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Abstract: We consider the learning coefficients in learning theory and give two new methods
for obtaining these coefficients in a homogeneous case: a method for finding a deepest
singular point and a method to add variables. In application to Vandermonde matrix-type
singularities, we show that these methods are effective. The learning coefficient of the
generalization error in Bayesian estimation serves to measure the learning efficiency in
singular learning models. Mathematically, the learning coefficient corresponds to a real
log canonical threshold of singularities for the Kullback functions (relative entropy) in
learning theory.
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1. Introduction

The purpose of a learning system is to estimate an unknown true density function (a probability
model) that generates the data. Real data associated with, for example, genetic analysis, data mining,
image or speech recognition, artificial intelligence, the control of a robot and time series prediction are
very complicated and usually are not generated by a simple normal distribution. In Bayesian estimation,
we set a learning model that is written in probabilistic form with parameters, and our goal is to estimate
the true density function by a predictive function constructed with the learning model and such data.
Therefore, the learning model should be abundant enough to capture the true density function’s structure.
Hierarchical learning models, such as the layered neural network, the Boltzmann machine, the reduced
rank regression and the normal mixture model, are known to be effective learning models for analyzing
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such data. These are, however, singular learning models, which cannot be analyzed using the classic
theory of regular statistical models, because singular learning models have a singular Fisher metric
that is not always approximated by any quadratic form [1–4]. Therefore, it is difficult to analyze
their generalization errors, which indicate how precisely the predictive function approximates the true
density function.

In recent studies, Watanabe showed using algebraic geometry that the generalization and training
errors are subject to a universal law and defined the model selection method “widely applicable
information criterion” (WAIC ) as a generalized Akaike information criterion (AIC) [5–9]. WAIC can
even be applied to singular learning models, whereas AIC cannot. Using the WAIC, we can estimate the
generalization errors from the training errors without any knowledge of the true probability density
functions. The generalization errors relate to the generalization losses via the entropy of the true
distribution. Thus, we can select a suitable model from among several statistical models by this method.

Computing the WAIC requires the values of the learning coefficient and the singular fluctuation,
which are both birational invariants. Mathematically, the learning coefficient is the log canonical
threshold (Definition 1) of the Kullback function (relative entropy), and the singular fluctuation is
known as a statistically generalized log canonical threshold, which is obtained theoretically from the
learning coefficient (Equation (1) in Section 2). These values can be obtained by Hironaka’s Theorem
(Appendix A). However, it is still difficult to obtain these within learning theory for several reasons,
such as degeneration with respect to their Newton polyhedra and non-isolation of their singularities [10].
Moreover, in algebraic geometry and algebraic analysis, these studies are usually done over an
algebraically closed field [11,12]; many differences exist for real and complex fields. For example,
log canonical thresholds over the complex field are less than one, whereas those over the real field
are not necessarily so. We, therefore, cannot apply results over an algebraically closed field to our
current situation directly (Appendix B). One of the bottlenecks in learning theory is to obtain the learning
coefficients and the singular fluctuation.

In this paper, we consider the learning coefficient of “Vandermonde matrices-type singularities”
in statistical learning theory. The reason why we contribute only to such singularities is that the
Vandermonde matrix type is generic and essential in learning theory. These log canonical thresholds
give the learning coefficients of normal mixture models, three-layered neural networks and mixtures
of binomial distributions, which are widely used as effective learning models (Sections 3.1 and 3.2
and [13]). Moreover, we prove Theorem 2 (the method for finding a deepest deepest singular point)
and Theorem 3 (the method to add variables), which are very beneficial to obtain the log canonical
threshold for the homogeneous case. Theorem 2 indicates the best point of singularities that gives the
log canonical threshold. Therefore, this theorem is useful for the reduction of the number of blowup
processes. Theorem 3 improves our recursive blowup method by simplifying coordinate system changes
with added variables. These two theorems enable us to obtain a new bound for the log canonical
thresholds of Vandermonde matrix-type singularities in Theorem 5. These bounds are much tighter
than those in [14].

In the past few years, we have obtained the learning coefficients for reduced rank regression [15],
for the three-layered neural network with one input unit and one output unit [16,17], and for the normal
mixture models with a dimension of one [18]. The paper [14] derived bounds on the learning coefficients
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for the Vandermonde matrix-type singularities and explicit values under some conditions. The learning
coefficients for the restricted Boltzmann machine [19] have also been considered recently. Ref [20–22],
respectively, obtained these for naive Bayesian networks and for directed tree models with hidden
variables. These results give partial answers for the learning coefficients.

The rest of the paper is in three sections. Section 2 summarizes the framework of Bayesian learning
models. In Section 3, we demonstrate our main theorems and consider the log canonical threshold of
Vandermonde matrix-type singularities (Definition 3). We finish with our conclusions in Section 4.

2. Learning Coefficients and Singular Fluctuations

In this section, we present the theory of learning coefficients and singular fluctuations. Let q(x)
be a true probability density function of variables, x ∈ RN , and let xn := {xi}ni=1 be n training
samples selected from q(x) independently and identically. Consider a learning model that is written
in probabilistic form as p(x|w), where w ∈ W ⊂ Rd is a parameter. The purpose of the learning system
is to estimate q(x) from xn using p(x|w). Let ψ(w) be an a priori probability density function on the
parameter set, W , and p(w|xn) be the a posteriori probability density function:

p(w|xn) = 1

Zn

ψ(w)
n∏

i=1

p(xi|w)

where:

Zn =

∫
W

ψ(w)
n∏

i=1

p(xi|w)dw

Let us define for the inverse temperature, β:

Ew[f(w)] =

∫
dwf(x)ψ(w)

∏n
i=1 p(xi|w)β∫

dwψ(w)
∏n

i=1 p(xi|w)β

We usually set β = 1.
We then have a predictive density function, p(x|Xn) = Ew[p(x|w)], which is the average inference

of the Bayesian density function.
We next introduce the Kullback function, K(q||p), and the empirical Kullback function, Kn(q||p), for

density functions p(x), q(x):

K(q||p) =
∑
x

q(x) log
q(x)

p(x)

Kn(q||p) =
1

n

n∑
i=1

log
q(xi)

p(xi)

The function, K(p||q), always has a non-negative value and satisfies K(q||p) = 0, if and only if
q(x) = p(x).

