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Abstract: We investigate solutions of a generalized diffusion equation that contains
nonlinear terms in the presence of external forces and reaction terms. The solutions found
here can have a compact or long tail behavior and can be expressed in terms of the
q-exponential functions present in the Tsallis framework. In the case of the long-tailed
behavior, in the asymptotic limit, these solutions can also be connected with the Lévy
distributions. In addition, from the results presented here, a rich class of diffusive processes,
including normal and anomalous ones, can be obtained.
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1. Introduction

The fast growth of the phenomena-connected anomalous diffusion [1] in different fields of science
has motivated the researchers to analyze several formalisms to investigate these phenomena, which are
essentially characterized by non-Markovian processes. One characteristic of these situations concerns
the spreading of a system that is not usual and, in several cases, given by ⟨(r − ⟨r⟩)2⟩ ∼ tα (where
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α < 1 and α > 1 represent the sub- and super- diffusive cases, respectively). Typical situations are
the relaxation to equilibrium in systems (such as polymer chains and membranes) with long temporal
memory, anomalous transport in disordered systems [2], non-Markovian dynamical processes in protein
folding [3], percolation of gases through porous media [4], thin saturated regions in porous media [5],
the standard solid-on-solid model for surface growth, thin liquid films spreading under gravity [6],
transport of fluid in porous media and viscous fingering [7] and the overdamped motion of interacting
particles [8]. One of these approaches is based on a nonlinear diffusion equation, the porous media
equation [9–23], by taking the presence of external forces and reaction terms into account. For
these equations, the solutions can be expressed in terms of the q-exponentials present in the Tsallis
framework [24] suggesting that the thermodynamic formalism connected with the scenarios has to
be extended to incorporate the effects that are not conveniently described by the usual one. Other
approaches, such as Langevin equations [25,26], master equations, random walk [27] and fractional
linear [28–31] or nonlinear [32–34] diffusion equations have also been used to investigate anomalous
diffusion processes.

Here, we investigate the following d-dimensional nonlinear diffusion equation with radial symmetry:

∂

∂t
ρ(r, t) =

1

rd−1

∂

∂r

{
rd−1

[
D̃(r, t)

∣∣∣∣ ∂∂rρ(r, t)
∣∣∣∣η ∂

∂r
ρν(r, t)

]}
− 1

rd−1

∂
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[
rd−1F (r, t)ρ(r, t)

]
− α(ρ, r, t) (1)

where D̃(r, t) is a spatial and time-dependent diffusion coefficient, F (r, t) is an external force applied to
the system and α(ρ, r, t) is a reaction term. In the absence of a reaction term, i.e., α(ρ, r, t) = 0, it can
be verified that

∫∞
0

dr rd−1ρ(r, t) is time-independent (hence, if ρ is normalized at t = 0, it will remain
so forever). Indeed, if we write the equation in the ∂tρ = −r1−d∂r

(
rd−1J

)
form with:

J (r, t) = −D̃(r, t)

∣∣∣∣ ∂∂rρ(r, t)
∣∣∣∣η ∂

∂r
ρν(r, t) + F (r, t)ρ(r, t) (2)

and assume the boundary condition J (∞, t) = 0, it can be shown that
∫∞
0

dr rd−1ρ(r, t) is a constant
of motion. Note that the solutions that emerge from Equation (1), by considering a suitable boundary
condition, have, as particular cases, several situations, such as the nonlinear model of heat conduction
worked out in [35], nonlinear diffusion problems related to hydraulics [36], the Chezy’s law for very
large cross sections and viscous flows with different rheologies [37]. Furthermore, Equation (1),
in connection with nonlinear diffusion processes coupled with reaction dynamics [19], may be used to
investigate scenarios characterized, for example, by population dynamics [38], recombination processes
in plasma physics and the kinetics of phase transitions. These features imply that depending on the choice
of the diffusive term, i.e., η, ν and D̃(r, t), Equation (1) may interpolate several situations, since nonlinear
diffusion to Richardson diffusion leads us to a flexible approach to be compared with experimental data.

