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Abstract: The correlation distance quantifies the statistical independence of two classical
or quantum systems, via the distance from their joint state to the product of the marginal
states. Tight lower bounds are given for the mutual information between pairs of two-valued
classical variables and quantum qubits, in terms of the corresponding classical and quantum
correlation distances. These bounds are stronger than the Pinsker inequality (and refinements
thereof) for relative entropy. The classical lower bound may be used to quantify properties
of statistical models that violate Bell inequalities. Partially entangled qubits can have lower
mutual information than can any two-valued classical variables having the same correlation
distance. The qubit correlation distance also provides a direct entanglement criterion, related
to the spin covariance matrix. Connections of results with classically-correlated quantum
states are briefly discussed.
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1. Introduction

The relative entropy between two probability distributions has many applications in classical and
quantum information theory. A number of these applications, including the conditional limit theorem [1],
quantum error correction [2], and secure random number generation and communication [3,4], make use
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of lower bounds on the relative entropy in terms of a suitable distance between the two distributions.
The best known such bound is the so-called Pinsker inequality [5]

H(P‖Q) :=
∑
j

P (j)[logP (j)− logQ(j)] ≥ 1

2
D(P,Q)2 log e (1)

whereD(P,Q) := ‖P −Q‖1 =
∑

j |P (j)−Q(j)| is the variational or L1 distance between distributions
P and Q. Note that the choice of logarithm base is left open throughout this paper, corresponding to a
choice of units. There are a number of such bounds [5], all of which easily generalise to the case of
quantum probabilities [2,6,7].

However, in a number of applications of the Pinsker inequality and its quantum analog, a lower bound
is in fact only needed for the special case that the relative entropy quantifies the mutual information
between two systems. Such applications include, for example, secure random number generation
and coding [3,4] (both classical and quantum), and quantum de Finnetti theorems [8]. Since mutual
information is a special case of relative entropy, it follows that it may be possible to find strictly stronger
lower bounds for mutual information.

Surprisingly little attention appears to have been paid to this possibility of better lower bounds
(although upper bounds for mutual information have been investigated [9]). The results of preliminary
investigations are given here, with explicit tight lower bounds being obtained for pairs of two-valued
classical random variables, and for pairs of quantum qubits with maximally-mixed reduced states.

In the context of mutual information, the corresponding variational distance reduces to the distance
between the joint state of the systems and the product of their marginal states, referred to here as the
“correlation distance”. It is shown that both the classical and quantum correlation distances are relevant
for quantifying properties of quantum entanglement: the former with respect to the classical resources
required to simulate entanglement, and the latter as providing a criterion for qubit entanglement. In the
quantum case, it is also shown that the minimum value of the mutual information can only be achieved
by entangled qubits if the correlation distance is more than ≈0.72654.

The main results are given in the following section. Lower bounds on classical and quantum mutual
information for two-level systems are derived in Sections 3 and 5, and an entanglement criterion
for qubits in terms of the quantum correlation distance is obtained in Section 4. Connections with
classically-correlated quantum states are briefly discussed in Section 6, and conclusions are presented
in Section 7.

2. Definitions and Main Results

For two classical random variablesA andB, with joint probability distribution PAB(a, b) and marginal
distributions PA(a) and PB(b), the Shannon mutual information and the classical correlation distance are
defined respectively by

I(PAB) := H(PAB‖PAPB) = H(PA) +H(PB)−H(PAB) (2)

C(PAB) := ‖PAB − PAPB‖1 =
∑
a,b

|PAB(a, b)− PA(a)PB(b)| (3)

where H(P ) := −
∑

j P (j) logP (j) denotes the Shannon entropy of distribution P . The term
“correlation distance” is used for C(PAB), since it inherits all the properties of a distance from the
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more general variational distance, and clearly vanishes for uncorrelated A and B. Both the mutual
information and correlation distance have a minimum value of zero, and for n-valued random variables
have maximum values

I(PAB) ≤ log n, C(PAB) ≤ 2(n− 1)/n (4)

with saturation corresponding to the maximally correlated case PAB(a, b) = n−1δab. Note for n = 2 that
C(PAB) ≤ 1.