The Bayesian generalization error, Bg, Bayesian training error, Bt, Gibbs generalization error, Gg,
and Gibbs training error, Gt, are defined as follows:

Bg = K(q(x)||Ew[p(x|w)]))
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Bt = Kn(q(x)|Ew[p(xi|w)])

Gg = Ew[K(q(x)||p(x|w))]

and
Gt = Ew[Kn(q(x)||p(x|w))]

The most important of these is the Bayesian generalization error. This error describes how precisely the
predictive function approximates the true density function.

Watanabe [6,7,23] proved the following four relations:

E[Bg] =
λ+ νβ − ν

nβ
+ o(

1

n
)

E[Bt] =
λ− νβ − ν

nβ
+ o(

1

n
)

E[Gg] =
λ+ νβ

nβ
+ o(

1

n
)

E[Gt] =
λ− νβ

nβ
+ o(

1

n
)

Thu,s we have:

E[Bg] = E[Bt] + 2β(E[Gt]− E[Bt]) + o(
1

n
)

and
E[Gg] = E[Gt] + 2β(E[Gt]− E[Bt]) + o(

1

n
)

Eliminating the expectation of the true probability density function from the above four errors
and setting:

BLg = −
∑
x

q(x) logEw[p(x|w)]

BLt = − 1

n

n∑
i=1

logEw[p(xi|w)]

GLg = −Ew[
∑
x

q(x) log p(x|w)]

GLt = −Ew[
1

n

n∑
i=1

log p(xi|w)]

we then have:
E[BLg] = E[BLt] + 2β(E[Gt]− E[Bt]) + o(

1

n
)

and
E[GLg] = E[GLt] + 2β(E[Gt]− E[Bt]) + o(

1

n
)

These two equations constitute the WAIC and show that we can estimate the Bayesian and Gibbs
generalization errors from the Bayesian and Gibbs training errors without any knowledge of the true
probability density functions. Training errors are calculated from training samples, xi, using a learning
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model, p. In real applications or experiments, we usually do not know the true distribution, but only the
values of the training errors. Our purpose is to estimate the true distribution from the training samples,
showing that these relations are effective. We can select a suitable model from among several statistical
models by observing these values.

Let λ denote a learning coefficient and ν a singular fluctuation, both of which are birational invariants.
Mathematically, λ is equal to the log canonical threshold introduced in Definition 1 and Appendix B.
For regular models, λ = ν = d/2 holds, where d is the dimension of the parameter space.

The difference between the Bayesian and Gibbs training errors converges to ν/n:

nβ(E[Gt]− E[Bt]) → ν

These relations were shown using the resolution of singularities and the Schwarz distribution.
From the learning coefficient, λ, and its order, θ, the value, ν, is obtained theoretically as follows. Let

ξ(u) be an empirical process defined on the manifold obtained by a resolution of singularities, and
∑

u∗

denote the sum of local coordinates that attain the minimum λ and the maximum θ. We then have:

ν =
1

2
Eξ

∫∞
0
dt

∑
u∗

∫
duξ(u)tλ−1/2e−βt+β

√
tξ(u)∫∞

0
dt

∑
u∗

∫
dutλ−1/2e−βt+β

√
tξ(u)

(1)

ξ(u) is a random variable of a Gaussian process with mean zero and variance two. Our purpose in this
paper is to obtain λ.

To assist in achieving this aim, we use the desingularization approach from algebraic geometry
(cf. Appendix A). It is a new problem in algebraic geometry to obtain the desingularization of the
Kullback functions, because the singularities of these functions are very complicated, and as such, most
of these have not yet been investigated.

3. Main Theorems and Vandermonde Matrix-Type Singularities

We denote constants, such as a∗, b∗ and w∗, by the suffix ∗. Additionally, for simplicity, we use the
notation: w = {aki, bij}1≤i≤H instead of: w = {aki, bij}1≤k≤M,1≤i≤H,1≤j≤N , because we always have
1 ≤ k ≤M and 1 ≤ j ≤ N in this paper.

Define the norm of a matrix, C = (cij), by ||C|| =
√∑

i,j |cij|2. Set N+0 = N ∪ {0}.

Definition 1 For a real analytic function, f , in a neighborhood, U , of w∗ and a C∞ function ψ with
a compact support, let λw∗(f, ψ) be the largest pole of

∫
U
|f |zψdw and θw∗(f, ψ) be its order. If

ψ(w∗) ̸= 0, then we denote λw∗(f) = λw∗(f, ψ) and θw∗(f) = θw∗(f, ψ), because the log canonical
threshold and its order are independent of ψ.

Definition 2 Fix Q ∈ N. Define: [b∗1, b
∗
2, · · · , b∗N ]Q = γi(0, · · · , 0, b∗i , · · · , b∗N) if b∗1 = · · · = b∗i−1 = 0,

b∗i ̸= 0, and γi =

{
1 if Q is odd,
|b∗i |/b∗i if Q is even.

Definition 3 Fix Q ∈ N.
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Let A =


a11 · · · a1H a∗1,H+1 . . . a∗1,H+r

a21 · · · a2H a∗2,H+1 . . . a∗2,H+r
...