The plan of this work is to investigate Equation (1), as mentioned above, by taking several situations
into account. We start by considering the stationary case in the presence of an arbitrary external
force, F (r, t), in the absence of reaction terms. In this case, it is assumed that D̃(r, t) → D(r) and
F (r, t) → f(r) in the limit, t → ∞, to obtain ρ(r, t) → ρs(r). After, we analyze the time-dependent
cases, which emerge when we consider D̃(r, t) = D(t)r−θ, the external force F (r, t) = −k(t)r with



Entropy 2013, 15 3933

α(ρ, r, t) = α(t)ρ(r, t) − αγ(t)r
λργ(r, t). Note that this choice for the source or absorbent term

is connected to the Verhulst growth dynamics. In all cases, we express our results in terms of the
q-exponentials that appear in the Tsallis framework, and in the asymptotic limit, the solutions are related
to the Lévy distributions. These developments are performed in Section II, and in Section III, we present
our discussions and conclusions.

2. Nonlinear Diffusion Equation

Let us start our discussion about the stationary solutions, by applying in Equation (1) the conditions
previously discussed in the introduction. For this case, it can be written as:

D(r)

∣∣∣∣ ∂∂rρs(r)
∣∣∣∣η ∂

∂r
ρνs(r)− f(r)ρs(r) = 0 (3)

with the solution subjected to the boundary condition, limr→∞ ρs(r) = 0, in order to satisfy the
normalization condition, where f(r) = −∂rV (r) and V (r) represent a potential consistent with the
presence of stationary states. In order to obtain the solution of Equation (3), it is interesting to note
that it should recover, in the appropriate limits, the solutions of the porous media and usual diffusion
equations. For these reason, we propose the ansatz:

ρs(r) = expq [−βG(r)]
/
Z (4)

as a solution, where:

expq [x] =

{
(1 + (1− q)x)

1
1−q , if 1/(1− q) ≤ x

0, otherwise
(5)

is the q-exponential function present in the Tsallis framework [24], G(r) is a function to be determined
and the constants, β and Z , are related to the normalization condition. In particular, it is important to
note that in Equation (5), there is a cut-off in order to preserve the probabilistic interpretation of the
solutions. Here, it is not out of place to mention that Equation (4) could be obtained from the maximum
entropy principle when Sq = (1 −

∫∞
0

rd−1ρs(r))/(q − 1) is considered with suitable constraints. In
addition, the entropy plays an important role in the Htheorem and its generalizations associated with
nonlinear Fokker-Planck equations, as discussed in [13,14]. By substituting Equation (4) in Equation (3)
and solving the differential equation obtained for G(r), we obtain that:

G(r) =
∫ r ( 1

νD(ξ)

∂

∂ξ
V (ξ)

) 1
1+η

dξ (6)

with β = Z1−q and q = (2− ν)/(1 + η), and consequently:

ρs(r) = expq

[
−β

∫ r ( 1

νD(ξ)

∂

∂ξ
V (ξ)

) 1
1+η

dξ

]/
Z (7)

For η = 0, Equation (7) recovers the stationary solution of the porous media equation, and the usual one
is obtained with η = 0 and ν = 1. Figure 1 illustrates the behavior of the stationary solution for the
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harmonic potential V (r) = kr2/2 and D(r) = Dr−θ for different values of the parameters, q, θ and η.
Note that depending on the values of q, the solution may present a compact (see the red dashed and black
solid lines for q less than one) or a long-tailed behavior (see the green dotted and blue dashed-dotted
lines for q greater than one). For the case that q equals one, we obtain from the stationary solution a
stretched exponential, which recovers the usual case for η = θ = 0.

Figure 1. The behavior of Equation (7) versus r is illustrated for different values of q, θ
and η in the absence of an absorbent (source) term by considering, for simplicity, D = 1

and V (r) = kr2/2 with k = 1. The red dashed and the black solid lines were obtained for
q = 1/2, θ = 1, η = 1/2 and q = 1/3, θ = −1 and η = 1. The green dotted and red
dashed-dotted lines were obtained for q = 6/5, θ = 1, η = 1/2 and q = 6/5, θ = −1 and
η = 1/3.

