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Abstract: Applying the particle filter (PF) technique, this paper proposes a PF-based 

algorithm to blindly demodulate the chaotic direct sequence spread spectrum (CDS-SS) 

signals under the colored or non-Gaussian noises condition. To implement this algorithm, 

the PFs are modified by (i) the colored or non-Gaussian noises are formulated by 

autoregressive moving average (ARMA) models, and then the parameters that model the 

noises are included in the state vector; (ii) the range-differentiating factor is imported into 

the intruder’s chaotic system equation. Since the range-differentiating factor is able to 

make the inevitable chaos fitting error advantageous based on the chaos fitting method, 

thus the CDS-SS signals can be demodulated according to the range of the estimated 

message. Simulations show that the proposed PF-based algorithm can obtain a good  

bit-error rate performance when extracting the original binary message from the CDS-SS 

signals without any knowledge of the transmitter’s chaotic map, or initial value, even when 

colored or non-Gaussian noises exist. 
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1. Introduction 

Chaotic signals exhibit several special characteristics such as extraordinary sensitivity to initial 

conditions, aperiodicity, broad Fourier transform spectra and high security, which coincide with the 

requirements for signals used in secure communication systems [1–4]. In secure communication, 

chaotic signals make the received signals seem like noises, thereby hiding the transmitted messages 

efficiently and securely. So far, a large number of chaotic secure communication schemes have been 

advanced in the last decades, including chaotic masking [1], chaotic shift keying [2], chaotic 

modulation [3], and chaotic direct sequence spread spectrum (CDS-SS) [4]. 

CDS-SS, where a binary message is multiplied by the chaotic carrier and encrypted into a CDS-SS 

signal, has been extensively studied as an approach of chaotic secure communication owing to its 

relatively good security [5–7]. Hwang [6] demonstrated that CDS-SS has the merit of physical-layer 

security, and Yu [7] showed that CDS-SS has a low probability of interception. Therefore, the research 

on the blind demodulation of CDS-SS signals is considered to have great prospects for communication 

management and military reconnaissance, also it can guide the further improvement of CDS-SS 

schemes’ security. Viewed from the principle of demodulation in the chaotic communication field, 

most demodulation methods are based on two major characteristics of chaotic secure communications. 

The first characteristic is that there are two chaotic attractors, where a binary message is encoded into 

two different chaotic attractors. The second one is that the relation of the message and the chaotic carrier 

is completely additive. However, CDS-SS has neither of the two characteristics [6,7]. In CDS-SS, the 

relation between the message and the chaotic carrier is multiplicative and there is only one chaotic 

attractor, so existent demodulation methods are inapplicable to CDS-SS. So far, many works [8–14] 

break chaotic secure communications with the requirement that the structure of the chaotic map is 

given. Sameh et al. [8] develop a particle filter (PF) algorithm to solve the problem of chaotic state and 

unknown additive input estimation even if Gaussian or non-Gaussian noises that are known exist in the 

chaotic maps. Some approaches [9,10] estimate simultaneously the state of the system and the 

unknown inputs using a generalized state space observer. Seongkeun et al. [11] developed a Maximun 

A Posteriori-particle filter (MAP-PF) to estimate not only the chaotic state, but also the secure 

message which is added directly to the chaotic carrier. Xu et al. [12] proposed an adaptive 

bidirectionally coupled synchronization method to estimate the chaotic states with unknown 

parameters. Several researchers [13,14] have developed adaptive control based approaches to estimate 

the states of chaotic systems with uncertain parameters and uncertain disturbances. However, when the 

structure of the chaotic map (i.e., the transmitter’s structure) is unknown for the non-cooperative 

communication condition, the methods mentioned above will be disabled. Hu and Guo [15] proposed a 

modified unscented Kalman filter to blindly demodulate the CDS-SS signals relying on the white 

Gaussian approximation which is a very stringent assumption in practical communication systems. A 

nonlinear Resilient back PROpagation (RPROP) neural network was proposed to estimate the chaotic 

sequences without knowing the transmitter’s structure under the additive white Gaussian noise 

(AWGN) condition [16], but the RPROP neural network method requires a training sequence that 

passes through the CDS-SS communication system to identify the unknown transmitter’s system, which 

can be hardly implemented in practice. In short, most works [5,8–21] have considered demodulating 

the chaotic secure communication systems with the assumptions that: (i) the transmitter’s structure is 
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known, and even that the parameters are given; or (ii) chaotic maps and their time series are only 

affected by white noise, in particular Gaussian noise. 