For two quantum systems A and B described by density operator ρAB and reduced density operators
ρA and ρB, the corresponding quantum mutual information and quantum correlation distance are
analogously defined by

I(ρAB) := S(ρA) + S(ρB)− S(ρAB) (5)

C(ρAB) := ‖ρAB − ρA ⊗ ρB‖1 = tr|ρAB − ρA ⊗ ρB| (6)

where S(ρ) := −tr[ρ log ρ] denotes the von Neumann entropy of density operator ρ. Similarly to
the classical case, these are direct measures of the correlation between A and B, vanishing only for
uncorrelated A and B. It may be noted that trace distance has recently also been used to distinguish
between and quantify quantum and classical contributions to this correlation [10,11]. For n-level
quantum systems one has the maximum values

I(ρAB) ≤ log n2, C(ρAB) ≤ 2(n2 − 1)/n2 (7)

with saturation corresponding to maximally entangled states. Thus, comparing with Equation (4),
quantum correlations have a quadratic advantage with respect to both mutual information and correlation
distance. For example, for n = 2 one has C(ρAB) ≤ 3/2, allowing quantum correlation distances that
are greater than the corresponding classical maximum value of unity.

In both the classical and quantum cases, one has the lower bound

I ≥ 1

2
C2 log e (8)

for mutual information, as a direct consequence of the Pinsker inequality (1) for classical relative
entropies [2,5–7]. However, better bounds for mutual information can be obtained, which are stronger
than any general inequality for relative entropy and variational distance.

For example, for two-valued classical random variables A and B one has the tight lower bound

I(PAB) ≥ log 2−H
(

1 + C(PAB)

2
,
1− C(PAB)

2

)
(9)

for classical mutual information. This inequality has been previously stated without proof in
Reference [12], where it was used to bound the shared information required to classically simulate
entangled quantum systems. It is proved in Section 3 below.

In contrast to Pinsker-type inequalities such as Equation (8), the quantum generalisation of
Equation (9) is not straightforward. In particular, note for a two-qubit system that one cannot simply
replace PAB by ρAB in Equation (9), as the right hand side would be undefined for C(ρAB) > 1.
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This can occur if the qubits are entangled. Indeed, as shown in Section 4, C(ρAB) > 1 is a sufficient
condition for the entanglement of two qubits, as is the stronger condition

C(ρAB) > 2
√

(1− tr[ρ2A]) (1− tr[ρ2B]) (10)

An explicit expression for the quantum correlation distance for two qubits, in terms of the spin covariance
matrix, is also given in Section 4.

It is shown in Section 5 that the quantum equivalent of Equation (9), i.e., a tight lower bound for the
quantum mutual information shared by two qubits, is

I(ρAB) ≥

 log 2−H
(

1+C(ρAB)
2

, 1−C(ρAB)
2

)
, C(ρAB) ≤ C0

log 4−H
(

1
4

+ C(ρAB)
2

, 1
4
− C(ρAB)

6
, 1
4
− C(ρAB)

6
, 1
4
− C(ρAB)

6

)
, C(ρAB) > C0

(11)

when the reduced density operators are maximally mixed, where C0 ≈ 0.72654 corresponds to the value
of C(ρAB) for which the two expressions are equal. For C(ρAB) > C0 this lower bound can only be
achieved by entangled states, and cannot be achieved by any classical distribution PAB having the same
correlation distance. It is also shown that, for C(ρAB) > C0, the bound is also tight if only one of the
reduced states is maximally mixed. Support is given for the conjecture that the bound in Equation (11)
in fact holds for all two-qubit states.

In Section 6 the natural role of “classically-correlated” quantum states, in comparing
classical and quantum correlations, is briefly discussed. Such states have the general form
ρAB =

∑
j,k P (j, k)|j, k〉〈j, k| [13], where P (j, k) is a classical joint probability distribution and {|j〉}

and {|k〉} are orthonormal basis sets for the two quantum systems. The lower bound in Equation (11)
can be saturated by a classically-correlated state if and only if C ≤ C0.