...
aM1 · · · aMH a∗M,H+1 . . . a∗M,H+r

, I = (ℓ1, . . . , ℓN) ∈ N+0
N

BI = (
N∏
j=1

b
ℓj
1j,

N∏
j=1

b
ℓj
2j, · · · ,

N∏
j=1

b
ℓj
Hj,

N∏
j=1

b∗H+1,j
ℓj , · · · ,

N∏
j=1

b∗H+r,j
ℓj)t

and

B = (BI)ℓ1+···+ℓN=Qn+1,0≤n≤H+r−1 = (B(1,0,··· ,0), B(0,1,··· ,0), · · · , B(0,0,··· ,1), B(1+Q,0,··· ,0), · · · )

(the superscript, t, denotes matrix transposition).
aki and bij (1 ≤ k ≤ M, 1 ≤ i ≤ H, 1 ≤ j ≤ N) are variables in a neighborhood of a∗ki and b∗ij ,

where a∗ki and b∗ij are fixed constants.
Let I be the ideal generated by the elements of AB.
We call singularities of I Vandermonde matrix-type singularities.
To simplify, we usually assume that

(a∗1,H+j, a
∗
2,H+j, · · · , a∗M,H+j)

t ̸= 0, (b∗H+j,1, b
∗
H+j,2, · · · , b∗H+j,N) ̸= 0

for 1 ≤ j ≤ r and

[b∗H+j,1, b
∗
H+j,2, · · · , b∗H+j,N ]Q ̸= [b∗H+j′,1, b

∗
H+j′,2, · · · , b∗H+j′,N ]Q

for j ̸= j′.

Example 1 If N = Q = 1 and r = 0, then we have: B =


b11 b211 · · · bH11
b21 b221 · · · bH21

...
bH1 b2H1 · · · bHH1

.

This matrix is a Vandermonde matrix.

Example 2 If Q = 1, M = 1, H = 2, N = 2 and r = 1, then we have: A =
(
a11 a12 a∗1,3

)
and

B =

 b11 b12 b211 b11b12 b212 b311 b11b
2
12 b211b12 b312

b21 b22 b221 b21b22 b222 b321 b21b
2
22 b221b22 b322

b∗31 b∗32 b∗31
2 b∗31b

∗
32 b∗32

2 b∗31
3 b∗31b

∗
32

2 b∗31
2b∗32 b∗32

3

.

In this paper, we denote:

AM,H =


a11 a12 · · · a1H

a21 a22 · · · a2H
...

aM1 aM2 · · · aMH

, BH,N,I =


∏N

j=1 b1j
ℓj∏N

j=1 b2j
ℓj

...∏N
j=1 bHj

ℓj

and

B
(Q)
H,N = (BH,N,I)ℓ1+...+ℓN=Qn+1,0≤n≤H−1.
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Furthermore, we denote: a∗ =

 a∗1,H+1
...

a∗M,H+1

 and

(AM,H , a
∗) =


a11 a12 · · · a1H a∗1,H+1

a21 a22 · · · a2H a∗2,H+1
...

aM1 aM2 · · · aMH a∗M,H+1


Theorem 1 ([18]) Consider a sufficiently small neighborhood, U , of

w∗ = {a∗ki, b∗ij}1≤i≤H

and variables, w = {aki, bij}1≤i≤H , in the set, U .
Set: (b∗∗01, b

∗∗
02, · · · , b∗∗0N) = (0, . . . , 0).

Let each: (b∗∗11, b
∗∗
12, · · · , b∗∗1N), . . ., (b∗∗r′1, b∗∗r′2, · · · , b∗∗r′N) be a different real vector in:

[b∗i1, b
∗
i2, · · · , b∗iN ]Q ̸= 0, for i = 1, . . . , H + r

That is:
{(b∗∗11, · · · , b∗∗1N), . . . , (b∗∗r′1, · · · , b∗∗r′N) ; [b∗i1, · · · , b∗iN ]Q ̸= 0, i = 1, . . . , H + r}

Then, r′ is uniquely determined, and r′ ≥ r by the assumption in Definition 3. Set: (b∗∗i1 , · · · , b∗∗iN) =
[b∗H+i,1, · · · , b∗H+i,N ]Q, for 1 ≤ i ≤ r.

Assume that:

[b∗i1, · · · , b∗iN ]Q =



0, 1 ≤ i ≤ H0

(b∗∗11, · · · , b∗∗1N), H0 + 1 ≤ i ≤ H0 +H1,

(b∗∗21, · · · , b∗∗2N), H0 +H1 + 1 ≤ i ≤ H0 +H1 +H2,
...

(b∗∗r′1, · · · , b∗∗r′N), H0 + · · ·+Hr′−1 + 1 ≤ i ≤ H0 + · · ·+Hr′ ,
and H0 + · · ·+Hr′ = H .

We then have:
λw∗(||AB||2) = Mr′

2
+ λ

w
(0)
1

∗(||AM,H0B
(Q)
H0,N

||2)

+
r∑

α=1

λ
w

(α)
1

∗(||(AM,Hα−1, a
(α)∗)B

(1)
Hα,N

||2) +
r′∑

α=r+1

λ
w

(α)
1

∗(||AM,Hα−1B
(1)
Hα−1,N ||

2)

where: w(0)
1

∗
= {a∗k,i, 0}1≤i≤Hα ,

w
(α)
1

∗
= {a∗k,H0+···+Hα−1+i, 0}2≤i≤Hα and a(α)∗ =

 a∗1,H+α
...

a∗M,H+α

 for α ≥ 1.