In this study, the particle filtering technique is employed to solve the problems mentioned above. 

The particle filter (PF) is the state-of-the-art solution to nonlinear and non-Gaussian problem, 

following the Bayesian filtering framework, which uses a sequential Monter Carlo method to 

approximate the optimal filtering by representing the probability density function with a swarm of 

particles [22–24]. Due to this sample-based representation, particle filters are able to represent a wide 

range of probability densities, allowing online, real-time estimation of nonlinear, colored or non-Gaussian 

dynamic systems. Li and Feng [25] prove that the PF has better performance in convergence rate and 

estimation accuracy than the extended Kalman filter (EKF) and unscented Kalman filter (UKF). 

In this paper, a novel PF-based algorithm is proposed to blindly demodulate the CDS-SS 

communication system without any knowledge of the transmitter’s chaotic map, parameters, or initial 

value, and even under colored or non-Gaussian noise conditions. To begin with, the formulation of this 

problem is introduced. Then, autoregressive moving average (ARMA) models are utilized to describe 

the colored noises, so that the demodulation could be formulated as a mixed parameter and state 

estimation problem. Accordingly, the message signal can be estimated by using two alternate PFs, and 

the state variable of one PF is the chaotic state, and the other one is the message signal. Finally, the 

proposed algorithm is implemented to blindly demodulate the CDS-SS signals. 

2. Problem Formulation 

Consider a CDS-SS communication system, in which the transmitter’s chaotic system is described by: 

1 ( )k kx f x    (1)

The chaotic spreading sequence  kx  is supposed to be a simple one that is generated by one 

chaotic map that is doubly symmetrical, i.e., the range of its values and its probability distribution are 

both symmetrical [5,19]. Each original binary message  1,1nb    is associated with a string of N 

elements ( ( 1) 1, , )kx k n N nN    , where N is the spreading factor. Namely, nb  is encoded as the 

string: 

k n ks b x ， ( 1) 1, ,k n N nN    ， 1,2,n    (2)

Let , ( 1) 1, ,n kb b k n N nN     , then Equation (2) is rewritten as k k ks b x . Since the transmitter’s 

chaotic map is unknown, the intruder uses another chaotic map )(g  instead of )(f , and its chaotic 

system equation is given by: 

1ˆ ˆ( )k kx g x   (3)

Because the transmitted CDS-SS signal is 1 1 ( )k k ks b f x  , the CDS-SS signal estimated by the 

intruder could be 1 1
ˆˆ ˆ( )k k ks b g x  , where b̂  and x̂  are the estimation of b and x, respectively. 

Considering the model error or noise, the following system and measurement equations [15] can be 

obtained: 

(1)
1

(1)
1 1 1 1

ˆ ˆ( )

ˆ ˆsgn( )

k k k

k k k k

x g x w

z b x v



   

  


 
 (4)
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where 1kz   is the observation, (1)
1kv   is the measurement noise with zero-mean and arbitrary distribution, 

(1)
kw  is the colored or non-Gaussian process noise that drives the dynamic systems through the 

nonlinear state transition function. On the other hand, since the message kb  in CDS-SS varies more 

slowly than the chaotic sequence  kx , 1
ˆ ˆ
k kb b   approximately. Thus, the system and measurement 

equations can also be written as: 

(2)
1

(2)
1 1 1

ˆ ˆ

ˆ ˆ( )

k k k

k k k k

b b w

z b g x v



  

  