3. Tight Lower Bound for Classical Mutual Information

3.1. Derivation of Bound

The tight lower bound in Equation (9) is derived here. The bound is plotted in Figure 1 below (top
curve). Also plotted for comparison are the Pinsker lower bound in Equation (8) (bottom curve), and
the lower bound following from the best possible generic inequality for relative entropy and variational
distance, given in parametric form in Reference [5] (middle curve).

To derive the bound in Equation (9), it is convenient to label the two possible values of A and B
by ±1. Defining R(a, b) := 4[PAB(a, b) − PA(a)PB(b)], it follows by summing over each of a and
b separately that R(a, b) + R(a,−b) = 0 = R(a, b) + R(−a, b), implying that R(a, b) = abr with
r := R(1, 1). Hence, C(PAB) = |r|. Further, writing PA(a) = (1 + ax)/2 and PB(b) = (1 + by)/2,
for suitable x, y ∈ [−1, 1], the positivity condition PAB(a, b) ≥ 0 is equivalent to

|x+ y| − 1 ≤ r + xy ≤ 1− |x− y| (12)

Now, Equation (9) is equivalent to

f(r) := I(PAB)− log 2 +H

(
1 + r

2
,
1− r

2

)
≥ 0 (13)
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It is easy to check that this inequality is always saturated for the case of maximally-random marginals,
i.e., when x = y = 0. In all other cases, the inequality may be proved by showing that f(r) has a unique
global minimum value of 0 at r = 0.

Figure 1. Lower bounds for the classical mutual information between two-valued variables.
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In particular, note first that f(0) = 0 (one has PAB = PAPB in this case, so that the mutual
information vanishes). Further, using PAB(a, b) = [(1 + ax)(1 + by) + abr]/4, one easily calculates
that, using logarithm base e for convenience,

f ′(r) =
1

4

∑
a,b

ab logPAB(a, b)− 1

2

∑
a

a log
1 + ar

2
=

1

4
log

pAB(+,+) pAB(−,−) (1− r)2

pAB(+,−) pAB(−,+) (1 + r)2
(14)

Hence, f ′(r) = 0 if and only if the argument of the logarithm is unity, i.e., if and only if

[(1+x)(1+y)+r] [(1−x)(1−y)+r] (1−r)2 = [(1+x)(1−y)−r] [(1−x)(1+y)−r] (1+r)2. (15)

Expanding and simplifying yields two possible solutions: r = 0, or r = (x2 + y2 − x2y2)/(2xy).
However, in the latter case one has

|r + xy| = x2 + y2 + x2y2

2|xy|
=
α

γ
+
γ

2
≥ 1 +

γ

2
≥ 1 (16)

where α and γ denote the arithmetic mean and geometric mean, respectively, of x2 and y2 (hence α ≥ γ).
This is clearly inconsistent with the positivity condition (12) (unless x = y = 0, which trivially saturates
Equation (13) for all r as noted above). The only remaining solution to f ′(r) = 0 is then r = 0,
implying f(r) has a unique maximum or minimum value at r = 0. Finally, it is easily checked that it is
a minimum, since

f ′′(0) =
1

16

∑
a,b

1

pA(a)pB(b)
−1 =

1

16PA(+)PA(−)PB(+)PB(−)
−1 =

1

(1− x2)(1− y2)
−1 ≥ 0 (17)

(with equality only for the trivially-saturating case x = y = 0). Thus, f(r) ≥ f(0) = 0 as required.
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3.2. Application: Resources for Simulating Bell Inequality Violation

The hallmark feature of quantum correlations is that they cannot be explained by any underlying
statistical model that satisfies three physically very plausible properties: (i) no signaling faster than the
speed of light; (ii) free choice of measurement settings; and (iii) independence of local outcomes. Various
interpretations of quantum mechanics differ in regard to which of these properties should be given up.
It is of interest to consider by how much they must be given up, in terms of the information-theoretic
resources required to simulate a given quantum correlation [14]. For example, how many bits of
communication, or bits of correlation between the source and the measurement settings, or bits of
correlation between the outcomes, are required? The lower bound for classical mutual information in
Equation (9) is relevant for the last of these questions.