Theorem 2 (Method for finding a deepest singular point) Let f1(w1, . . . , wd), . . ., fm(w1, . . . , wd)

be homogeneous functions of w1, · · · , wj (j ≤ d) with the degree, ni, of w1, · · · , wj . Furthermore,
let ψ be a C∞ function, such that ψ(0,··· ,0,w∗

j+1,··· ,w∗
d)
≥ ψ(w∗

1 ,··· ,w∗
d)

and ψw is homogeneous of w1, · · · , wj

in a small neighborhood of (0, · · · , 0, w∗
j+1, · · · , w∗

d).



Entropy 2013, 15 3721

Then, we have:

λ(0,··· ,0,w∗
j+1,··· ,w∗

d)
(f2

1 + · · ·+ f 2
m, ψ) ≤ λ(w∗

1 ,··· ,w∗
j ,w

∗
j+1,··· ,w∗

d)
(f2

1 + · · ·+ f2
m, ψ)

(Proof)
Let d be the degree of w1, · · · , wj for ψ in a neighborhood of (0, · · · , 0, w∗

j+1, · · · , w∗
d). Let us

construct the blowup of f1, . . ., fm along the submanifold, {v = 0, wi = 0, 1 ≤ i ≤ j}. Let wi = vw′
i for

1 ≤ i ≤ j. We have: vnifi(w
′
1, . . . , w

′
d) and (f1(w)

2+f2(w)
2+ · · ·+fm(w)2)zψdwdv = (v2n1f 2

1 (w
′)+

v2n2f2
2 (w

′)+ · · ·+ v2nmfm(w
′)2)zψ(w′)vd+jdw′dv. Because: v2nif 2

i (w
′
1, . . . , w

′
d) ≤ f 2

i (w
′
1, . . . , w

′
d) for

|v| < 1, we have: v2n1f 2
1 + · · ·+ v2nmf 2

m ≤ f 2
1 + · · ·+ f 2

m, and, hence, by Lemma 1 in Appendix C:

λ(0,··· ,0,w∗
j+1,··· ,w∗

d)
(f 2

1 + · · ·+ f 2
m, ψ) ≤ min{d+ j + 1, λw∗(f 2

1 + · · ·+ f2
m, ψ)}

Furthermore, we consider the construction of the blowup of: f1, . . ., fm along the submanifold:
{wi = 0, 1 ≤ i ≤ j}, for which we have

λ(0,··· ,0,w∗
j+1,··· ,w∗

d)
(f 2

1 + · · ·+ f2
m, ψ) ≤ d+ j

Q.E.D.
In general, it is not true that:

λw0(f
2
1 + · · ·+ f 2

m, ψ) ≤ λw∗(f2
1 + · · ·+ f2

m, ψ)

even if w0 ∈ Rd satisfies:

fi(w0) =
∂fi
∂wj

(w0) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ d

Example 3 Let f1 = x(x−1)2, f2 = (y2+(x−1)2)((y−1)6+x) and f3 = (z2+(x−1)2)((z−1)6+x).
Then, we have: f1 = f2 = f3 =

∂f1
∂x

= ∂f2
∂y

= ∂f2
∂x

= ∂f3
∂z

= ∂f3
∂x

= 0 if and only if x = 1, y = 0, z = 0.
In this case, we have λ(1,0,0)(f2

1 + f2
2 + f 2

3 ) = 1/4 + 1/4 + 1/4 > λ(0,1,1)(f
2
1 + f 2

2 + f2
3 ) = 1/2 +

1/12 + 1/12.

Theorem 3 (Method to add variables) Let f1(w1, . . . , wd), . . ., fm(w1, . . . , wd) be homogeneous
functions of w1, · · · , wd of the degree, ni, in w1, · · · , wd. Set: f ′

1(w2, . . . , wd) = f1(1, w2, . . . , wd),
. . ., f ′

m(w2, . . . , wd) = fm(1, w2, . . . , wd). If w∗
1 ̸= 0, then we have:

λ(w∗
1 ,··· ,w∗

d)
(f 2

1 + · · ·+ f 2
m) = λ(w∗

2/w
∗
1 ,··· ,w∗

d/w
∗
1)
(f ′2

1 + · · ·+ f ′2
m)

(Proof) Set w′
2 = w2/w1, . . . , w

′
d = wd/w1. Then, we have:

fi(w1, w2, . . . , wd) = wni
1 fi(1, w

′
2, . . . , w

′
d) = wni

1 f
′
i

Since wni
1 ̸= 0 on a small neighborhood of w∗

1, there exist positive real numbers, C,C ′, such that:

C(f 2
1 + · · ·+ f 2

m) ≤ f ′2
1 + · · ·+ f ′2

m ≤ C ′(f 2
1 + · · ·+ f 2

m)

This completes the proof by Lemma 1 in Appendix C. Q.E.D.

Remark 1

The above theorem shows that we can set nonzero constants as variables to obtain the same log
canonical threshold. However, in general, this is not true.
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(1) Consider the function f(x, y) = (y − 1 + x2)2. We have λf=0(f) = 1/2, whereas
λf(x,1)=0(f(x, 1)) = 1/4.
(2) Consider the function f(x1, x2, x3, x4, x5, y) = (x21 + x22 + x23 + x24 + x25 + y − 1)2. We have
λf=0(f) = 1/2, whereas λ0(f(x1, x2, x3, x4, x5, 1)) = 5/4.

The second example shows that the following theorem over the complex field is not true over the
real field.

Theorem 4 [11]
Let f(x1, · · · , xd, y) be a holomorphic function near zero, and for a hyperplane H , let g = f |y=0 (or

g = fH) denote the restriction of f to y = 0 (or H). Then, λg=0(g) ≤ λf=0(f).