 
 (5)

where 1
ˆsgn( ) 1kb    (if 1

ˆ 0kb   ) or 1
ˆsgn( ) 1kb     (if 1

ˆ 0kb   ), (2)
1kv   is the measurement noise with  

zero-mean and arbitrary distribution, (2)
kw  is the colored or non-Gaussian process noise that drive the 

dynamic systems through the nonlinear state transition function. 
The colored noises (1)

kw  and (2)
kw  can be formulated by ARMA models [26] as: 

1 1 1 1

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1 1 2 2 1 1 2 2k k k k k kp k p q k qw c w c w c w n d n d n d n                    (6)

2 2 2 2

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
1 1 2 2 1 1 2 2k k k k k kp k p q k qw c w c w c w n d n d n d n                    (7)

Let: 

( ) ( ) ( ) ( )
1 2 i

i i i i
pc c c     C  for 1,2.i   (8)

( ) ( ) ( ) ( )
1 2 i

i i i i
qd d d     D  for 1,2.i   (9)

( ) ( ) ( )i i i   T C D  for 1,2.i   (10)

Furthermore, let: 

1 1

(1) (1) (1) (1) (1) (1)
1 2 1 2

T

k k k k kk p k qw w w n n n            x  (11)

2 2

(2) (2) (2) (2) (2) (2)
1 2 1 2

T

k k k k kk p k qw w w n n n            b  (12)

where kx  satisfies: 
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(13)

and kb  satisfies: 
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(14)

Then, the state vectors are augmented as ˆ
k

TT
k kx   x x  and ˆ

k

T
T

k kb   b b . Therefore, the 

augmented state-space models corresponding to Equations (4) and (5) can be rewritten as: 
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(16)

3. Blind Demodulation of CDS-SS Signals Based on Particle Filters 

3.1. Particle Filter 

To begin with, a brief review of the PF is described first [22–24]. Let us consider a dynamic system 

represented by: 

1 ( )k k kf  x x w  (17)

1 1 1( )k k kh   z x v  (18)

where kx  is the state vector, kz  is the measurement vector, )(f  and )(h  are system and measurement 

equations, respectively, and kw  and kv  are process and measurement noises, respectively. Unlike the 

conventional analytical approximation methods, PFs are commonly used for the approximation of 

intractable integrals and rely on the ability to draw random samples (or particles) from a probability 

distribution. The main idea is to represent the posterior probability density function of the target state 

by a set of random particles 1{ }j M
k jx  with their associated weights 1{ }j M

k j  , where k is the time step, j is 

the particle index, and M is the particle number, i.e.: 
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1: 1

1
( ) ( )

M j j
k k k k kj

k

p  
 

 x z x x  (19)

operations where 
1

M j
k kj
 


 , )(  is the Dirac delta function,  1: 1 2, , ,k kz z z z  is the set of 

accumulated measurements up to the kth time step. Then, one can compute an optimal estimate based 

on these particles and weights. In the processing of PFs, generally there are six important steps: 

(i) Initialization 

Begin by generating M particles 0 1{ }j M
jx  from 0( )p x  which is the initial probability for the state; 

(ii) Prediction/sampling 

Sample new particles ),|(~ 1:111  k
j
kk

j
k zxxx   1,...,j M , where 1 1: 1( , )j

k n k  x x z is the proposed 

distribution. The most popular choice of the proposed distribution is the prior transition 

1 1: 1 1( , ) ( )j j
k k k k kp   x x z x x due to its simplicity; 

(iii) Measurement update 

For 1,2, ,j M    , update the weights by the likelihood: 

1 1 1

1 1

( )

    = ( ( ))

j j j
k k k k

j
k k k

p

p h

 



  

 



v

z x

z x
 (20)

where  )(vp  denotes the distribution of the measurement noise v . 

Followed by normalization 1 1 11
/

Mj j j
k k kj
    

  ; 

(iv) State estimation 

1 1 1: 1 1 11
ˆ [ | ]

M j j
k k k k kj

E     
 x x z x  (21)

(v) Resampling 

The basic idea of resampling is to eliminate particles which have small weights, and to replicate 

particles with large weights. Draw new particles from the above set of particles 1 1{ }j M
k j x  based on the 

particle weights 1 1{ }j M
k j    according to a resampling algorithm. Then the particles with different weights 

are replaced with new ones having equal weights (1/M); 

(vi) Iteration 

Let 1k k   and iterate to item (ii). 