Now, we focus our attention on the time-dependent solutions of Equation (1). We first consider the
case characterized by the diffusion coefficient D̃(r, t) = D(t)r−θ and the external force F (r, t) = −k(t)r

in the absence of the reaction term. Thus, we have that:

∂

∂t
ρ(r, t) =

D(t)

rd−1
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ρν(r, t)

]}
− 1

rd−1

∂

∂r

[
rd−1 (−k(t)r) ρ(r, t)

]
(8)

Note that the external force may exhibit a stationary solution given by Equation (7), which satisfies the
required boundary conditions, if k(t) → const. for t → ∞. This feature lead us to consider that a
time-dependent solution for Equation (8) connected to Equation (7) is given by:

ρ(r, t) = expq

[
−β(t)rλ

]/
Z(t) (9)

with λ = 1+(1+θ)/(1+η) and q = (2−ν)/(1+η). The time-dependent functions, β(t) and Z(t), can be
obtained by substituting Equation (9) in Equation (8). In this sense, after performing some calculations,
it is possible to show that the functions, β(t) and Z(t), satisfy the following set of coupled equations:
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1

Z
d

dt
Z = νdD(t)Z(q−1)(1+η)λβ|λβ|η − dk(t) (10)

d

dt
β = λk(t)β − νD(t)Z(q−1)(1+η)(λβ)2|λβ|η (11)

From these equations, we obtain the following relation between β(t) and Z(t):

Z(t)β
d
λ (t) = N (12)

connected with the normalization condition of the ρ(r, t), i.e.,
∫∞
0

drrd−1ρ(r, t) = 1, from which the
constant, N , can be obtained. By using Equation (12), we obtain that:

β(t) = β(0)e−λ
∫ t
0 dt′k(t′)

[
1 + C

∫ t

0

dtD(t)eλ(σ−1)
∫ t
0 dt′k(t′)

] 1
1−σ

(13)

where C = ν(σ− 1)λ2+η/
(
N (1−q)(1+η)β1−σ(0)

)
, σ = 2+ η+ (1− q)(1 + η)d/λ and β(0) is a constant

defined by the initial condition. The time-dependent function, Z(t), is obtained by using Equation (12)
and Equation (13). By using Equations (9), (12) and (13), one can find that the spreading of the system is
governed by ⟨(r − ⟨r⟩)2⟩ ∝ tζ with ζ = 2/ [(1 + η)(λ+ (1− q)d)] when D(t) = const. and k(t) = 0.
In particular, in Figure 2 is illustrated, for simplicity, for d = 1 and λ = 2, the regions for which the
behavior of the mean square displacement is usual or anomalous. In this sense, it is also interesting to
point out that the case ζ = 1 leads us to a linear time dependence on time, and ζ ̸= 1 produces a nonlinear
time dependence on the mean square displacement. The first case is considered as usual diffusion, and
the other case, which can be characterized by ζ < 1 (subdiffusive) or ζ > 1 (superdiffusive), is an
anomalous diffusion.

Figure 2. This figure illustrates the regions where the system may present an usual or
anomalous behavior for the mean square displacement depending on the values of q and η;
for simplicity, for d = 1 and λ = 2.
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It is important to mention that, depending on the q values, i.e., q > 1 with
1 + λ/d > q > 1 + λ/(d+ 2), the second moment obtained from the solution is not defined and,
consequently, the distribution may asymptotically be connected with the Lévy distributions, as performed
for the Tsallis distribution [39–41].

Before starting our analysis about the time-dependent solutions of Equation (1) with:

α(ρ, r, t) = α(t)ρ(r, t)− αγ(t)r
λργ(r, t) , (14)

it is interesting to note that this term incorporated in Equation (1) extends the Fisher equation
usually used to model population biology [42], providing a simple generalization of the Verhulst
logistic equation [43–46] for population dynamics. In this context, the first term on the right side of
Equation (14) can be related to the growing of the system, and the second one gives a regulation for the
size of the system. In this manner, Equation (14) incorporated in Equation (1) may be used to describe the
local changes in the population dynamics and the diffusive term governs the diffusion of this population
in space, taking into account the usual and the porous media equation as particular cases. Particularly,
performing an integration in Equation (1) with the α(ρ, r, t) given by Equation (14), we obtain:

d

dt
P(t) = α(t)P(t)− αγ(t)

∫ ∞

0

drrd−1
[
rλργ(r, t)