In more detail, if PAB(a, b) denotes the joint probability of outcomes a and b, for measurements of
variables A and B on respective spacelike-separated systems, and λ denotes any underlying variables
relevant to the correlations, then Bayes theorem implies that

PAB(a, b) =
∑
λ

pAB(λ)PAB(a, b|λ) (18)

where summation is replaced by integration over any continuous values of λ. The no-signaling property
requires that the underlying marginal distribution of A, pA(a|λ), is independent of whether B or B′

was measured on the second system (and vice versa), while the free-choice property requires that λ
is independent of the choice of the measured variables A and B, i.e., that pAB(λ) = pA′B′(λ) for any
A,A′, B,B′. Finally, the outcome independence property requires that any observed correlation between
A and B arises from ignorance of the underlying variable, i.e., that PAB(a, b|λ) = PA(a|λ)PB(b|λ) for
all A, B and λ. Thus the correlation distance of PAB(a, b|λ) vanishes identically:

C(PAB|λ) ≡ 0 (19)

As is well known, the assumption of all three properties implies that two-valued random variables
with values ±1 must satisfy the Bell inequality [15]

〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 ≤ 2 (20)

whereas quantum correlations can violate this inequality by as much as a factor of
√

2 [16]. It follows
that quantum correlations can only be modeled by relaxing one or more of the above properties, as has
recently been reviewed in detail in Reference [12].

For example, assuming that no-signaling and measurement independence hold (as they do in the
standard Copenhagen interpretation of quantum mechanics), and definingCmax to be the maximum value
of C(PAB|λ) over all A, B and λ, it can be shown that Equation (20) generalises to the tight bound [12]

〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 ≤ 4

2− Cmax

(21)

It follows that to simulate a Bell inequality violation 〈AB〉 + 〈AB′〉 + 〈A′B〉 − 〈A′B′〉 = 2 + V ,
for some V > 0, the observers must share random variables having a correlation distance of at least
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Cmax ≥ 2V/(2 + V ). Hence, using the classical lower bound Equation (9) (stated without proof in
Reference [12]), the observers must share a minimum mutual information of

Imin = log 2−H
(

1 + Cmax

2
,
1− Cmax

2

)
≥ log 2−H

(
2 + 3V

4 + 2V
,

2− V
4 + 2V

)
(22)

Note this reduces to zero in the limit of no violation of Bell inequality (20), i.e., when V = 0, and
reaches a maximum of 1 bit of information in the limit of the maximum possible violation over arbitrary
probability distributions, V = 2. To simulate the maximum quantum violation [16], i.e., V = 2

√
2− 2,

at least 0.264 bits are required.

4. Quantum Correlation Distance and Qubit Entanglement

The positivity condition (12) may be used to show that the classical correlation distance between
any pair of two-valued random variables is never greater than unity, i.e., that C(PAB) = |r| ≤ 1 [12].
In contrast, the quantum correlation distance between a pair of qubits can be greater than unity, with
upper bound C(ρAB) ≤ 3/2, as per Equation (7).

Non-classical values of the quantum correlation distance are closely related to the quintessential non-
classical feature of quantum mechanics: entanglement. In particular, C(ρAB) > 1 is a direct signature
of qubit entanglement. Indeed, even correlation distances smaller than unity can imply two qubits are
entangled, as per the criterion given in Equation (10) and shown below. An explicit formula for qubit
correlation distance in terms of the spin covariance matrix, needed for Section 5, is also obtained below.