Define: ⟨k
l
⟩ = k!

l!(k − l)!
,

Theorem 5 We use the same notation as in Theorem 1. Let:

bound1 = min{(H − i+ 1)N + di(s) + d′i(s) + d′′i (s)

2(count(i, s, k(s))− 1)Q+ 2
: 1 ≤ i ≤ s, 1 ≤ k(1), · · · , k(s) ≤ N, 1 ≤ s ≤ H}

where: count(i, s, j) = #{i1 : i ≤ i1 ≤ s, k(i1) = j}, C(i, s) = #{count(i, s, j) = 0, 1 ≤ j ≤ N},

di(s) = (N − 1)Q
s∑

s1=i

(count(i, s1, k(s1))− 1)

d′i(s) = M(i− 1){(count(i, s, k(s))− 1)Q+ 1}

+QM
s−1∑
s1=i,

count(i,s,k(s))>count(i,s1,k(s1))

(count(i, s, k(s))− count(i, s1, k(s1))),

d′′i (s) =



0, if count(i, s, k(s)) = 1,

(H − s){C(i, s)Q+ (N − 1)Q(count(i, s, k(s))− 2)},
if count(i, s, k(s)) ≥ 2, N − 1 ≤M,

(H − s){C(i, s)Q+MQ(count(i, s, k(s))− 2)},
if count(i, s, k(s)) ≥ 2, C(i, s) ≤M < N − 1,

(H − s){MQ(count(i, s, k(s))− 1)},
if count(i, s, k(s)) ≥ 2,M ≤ C(i, s).

Furthermore, let: bound2 =
NH +

∑k′−1
i=0 MQ(k′ − i)⟨N+Qi

N−1
⟩

2 + 2Qk′
,

where: k′ = max{i ∈ Z;NH ≥M
∑i−1

i′=0(1 +Qi′)⟨N+Qi′

N−1
⟩}, and let:

bound3 =
MH

2

We have

λ0(||AM,HB
(Q,m)
H,N ||2) ≤ min{bound1, bound2, bound3}

λ0(||(AM,H−1, a
∗)B

(Q,m)
H,N ||2) ≤ min{bound1, bound2}
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The proof appears in Appendix C.
Figures 1a–d show the values of new bounds, min{bound1, bound2, bound3}, for (a) H = 7, N = 6,

(b) H = 8, N = 6, (c) H = 7, N = 7 and (d) H = 8, N = 7 with Q = 2, respectively. We compare
these values with those obtained by the past work in [14]. In the figures, the horizontal axis is the number,
M , and the vertical one, the value of such bounds. The dashed lines indicate the bounds obtained by the
past work. These figures show that new bounds are not greater than old ones.

Figure 1. The values of new bounds, min{bound1, bound2, bound3}, for (a)H = 7, N = 6;
(b) H = 8, N = 6; (c) H = 7, N = 7 and (d) H = 8, N = 7 with Q = 2, compared with
the bounds obtained by the past work in [14].

(a) H = 7, N = 6 (b) H = 8, N = 6

(c) H = 7, N = 7 (d) H = 8, N = 7

In paper [24], we had exact values for N = 1:

λ0(||AM,HB
(Q)
H,1||

2) =
MQk(k + 1) + 2H

4(1 + kQ)

where: k = max{i ∈ Z : 2H ≥M(i(i− 1)Q+ 2i)}, and we had:

θ =

{
1, if 2H > M(k(k − 1)Q+ 2k)

2, if 2H =M(k(k − 1)Q+ 2k)

We had other exact values when H is small on paper [14]. Both sets of exact values are the bounded
values in Theorem 5.
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3.1. A Learning Coefficient for a Three-Layered Neural Network

Consider the three-layered neural network with N input units, H hidden units and M output units,
which are trained for estimating the true distribution with r hidden units. Their learning coefficients, λ,
are as follows [14,24]:
λ = min{λ0(||AM,H0B

(2)
H0,N

||2) +
∑r

α=1 λ0(||(AM,Hα−1, a
∗)B

(1)
Hα,N

||2) : H0 + H1 + · · · + Hr = H ,
a∗ ̸= 0}.

3.2. A Learning Coefficient for a Normal Mixture Model

Consider normal mixture models with H peaks and the true distribution with r peaks. Then, their
learning coefficients, λ, are as follows [14,18]:

λ = r−1
2

+min{
∑r

α=1 λ0(||(AM,Hα−1, a
∗)B

(1)
Hα,N

||2) :
∑r

α=1Hα = H, a∗ ̸= 0}

In particular, we have for N = 1:

λ = r − 1 +
i+ i2 + 2(H − (r − 1))

4(i+ 1)
, θ =

{
1, if i2 + i < 2(H − (r − 1)), or H = r

2, if i2 + i = 2(H − (r − 1)),

where i = max{j ∈ Z ; j2 + j ≤ 2(H − (r − 1))}.

4. Conclusions

In this paper, we prove two theorems, Theorem 2 (the method for finding a deepest singular point)
and Theorem 3 (the method to add variables) for obtaining learning coefficients in a homogeneous
case. By applying these methods to Vandermonde matrix-type singularities and using the inclusion
of ideals and recursive blowup from algebraic geometry, we found new bounds on learning coefficients
for Vandermonde matrix-type singularities. These bounds are much tighter than those in [14]. Our future
research aim is to improve our methods and to obtain exact values for the general machine model.

The learning coefficients from our recent results have been used very effectively by Drton [25,26]
for model selection, using a method called “singular Bayesian information criterion (sBIC)”, which can
be applied to singular models, where the assumptions supporting the use of the standard BIC do not
hold. Our theoretical results introduce a mathematical measure of precision to numerical calculations,
such as Markov chain Monte Carlo (MCMC). Nagata and Watanabe [27,28] gave a mathematical
foundation for analyzing and developing the precision of the MCMC method using our theoretical values
of marginal likelihoods.
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Appendix A

We introduce Hironaka’s Theorem on desingularization.