3.2. Blind Demodulation of CDS-SS Signals under the White Gaussian Noises Condition 

Firstly, consider the situation that the signal is influenced by the white Gaussian noises, i.e., (1)
kw  in 

Equation (4) and (2)
kw  in Equation (5) are white Gaussian noises. Since the transmitter’s chaotic map is 

unknown to the intruder, Equations (4) and (5) use another )(g  to fit the transmitter’s chaotic map 

)(f . Thus, the difference between )(g  and )(f  will inevitably obviously result in a chaos fitting 

error. Therefore, the best method is to utilize the chaos fitting error. The chaos fitting method [15] 

employs a range-differentiating factor   in Equation (5) to differentiate the vibration range of the 
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amplitude of ˆ
kb  corresponding to −1 and 1. Accordingly, the following state-space equations can be 

obtained corresponding to Equations (4) and (5), respectively: 

(1)
1

(1)
1 1 1 1

ˆ ˆ( )

ˆ ˆsgn( )

k k k

k k k k

x g x w

z b x v



   

  


 
 (22)

(2)
1

(2)
1 1 1

ˆ ˆ

ˆ ˆ( ( ) )

k k k

k k k k

b b w

z b g x v


  

  


  
 (23)

Equations (22) and (23) are the state-space equations of the PFs, and then the chaotic state  ˆkx  and 

the message signal ˆ{ }kb  can be estimated by the PFs. 

At time step k+1, the transmitted CDS-SS signal is 1 1= ( )k k ks b f x  , and the chaos fitting is 
(2)

1 1 1
ˆ ˆ= ( ( ) )k k k kz b g x v    . Then, the chaos fitting error is: 

1 1 1

(2)
1 1 1

ˆ ˆ       = ( ) ( ( ) )

k k k

k k k k k

e s z

b f x b g x v
  

  

 

  
 (24)

Let ' (2)
1 1 1k k ke e v     , then: 

'
1 1

1

( )ˆ
ˆ( )

k k k
k

k

b f x e
b

g x 
 







 (25)

'
1ke   is caused by the fitting error and the measurement noise, so it is random, then the '

1ke   and '
1ke   

are considered indiscriminating. 1
ˆ
kb   is rewritten as 1

1
ˆ
kb   or 1

1
ˆ
kb
  corresponding to the true value 1 1kb    

or 1 1kb    , respectively, then 1
1

ˆ
kb   and 1

1
ˆ
kb
  are expressed as follows: 

'
1 1

1

( )ˆ
ˆ( )
k k

k
k

f x e
b

g x 








      
'

1 1
1

( )ˆ
ˆ( )
k k

k
k

f x e
b

g x 
 



 


 (26)

If there is not a range-differentiating factor, i.e., 0  , let 1
1

ˆ [ , ]kb c d   , then 1
1

ˆ [ , ]kb d c
   . Because 

the range of '
1 ˆ( ) ( )k k kf x e g x  approximates axial symmetry [27], i.e., c d , the difference between 

[ , ]c d  and [ , ]d c  is very small. Thus, 1
1

ˆ
kb   or 1

1
ˆ
kb
  cannot be differentiated from 1

ˆ
kb  , as shown in 

Figure 1(a). If 0  , it will break the axial symmetry, then c d  , 1
1

ˆ [ , ]kb c d    and 1
1

ˆ [ , ]kb d c
    will 

be obviously different as demonstrated in Figure 1(b). Therefore, 1
1

ˆ
kb   can be differentiated from 1

1
ˆ
kb
  

by a threshold, and then the message 1kb   can be recovered. The threshold is chosen as 0 since the 

range of the estimated message 1
ˆ
kb   is on the x axis symmetry when 0  .  