]
(15)

where P(t) =
∫∞
0

drrd−1ρ(r, t) can be considered as a total population. In this context, we may consider
two mechanisms for the global regulation of the population: (i) one leading to a Verhulst-like equation
of motion for the population; and the other (ii) with a constant total population. For case (i), a global
regulation mechanism is given by the function:

αγ(t) = Φ(t)

(∫ ∞

0

drrd−1ρ(r, t)

)q /∫ ∞

0

drrd−1
[
rλρ(r, t)

]
(16)

By substituting Equation (16) in Equation (15), we obtain the following equation:

d

dt
P(t) = α(t)P(t)− Φ(t)Pq(t) (17)

which is an extension of the Verhulst equation and has as the solution:

P(t) = P(0)e
∫ t
0 dt′α(t′) expq

[
− 1

P1−q(0)

∫ t

0

dtΦ(t)e−(1−q)
∫ t
0 dt′α(t′)

]
(18)

For q > 1 with Φ(t) and α(t) constants, in the limit of t → ∞, we obtain from Equation (18) that
P(t) → (α/Φ)1/(q−1). The alternative form of obtaining a global regulation mechanism corresponds to
relating α(t) and αγ(t) as follows:

α(t) = αγ(t)

∫ ∞

0

drrd−1
[
rλργ(r, t)

]/∫ ∞

0

drrd−1ρ(r, t) (19)

Now, let us focus on the time-dependent solutions of Equation (1) with the reaction term given by
Equation (14). To obtain the time-dependent solutions for this case is a hard task when λ and γ are
arbitrary parameters for the required boundary condition. However, for the case λ = λ with γ = q, it
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is possible to verify that Equation (9) is the solution with the time-dependent functions governed by the
following equations:

1

Z
d

dt
Z = νdD(t)Z(q−1)(1+η)λβ|λβ|η − dk(t)− α(t) (20)

d

dt
β = λβk(t)− νD(t)Z(q−1)(1+η)|λβ|η(λβ)2 + Z1−qαγ(t) (21)

Note that Equation (12) is satisfied if α(t) = dαγ(t)Z1−q/(λβ) and implies:

β(t) = β(0)e−λ
∫ t
0 dt′(k(t′)+α(t′)/d)

[
1 + C

∫ t

0

dtD(t)eλ(σ−1)
∫ t
0 dt′(k(t′)+α(t′)/d)

] 1
1−σ

(22)

otherwise, this point may not be verified by the solution when α(t) and αγ(t) are arbitraries. This feature
is illustrated in Figure 3 for a particular choice of α(t) and αγ(t). Another interesting aspect is obtained
from Equation (20) for α(t) an arbitrary with αγ(t) = 0, i.e., a diffusion equation with a reaction term
of the first order, yielding:

β(t) = β(0)e−λ
∫ t
0 dt′k(t′)

[
1 + C

∫ t

0

dtD(t)eλ(σ−1)
∫ t
0 dt′(k(t′)+dα(t′))

] 1
1−σ

(23)

with d = (1− q)(1 + η)d/λ and Zβ
d
λ = N e−d

∫ t
0 α(t′)dt′ implying a nonconservation of the probability.

Figure 3. The behavior of Z(0)β
d
λ (0)/

(
Z(t)β

d
λ (t)

)
versus t is illustrated for typ-

ical values of q, η and θ by considering the presence of the reaction term with
α(t) = αe−t and αγ(t) = αγe

−t with, for simplicity, α = 1 and αγ = 1. The red dotted
and solid black lines were obtained for q = 1/2 and q = 6/5 with θ = 1 and η = 1/2.
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3. Summary and Conclusions

We have investigated solutions of a nonlinear diffusion equation in the presence of a reaction term.
First, we have considered the solutions of the stationary case in the absence of a reaction term for an
arbitrary external force. For this case, we have shown that the solutions obtained can be expressed in
terms of the q-exponentials present in the Tsallis framework, which suggests that Equation (1), similar to
the porous media equation, may find in this framework a thermostatics base. After, we have considered
the time-dependent case in the presence of a linear external force connected to a harmonic potential. The
solution can present a compact or long-tailed behavior depending on the choice of q, and in particular, the
last case can be connected to the Lévy distributions. In this scenario, a reaction term was incorporated,
and solutions were obtained.

Acknowledgments

We thank Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) and Fundação
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