Theorem 6 [Desingularization, Hironaka (1964), (Figure A1)]
Let f be a real analytic function in a neighborhood of w∗ = (w∗

1, · · · , w∗
d) ∈ Rd with f(w∗) = 0.

There exists an open set, V ∋ w∗, a real analytic manifold, U , and a proper analytic map, µ, from U to
V , such that:
(1) µ : U − E → V − f−1(0) is an isomorphism, where E = µ−1(f−1(0)),
(2) for each u ∈ U , there is a local analytic coordinate system (u1, · · · , un), such that f(µ(u)) =

±us11 us22 · · ·usnn , where s1, · · · , sn are non-negative integers.

Figure A1. Hironaka’s Theorem: diagram of desingularization, µ, of f : E maps to f−1(0).
U − E is isomorphic to V − f−1(0) by µ, where V is a small neighborhood of w∗ with
f(w∗) = 0.

Appendix B

The learning coefficient is the log canonical threshold of the Kullback function (relative entropy).
In this section, we explain its difference for real and complex fields. Let f be a nonzero holomorphic
function over C or an analytic function over R on a smooth variety, Y , and let Z ⊂ Y be a closed
subscheme. The log canonical threshold, λZ(Y, f), is defined analytically as:

λZ(Y, f) = sup{c : |f |−c is locally L2 near Z}

over C, and:
λZ(Y, f) = sup{c : |f |−c is locally L1 near Z}

over R [11,12]. It is known that if f is a polynomial or a convergent power series, then λ0(Cd, f) is
the largest root of the Bernstein-Sato polynomial, b(s) ∈ C[s], of f , where b(s)f s = Pf s+1 for a linear
differential operator, P [29–31]. The log canonical threshold, λZ(Y, f), also corresponds to the largest
pole of

∫
near Z

|f |2zψ(w)dw over C, (
∫

near Z
|f |zψ(w)dw over R), where ψ(w) is a C∞− function

with a compact support, such that ψ(w) ̸= 0 on Z.
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Appendix C

Using the blowup process and the method to add variables together with the inductive method for s,
we demonstrate Theorem 5

We give below Lemma 1, as it is frequently used in the proofs.

Lemma 1 ([18,24,32]) Let U be a neighborhood of w∗ ∈ Rd. Let I be the ideal generated by f1, . . . , fn,
which are analytic functions defined on U .
(1) If g21 + . . .+ g2m ≤ f 2

1 + · · ·+ f2
n, then λw∗(g21 + · · ·+ g2m) ≤ λw∗(f2

1 + · · ·+ f 2
n).

(2) If g1, . . . , gm ∈ I , then λw∗(g21+ · · ·+g2m) ≤ λw∗(f2
1 + · · ·+f 2

n). In particular, if g1, . . . , gm generate
the ideal I , then λw∗(f2

1 + · · ·+ f 2
n) = λw∗(g21 + · · ·+ g2m).

The following lemma is also used in the proofs.

Lemma 2 ([19]) Let I, J be the ideals generated by f1(w), . . . , fn(w) and g1(w
′), . . . , gm(w

′),
respectively. If w and w′ are different variables, then

λ(w∗,w′∗)(f
2
1 + · · ·+ f 2

n + g21 + · · ·+ g2m) = λw∗(f2
1 + · · ·+ f 2

n) + λw′∗(g21 + · · ·+ g2m).

Step 1
Let us consider the following procedure from s = 1 to s = H , and the generators of the ideal:

J =

⟨(
ai01 · · · ai0H

)


bℓ111 · · · b
ℓN
1N

bℓ121 · · · b
ℓN
2N

...
bℓ1H1 · · · b

ℓN
HN

 : 1 ≤ i0 ≤M,

N∑
i=1

ℓi = nQ+ 1, n ≥ 0

⟩
.

By constructing the blowup repeatedly and choosing one branch of the blowup process, we show the
following (i)∼(v) in this subsection:

(i) k(1), · · · , k(s− 1) ∈ {1, 2, · · · , N},
(ii) count(i1, i2, j) = #{k(i) = j | i1 ≤ i ≤ i2} for 1 ≤ j ≤ N ,

(iii) bij =

{
v1v2 · · · vib′ij, i < s− 1,

v1v2 · · · vs−1b
′
ij, i ≥ s− 1,

and b′ik(i) = 1,

(iv) The Jacobian is:

H∏
i=1

N∏
j=1

dbij =
s−1∏
i=1

v
(H−i+1)N−1+di
i dvi

s−1∏
i=1

N∏
j=1

db′ij

and

di = (N − 1)Q
s−1∑
s1=i

(count(i, s1, k(s1))− 1),
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(v)

J =

⟨
ai0i1bi1k(i1)

∏
k(i)=k(i1),1≤i≤i1−1

(bQi1,k(i1) − bQi,k(i1)) : 1 ≤ i0 ≤M, 1 ≤ i1 ≤ s− 1

⟩
(2)

+

⟨(
ai0s · · · ai0H

)
bnQ+1
sj

∏
k(i)=j,1≤i≤s−1(b

Q
sj − bQij)

...
bnQ+1
Hj

∏
k(i)=j,1≤i≤s−1(b

Q
Hj − bQij)

 : 1 ≤ i0 ≤M, j = 1, · · · , N, n ≥ 0

⟩

+

⟨(
ai0s · · · ai0H

) bℓ1s1 · · · b
ℓN
sN

...
bℓ1H1 · · · b

ℓN
HN

 : 1 ≤ i0 ≤M,

N∑
i=1

ℓi = nQ+ 1, n ≥ 1,∀ℓj < Qn+ 1

⟩
.

