
i

mi

− gkBT
]

Gξk =
p2
ξk−1

Qk−1

− kBT

It is assumed in the above expressions that periodic boundary conditions are imposed, and we
lose three of the momentum degrees of freedom in determining the instantaneous kinetic temperature
(one from the x coordinate of the shell particle being coupled to the barostat and the center-of-mass
momentum in the y and z directions being conserved and set equal to zero [33]). Under these
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circumstances, the instantaneous pressure is given in Equation (17), and the total number of the
momentum degrees of freedom is g = 3N − 2.

The above decomposition of iLNPT is slightly different from what was done previously for continuous
potentials [17,24]. In particular, all particle positions have been removed from iLNH and, so, are not
altered by the action of this operator. What remains in iLNH are the thermostat variables, as well
as the influence of the thermostats on the particle momenta. Changes in the particle positions, along
with further updates of the particle momenta due to the dilatation of the system volume, are now only
generated by the action of the remaining four operators. We found slightly better conservation of the
extended Hamiltonian by splitting up the operator in this way relative to our previous factorization [17].
This approach of completely separating the influence of the thermostat variables on the particle
momentum was our approach to factorize the propagator when using discontinuous potentials [18]. The
reason being that since the collision dynamics do not influence the thermostat variables, it is much more
convenient to update the positions and momentum of the physical particles and their collision properties
all at once separated from the thermostat variables [18].

To determine the effect of the full Liouville operator, or exp(iLNPT t), on ~Γ, the Trotter expansion
formula must be applied. Although there are several ways to do so, we follow a similar factorization
proposed by Martyna et al. [24], whereby:

eiLNPT t = eiLNH t/2eiLp1 t/2eiLp1i t/2eiLpi t/2eiLqteiLpi t/2eiLp1i t/2eiLp1 t/2eiLNH t/2 +O(t3) (48)

The operator iLNH has to be further divided, which we split in the following manner:

iLNH = iLcv + iLvε +
C∑
k=1

iLGξk +
C−1∑
k=1

iLvξk + iLξ (49)

where:

iLcv =
3N∑
i=2

[(
− pξ1
Q1

)
pi
∂

∂pi

]
iLvε = −pξ1

Q1

p1
∂

∂p1

iLGξk = Gξk

∂

∂pξk

iLvξk = −
pξk+1

Qk+1

pξk
∂

∂pξk

iLξ =
C∑
k=1

pξk
Qk

∂

∂ξk

We again apply the Trotter expansion to factorize exp(iLNHt/2), the final form of which depends
upon the number of thermostats in the chain. We present the results for C = 3 with exp(iLNHt/2)

expanded as:

eiLNH t/2 = e
iLGξ3

t/4
[
e
iLvξ2

t/8
e
iLGξ2

t/4
e
iLvξ2

t/8
][
e
iLvξ1

t/8
e
iLGξ1

t/4
e
iLvξ1

t/8
]

eiLvε t/4
[
eiLcvt/2eiLξt/2

]
eiLvε t/4

[
e
iLvξ1

t/8
e
iLGξ1

t/4
e
iLvξ1

t/8
]

(50)
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[
e
iLvξ2

t/8
e
iLGξ2

t/4
e
iLvξ2

t/8
]
e
iLGξ3

t/4

Each of the above operators individually performs the following operations on the phase space
vector [25]:

e
iLGξk

t/4
: pξk → pξk +Gξkt/4

e
iLvξk

t/8
: pξk → pξkexp

(
−
pξk+1

Qk+1

t/8
)

eiLvε t/4 : p1 → p1exp
(
− pξ1
Q1

t/4
)

eiLξt/2 : ξk → ξk +
pξk
Qk

t/2; k = 1, ..., C

eiLcvt/2 : pi → piexp
(
− pξ1
Q1

t/2
)

; i = 2, ..., 3N

eiLp1 t/2 : p1 → p1 +Gεt/2 (51)

eiLp1i t/2 : pi → piexp
(
− q̇1

q1

t/2
)

; i = 2, ..., 3N

eiLpi t/2 : pi → pi + Fit/2; i = 2, ..., 3N

eiLqt : q1 → q1 +
p1

m1

t

qi → qiexp
( q̇1

q1

t
)

+
pi
mi

t
sinh

(
q̇1
q1
t
2

)
(
q̇1
q1
t
2

) exp
( q̇1

q1

t/2
)

; i = 2, ..., 3N

where sinh(x)/x can be expanded in a Maclaurin series to an arbitrarily high order [24] (we choose
to truncate at the eighth order). In deriving the expression for qi, we follow the literature and use
a slightly different approach relative to propagating all of the other phase space variables forward in
time [26]. Instead of using a Taylor series expansion (truncated at the second order) to express the action
of the propagator on qi [25], we instead rigorously solve the equation of motion (an ordinary first order
differential equation with constant coefficients) for qi, noting that all of the variables in the equation of
motion are constant, except for qi and t. Expanding sinh(x)/x to an arbitrarily high order is equivalent
to truncating the Taylor series expansion of the operator to an arbitrarily high order [21,24].

Now that the full operator exp(iLNPT t) has been factorized, we operate on the phase space vector by
following the order of the expansion of exp(iLNPT t) from right to left, thereby sequentially propagating
various components of ~Γ from time t to t+ ∆t.
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