Based on the chaos fitting method, the approach to estimating the message ˆ{ }kb  through Equations 

(22) and (23) by two alternate PFs is summarized as follows: 

Initiate ˆkx  and ˆ
kb , then operate circularly starting from 0k  . One cycle of the PF chaos fitting 

includes two steps: 

Step 1: Do PF chaos fitting and estimate 1
ˆ
kb   according to Equation (23) and ˆkx . The state equation 

is (2)
1

ˆ ˆ
k k kb b w   , and the measurement equation is (2)

1 1 1
ˆ ˆ( ( ) )k k k kz b g x v     . 

Step 2: Do PF chaos fitting and estimate 1ˆkx   according to Equation (22) and 1
ˆ
kb  . The state 

equation is (1)
1ˆ ˆ( )k k kx g x w   , and the measurement equation is (1)

1 1 1 1
ˆ ˆsgn( )k k k kz b x v     . 
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Figure 1. (a) The range of 1
1

ˆ
kb   and 1

1
ˆ
kb
  when 0  ; (b) the range of 1

1
ˆ
kb   and 1

1
ˆ
kb
  when 0  . 
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3.3. Blind Demodulation of CDS-SS Signals under Colored/Non-Gaussian Noises Condition 

Under the condition that the noises is colored or non-Gaussian as described in Equations (15) and 
(16), the range-differentiating factor   is imported into Equation (16) as shown in Equation (27): 
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(27)

Then, the proposed algorithm of alternately estimating the message signal ˆ{ }kb  and chaotic state 
ˆ{ }kx  according to Equations (15) and (27) by two PFs is illustrated in Figure 2 and described  

as follows. 

Figure 2. Flow chart of the proposed PF-based algorithm. 
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(1) Initialization 

Begin by generating samples 0 1{ }j M
jx  and 0 1{ }j M

jb  from their initial probabilities 0( )p x  and 0( )p b , 

respectively. Since the 0( )p x  and 0( )p b  are unknown, they can be assumed to be uniform distributions 

in bounded state spaces by making use of the limited range of the chaotic system. The algorithm starts 

from a random measure with equal weight on each of the M samples (M will always be 1,000 unless 

otherwise stated). Weight 1 /j M x , 1 /j M b ; 
(2) Estimate 1

ˆ
kb   according to Equation (27) and ˆkx  (for 0,1,...k  ). The state equation is 
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1 2 2

T (2)ˆ
k k k kb n     

b 0 A b B , and the measurement equation is (2)
1 1 1

ˆ ˆ( ( ) )k k k kz b g x v     . 

(2.1) Prediction/sampling step  

Sample M values (2),
1{ }j

k
M
jn   from the probability density function of (2)

kn , which is a white noise with 

known distribution. Then calculate: 

(2),
1| 2 2

ˆ j
j j jk
k k k k

b
n

 
   
 

b A b B
0

  (28)

Therefore, the prior probability function of 1kb  at time step k is approximated as: 

1 1: 1| 1|1

1
( | ) ( )

M j
k k k k k kj

p z
M

  
 b b b  (29)

where 11: { ,..., }k kz z z . 

(2.2) Measurement update step 

On receiving the measurement 1kz  , calculate the weight jb  by: 

(2)

(2)

1 1|

1 1|1

ˆ ˆ( ( ( ) ))

ˆ ˆ( ( ( ) ))

j
k k k kj v

M j
k k k kj v

p z b g x

p z b g x





 

 

 


 b  (30)

where (2)v
p  denotes the distribution of the measurement noise (2)v  in Equation (27). Then the 

posterior probability density function is approximated as: 

1 1: 1 1 1|1
( | ) ( )

M j j
k k k k kj

p z     
  bb b b  (31)

and the estimation of 
1k 

b  is: 

1 1 1: 1 11
[ | ]

M j j
k k k kj

E z    
  bb b b  (32)

Then, the state 1
ˆ
kb   is obtained from 1 1 1

ˆ T
T

k k kb  
   b b  directly; 

(3) Estimate 1ˆ kx  according to Equation (15) and 1
ˆ

kb  (for ,...1,0k ). The state equation is 

 T (1)
1 1 1ˆ( )k k k kg x n   x 0 A x B , and the measurement equation is (1)

1 1 1 1
ˆ ˆsgn( )k k k kz b x v     . 