By Theorem 3, we can set b′ik(i) as a variable.
Now, we show the above by the inductive method.
Define 1 ≤ k(s) ≤ N . Construct the blowup along {b′ij = 0, s ≤ i ≤ H, 1 ≤ j ≤ N}. Set b′ij = vsb

′′
ij

for s ≤ i ≤ H, 1 ≤ j ≤ N, and set b′′sk(s) = 1.
By constructing the blowup along {vi = b′′sj = 0, 1 ≤ j ≤ N, j ̸= k(s)} repeatedly, and

by choosing one branch of the blowup process, set b′′sj = b′′′sj
∏s−1

i=1 v
d′i
i for j ̸= k(s), where

d′i = (count(i, s, k(s))− 1)Q.
Consider a sufficiently small neighborhood of {vi = 0} using Theorem 2.

Set fik(s) = bik(s)
∏

k(i1)=k(s),1≤i1≤s−1(b
Q
ik(s) − bQi1k(s)) for i ≥ s, b̃′ij = b′′ij − b′′sj

fik(s)
fsk(s)

and b̃ij =

b̃′ij

s∏
i1=1

vi1 = bij − bsj
fik(s)
fsk(s)

for i ≥ s+ 1, j ̸= k(s).

We then have:  bℓ1s1 · · · b
ℓN
sN

...
bℓ1H1 · · · b

ℓN
HN



=


∏N

j=1 b
ℓj
sj

b
ℓk(s)
s+1,k(s)

∏N
j=1,j ̸=k(s)(b̃s+1,j + bsj

fs+1,k(s)

fsk(s)
)ℓj

...

b
ℓk(s)
H,k(s)

∏N
j=1(b̃Hj + bsj

fHk(s)

fsk(s)
)ℓj


which is an element of the vector ideal:
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⟨
∏N

j=1 b
ℓj
sj∏N

j=1,j ̸=k(s) b
ℓj
sj b

ℓk(s)
s+1,k(s)(

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj

...∏N
j=1,j ̸=k(s) b

ℓj
sj b

ℓk(s)
Hk(s)(

fHk(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj


⟩

+
∑

ℓ′
k(s)

=ℓk(s),

0≤ℓ′
j
≤ℓj ,∃ℓ′j ̸=ℓj

⟨
0∏N

j=1,j ̸=k(s) b
ℓ′j
sjb

ℓk(s)
s+1,k(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
s+1,j (

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓ
′
j

...∏N
j=1,j ̸=k(s) b

ℓ′j
sjb

ℓk(s)
Hk(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
Hj (

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓ
′
j


⟩

Furthermore, we have:


∏N

j=1 b
ℓj
sj∏N

j=1,j ̸=k(s) b
ℓj
sj b

ℓk(s)
s+1,k(s)(

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj

...∏N
j=1,j ̸=k(s) b

ℓj
sj b

ℓk(s)
Hk(s)(

fHk(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj

 is an element of:

⟨∏N
j=1,j ̸=k(s) b

ℓj
sj

f
∑N

j=1,j ̸=k(s) ℓj

sk(s)


bnQ+1
s,k(s)

∏
k(i1)=k(s),1≤i1≤s−1(b

Q
sk(s) − bQi1k(s))

bnQ+1
s+1,k(s)

∏
k(i1)=k(s),1≤i1≤s−1(b

Q
s+1k(s) − bQi1k(s))

...
bnQ+1
Hk(s)

∏
k(i1)=k(s),1≤i1≤s−1(b

Q
Hk(s) − bQi1k(s))

 : n ≥ 0

⟩

Since b′′sj = b′′′sj
∏s−1

i=1 v
d′i
i for j ̸= k(s), where d′i = (count(i, s, k(s))−1)Q, we have bsj = b′′′sj

∏s−1
i=1 v

d′i+1
i

and
∏N

j=1,j ̸=k(s) b
ℓj
sj

f

∑N
j=1,j ̸=k(s)

ℓj

sk(s)

is finite. That is, we have:


∏N

j=1 b
ℓj
sj∏N

j=1,j ̸=k(s) b
ℓj
sj b

ℓk(s)
s+1,k(s)(

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj

...∏N
j=1,j ̸=k(s) b

ℓj
sj b

ℓk(s)
Hk(s)(

fHk(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓj

 ∈

⟨
bnQs,k(s)fsk(s)

bnQs+1,k(s)fs+1,k(s)

...
bnQHk(s)fHk(s)

 : n ≥ 0

⟩

If we assume that for α:

Jα =

⟨
bnQsk(s)fsk(s)

...
bnQHk(s)fHk(s)

, n ≥ 0

⟩
+

⟨ bℓ1s1 · · · b
ℓN
sN

...
bℓ1H1 · · · b

ℓN
HN

 :
N∑
j=1

ℓj = nQ+ 1, n ≥ 1,
N∑

j=1,j ̸=k(s)

ℓj ≤ α

⟩

=

⟨
bnQsk(s)fsk(s)

...
bnQHk(s)fHk(s)

, n ≥ 0

⟩
+

⟨
0

bs+1,k(s)

∏N
j=1,j ̸=k(s) b̃

ℓj
s+1,j

...
bHk(s)

∏N
j=1,j ̸=k(s) b̃

ℓj
Hj

 :
N∑
j=1

ℓj = nQ+ 1, n ≥ 1,
N∑

j=1,j ̸=k(s)

ℓj ≤ α

⟩
,
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we have for
∑N

j=1,j ̸=k(s) ℓj = α+ 1:

⟨ bℓ1s1 · · · b
ℓN
sN

...
bℓ1H1 · · · b

ℓN
HN

⟩
+ Jα =

⟨
0

bs+1,k(s)

∏N
j=1,j ̸=k(s) b̃

ℓj
s+1,j

...
bHk(s)

∏N
j=1,j ̸=k(s) b̃

ℓj
Hj


⟩

+ Jα

since for ∃ℓ′j ̸= 0, we have:
0∏N

j=1,j ̸=k(s) b
ℓ′j
sjb

ℓk(s)
s+1,k(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
s+1,j (

fs+1,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓ
′
j

...∏N
j=1,j ̸=k(s) b

ℓ′j
sjb

ℓk(s)
Hk(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
Hj (

fH,k(s)

fsk(s)
)
∑N

j=1,j ̸=k(s) ℓ
′
j



=

∏N
j=1,j ̸=k(s) b

ℓ′j
sj

f
∑N

j=1,j ̸=k(s) ℓ
′
j

sk(s)


0

b
ℓk(s)
s+1,k(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
s+1,j f

∑N
j=1,j ̸=k(s) ℓ

′
j

s+1,k(s)
...

b
ℓk(s)
Hk(s)

∏N
j=1,j ̸=k(s) b̃

ℓj−ℓ′j
Hj f

∑N
j=1,j ̸=k(s) ℓ

′
j

H,k(s)

 ∈ Jα

Therefore, by setting:

a′i0sbsk(s)
∏

k(i)=k(s),1≤i≤s−1

(bQs,k(s) − bQi,k(s)) =
H∑

i1=s

ai0i1bi1k(s)
∏

k(i)=k(s),1≤i≤s−1

(bQi1k(s) − bQi,k(s))

for 1 ≤ i0 ≤M, and by setting bij = b̃ij again, we have:

J =

⟨
ai0i1bi1k(i1)

∏
k(i)=k(i1),1≤i≤i1−1

(bQi1,k(i1) − bQi,k(i1)) : 1 ≤ i0 ≤M, 1 ≤ i1 ≤ s− 1

⟩

+

⟨
a′i0sbsk(s)

∏
k(i)=k(s),1≤i≤s−1

(bQs,k(s) − bQi,k(s)) : 1 ≤ i0 ≤M

⟩

+

⟨(
ai0s+1 · · · ai0H

)
bs+1j

∏
k(i)=j,1≤i≤s(b

Q
s+1j − bQij)

...
bHj

∏
k(i)=j,1≤i≤s(b

Q
Hj − bQij)

 : j = 1, · · · , N

⟩

+

⟨(
ai0s+1 · · · ai0H

) bℓ1s+1,1 · · · b
ℓN
s+1,N

...
bℓ1H1 · · · b

ℓN
HN

 : 1 ≤ i0 ≤M,
N∑
i=1

ℓi = nQ+ 1, n ≥ 1,∀ℓj < Qn+ 1

⟩

with (i)∼(iv).
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Step 2
By Step 1, we need to consider the ideal:⟨

ai0,i1

i1∏
i=1

v
(count(i,i1,k(i1))−1)Q+1
i : 1 ≤ i0 ≤M, i1 ≤ s

⟩

+

⟨(
ai0s+1 · · · ai0H

) s∏
i=1

v
count(i,s,j)Q+1
i

 b′s+1j
...
b′Hj

 : j = 1, · · · , N

⟩

+

⟨(
ai0s+1 · · · ai0H

) s∏
i=1

vQ+1
i

 b′ℓ1s+1,1 · · · b
′ℓN
s+1,N

...
b′ℓ1H1 · · · b

′ℓN
HN

 : 1 ≤ i0 ≤M,
N∑
i=1

ℓi = Q+ 1, ∀ℓj < Q+ 1

⟩

with Jacobian:
H∏
i=1

v
(H−i+1)N−1+di(s)
i dvi

M∏
k=1

H∏
i=1

daki

H∏
i=1

N∏
j=1

db′ij

where:

di(s) = (N − 1)Q
s∑

s1=i

(count(i, s1, k(s1))− 1)

We have: λ0(||AM,HB
(Q)
H,N ||2) ≤

min{
(H − i+ 1)N + di(s) + d′i(s) + d′′i,is+1,··· ,iH (s)

2(count(i, s, k(s))− 1)Q+ 2
: 1 ≤ i ≤ s, iα ≥ 0, 1 ≤ s ≤ H}

where:

d′i(s) = M(i− 1){(count(i, s, k(s))− 1)Q+ 1}

+QM
s−1∑
s1=i,

count(i,s,k(s))>count(i,s1,k(s1))

(count(i, s, k(s))− count(i, s1, k(s1)))

d′′i,is+1,··· ,iH (s) =
H∑

α=s+1

{Miα

+
∑

j=1,j ̸=k(s)
count(i,s,j)=0

max{Q(count(i, s, k(s))− 1)− iα, 0}

+
N∑

j=1,j ̸=k(s)
count(i,s,j)≥1,count(i,s,k(s))≥2

max{Q(count(i, s, k(s))− 2)− iα, 0}}
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Set C(i, s) = #{count(i, s, j) = 0, 1 ≤ j ≤ N}. Then, we have:

d′′i (s) = min{d′′i,is+1,··· ,iH , iα ≥ 0}

=



0, if count(i, s, k(s)) = 1

(H − s){C(i, s)Q+ (N − 1)Q(count(i, s, k(s))− 2)}
if count(i, s, k(s)) ≥ 2, N − 1 ≤M

(H − s){C(i, s)Q+MQ(count(i, s, k(s))− 2)}
if count(i, s, k(s)) ≥ 2, C(i, s) ≤M < N − 1

(H − s){MQ(count(i, s, k(s))− 1)}
if count(i, s, k(s)) ≥ 2,M ≤ C(i, s)

By the above equation, we have bound1. By [19], we have bound2 and bound3, thus completing the proof.
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