(3.1) Prediction/sampling step 

Sample M values (1),
1{ }j M

k jn   from the probability density function of (1)
kn , which is a white noise with 

known distribution. Then calculate: 

(1),
1| 1 1

ˆ( )j
j j jk

k k k k

g x
n

 
   
 

x A x B
0

  (33)

Therefore, the prior probability function of 1kx  at time step k is approximated as: 

1 1: 1| 1|1

1
( | ) ( )

M j
k k k k k kj

p z
M

  
 x x x  (34)
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(3.2) Measurement update step 

On receiving the measurement 1kz  , calculate the weight jx  by: 

(1) 1|

(1)

1 1

1 1 1|1

ˆ ˆ( sgn( ) )

ˆ ˆ( sgn( ) )

k k

j
k kvj

M j
k k k kj v

p z b x

p z b x
  

  





x  (35)

where (1)v
p  denotes the distribution of the measurement noise (1)v  in Equation (15). Then the posterior 

probability density function of 1kx  is expressed as follows: 

1 1: 1 1 1|1
( | ) ( )

M j j
k k k k kj

p z     
  xx x x  (36)

and the estimation of 1kx  is: 

1 1 1: 1 11
[ | ]

M j j
k k k kj

E z    
  xx x x  (37)

Then, the state 1ˆkx   is obtained from 
T

1 1 1ˆ T
k k kx     x x  directly; 

(4) Resampling step 

The resulting particles 1 1{ }j M
k j x  and 1 1{ }j M

k j b  satisfy the posterior probability density functions 

1 1: 1( | )k kp z x  and 1 1: 1( | )k kp z b , respectively. The particles with different weights are replaced with new 

ones having equal weights (1/M); 

(5) Iteration step 

Let 1k k  , go to step (ii). To recover the original binary message nb , the estimated messages ˆ{ }kb  

are lowpass filtered, and then the ˆ
kb  is binary quantized as ˆ

nb . Usually, ˆ
n nb b  , which will not affect 

extracting the binary message. 

4. Simulations 

In this section, the famous Logistic map is illustrated to verify the effectiveness of the proposed 

algorithm. The transmitter’s chaotic sequence is generated by the Logistic map: 
2

1 ( ) 1 2
kk kx f x x     (38)

In [28], it is proved and demonstrated that the tent map can obtain generalized synchronization with 

the Logistic map even on a condition of a weak coupling. In this research, it is a strong coupling, so an 

intruder can use the tent map to fit the transmitter’s chaotic map. 

The tent map is: 

1 ( ) 0.5 1.99k k kx g x x     (39)

Suppose that the colored non-Gaussian process noises (1)
kw  and (2)

kw  satisfy: 

(1) (1) (1) (1) (1) (1)
1 2 1 21.5 0.8 0.75 2.5k k k k k kw w w n n n         (40)

(2) (2) (2) (2)
1 20.2k k k kw n n n     (41)
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where the white non-Gaussian noises (1)
kn  and (2)

kn  are obey the exponential distributions 

(1)
(1) (1)( ) 25exp( 25 )k kn

p n n   and (2)
(2) (2)( ) 20exp( 20 )k kn

p n n  , respectively. It should be mentioned that the 

distribution of the noises is obtained by the priori knowledge in practice. 

Assume that the measurement noises (1)
kv and (2)

kv  with zero-mean and arbitrary distribution are both 

white Gaussian noises for simplicity, the spreading factor N is 127, and the range-differentiating factor 

  is 0.9. 

Figure 3 shows the estimated message ˆ
kb  without the range-differentiating factor at a  

signal-to-noise ratio (SNR) of 7dB, i.e., 0  , from which the message symbols cannot be recovered 

because the values of 1ˆ
kb  and 1ˆ

kb  vibrate in the same range. 

Figure 3. (a) The estimated message ˆ
kb  when 0   at SNR = 7dB; (b) the result of 

lowpass filtering; (c) the original transmitted binary message nb . 
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Hu and Guo [15] proposed a modified UKF to blindly demodulate the CDS-SS signals accurately 

under the white Gaussian noises condition. However, in the case of colored noises in Equations (40) 

and (41), errors appear as shown in Figure 4.  

Figure 4. (a) The message ˆ
kb  estimated by UKF when 0.9   at SNR = 7dB; (b) the 

result of lowpass filtering; (c) the original transmitted binary message nb . 

 

ˆ
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kb  
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Figure 4(a) shows the message ˆ
kb  estimated by UKF at SNR = 7dB; Figure 4(b) shows the result of 

lowpass filtering; Figure 4(c) shows the original transmitted binary message nb . 

In [5], under a condition of cooperative communication (known transmitter structure), several data 

blocks containing up to 200 bits were transmitted at a SNR of about 7–8 dB, and no error was noticed 

at the authorized receiver. In this paper, under the conditions of non-cooperative communication 

(unknown transmitter structure) and colored or non-Gaussian noises, the intercepted CDS-SS signals 

containing 200 bits at SNR = 7 dB are blindly demodulated by the proposed PF-based algorithm, and 
no error is found. Figure 5(a) shows the message ˆ

kb  estimated by PF at SNR = 7dB; Figure 5(b) shows 

the result of lowpass filtering; Figure 5(c) shows the original transmitted binary message nb . 

Figure 5. (a) The message ˆ
kb  estimated by PF when 0.9   at SNR = 7dB; (b) the result 

of lowpass filtering; (c) the original transmitted binary message nb . 

ˆ
kb  

ˆ
kb  

nb

 

In [25], the PF is used to estimate the parameter of the chaotic system with the requirement that the 

structure of the chaotic map is known. For comparison in the simulation, the algorithm in [25] is also 

modified by the fact that the colored or non-Gaussian noises are formulated by ARMA models, and 

then the parameters that model the noises are included in the state vector. A nonlinear RPROP neural 

network is developed to blindly demodulate (unknown transmitter structure) the CDS-SS signals in [16]. 

Figure 6 gives the bit-error rate (BER) performances of the algorithm in [25], the nonlinear RPROP 

neural network algorithm in [16], the UKF-based algorithm in [15] and the proposed PF-based 

algorithm with the noises in Equations (40) and (41). The BER of the proposed algorithm is about 510  

at SNR = 7dB. It can be concluded that the BER performance of the proposed PF-based algorithm is 

better than the nonlinear RPROP neural network and the UKF-based algorithm on the non-cooperative 

communication condition (unknown transmitter’s structure), and approaches the level the algorithm  

in [25] that is belong to the cooperative communication (known transmitter’s structure) could achieve. 
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Figure 6. Comparison of BER performance among the algorithm in [25], the nonlinear 

RPROP neural network algorithm in [16], the UKF-based algorithm in [15] and the 

proposed PF-based algorithm. 
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5. Conclusions 

In order to blindly demodulate the CDS-SS signals under the colored or non-Gaussian noises 

condition, a PF-based algorithm is proposed in this paper. To implement this algorithm, the intruder 

uses a different chaotic system equation to fit the transmitter’s chaotic system equation. Moreover, the 

colored or non-Gaussian noises are formulated by ARMA models. In addition, the range-differentiating 

factor is imported into the intruder’s chaotic system equation. Therefore, two modified PFs are 

obtained, which are implemented in reciprocal interaction to estimate the message and the chaotic 

state. Since the range-differentiating factor is able to make the inevitable chaos fitting error 

advantageous, the CDS-SS signals can be blindly demodulated according to the range of the estimated 

message signals. Simulations show that the proposed algorithm is robust to both colored or non-Gaussian 

noises, and the original binary message can be retrieved from the CDS-SS signals with satisfactory 

BER performance without any knowledge of the transmitter’s chaotic map, parameters, or initial value. 
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