4.1. Entanglement Criterion

Recall that the density operator ρAB of two qubits may always be written in the Fano form [17]

ρAB =
1

4

[
I ⊗ I + u · σ ⊗ I + I ⊗ v · σ +

∑
j,k

〈σj ⊗ σk〉σj ⊗ σk

]

= ρA ⊗ ρB +
1

4

∑
j,k

Tjk σj ⊗ σk (23)

Here I is the unit operator; {σj} denotes the set of Pauli spin observables on each qubit Hilbert space;
the components of the 3-vectors u and v are the spin expectation values uj := 〈σj⊗1〉 and v := 〈1⊗σk〉,
for A and B respectively; and T denotes the 3× 3 spin covariance matrix with coefficients

Tjk := 〈σj ⊗ σk〉 − 〈σj ⊗ I〉 〈I ⊗ σk〉 (24)

It immediately follows from Equation (23) that the quantum correlation distance may be expressed in
terms of the spin covariance matrix as

C(ρAB) =
1

4
tr

∣∣∣∣∣∑
j,k

Tjk σj ⊗ σk

∣∣∣∣∣ (25)

This expression will be further simplified in Section 4.2.
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Now consider the case where ρAB is a separable state, i.e., of the unentangled form

ρAB =
∑
λ

p(λ) τA(λ)⊗ ωB(λ) (26)

for some probability distribution p(λ) and local density operators {τA(λ)}, {ωB(λ)}. Defining uj(λ) :=

tr[τA(λ)σj], vk(λ) := tr[ωB(λ)σk] implies u =
∑

λ p(λ)u(λ) and v =
∑

λ p(λ)v(λ), and substitution
into Equation (25) then yields

C(ρAB) =
1

4

∥∥∥∥∥∑
λ

p(λ) [u(λ)− u] · σ ⊗ [v(λ)− v] · σ

∥∥∥∥∥
1

≤ 1

4

∑
λ

p(λ) ‖[u(λ)− u] · σ‖1 ‖[v(λ)− v] · σ‖1

=
∑
λ

p(λ)|u(λ)− u| |v(λ)− v| ≤

[∑
λ

p(λ)|u(λ)− u|2
]1/2 [∑

λ

p(λ)|v(λ)− v|2
]1/2

=

[∑
λ

p(λ)|u(λ)|2 − |u|2
]1/2 [∑

λ

p(λ)|v(λ)|2 − |v|2
]1/2

≤
√

(1− u · u)(1− v · v) (27)

Note that second line follows from the properties ‖X +Y ‖1 ≤ ‖X‖1 + ‖Y ‖1 and ‖XY ‖1 ≤ ‖X‖1‖Y ‖1
of the trace norm [18]; the third line using ‖X‖1 = tr[

√
X†X] and the Schwarz inequality; and the last

line via |u(λ)|, |v(λ)| ≤ 1.
Equation (27) holds for all separable qubit states. Hence, a non-classical value of the correlation

distance, C(ρAB) > 1, immediately implies that the qubits must be entangled. More generally, noting
that ρA = 1

2
(I + u · σ) and ρB = 1

2
(I + v · σ), one has tr[ρ2A] = (1 + u · u)/2, tr[ρ2B] = (1 + v · v)/2,

and the stronger entanglement criterion (10) immediately follows from Equation (27).
The fact that entanglement between two qubits is necessary (but not sufficient) for C(ρAB) to be

greater than the maximum possible value of C(PAB), for two-valued classical variables, is a nice
distinction between quantum and classical correlation distances. It would be of interest to determine
whether this result generalises to n-level systems. This would follow from the validity of Equation (10)
for arbitrary quantum systems.

4.2. Explicit Expression for C(ρAB)

To explicitly evaluate C(ρAB) in Equation (25), let T = KDLT denote a singular value
decomposition of the spin covariance matrix. Thus, K and L are real orthogonal matrices and
D = diag[t1, t2, t3], with the singular values t1 ≥ t2 ≥ t3 ≥ 0 corresponding to the square roots of
the eigenvalues of TT T . Noting that any 3 × 3 orthogonal matrix is either a rotation matrix, or the
product of a rotation matrix with the parity matrix −I , one therefore always has a decomposition of
the form T = ±KDLT where K and L are now restricted to be rotation matrices. Hence, defining
unitary operators U and V corresponding to rotations K and L, via UσjU

† =
∑

j,j′ Kjj′σj′ and



Entropy 2013, 15 3706

V σjV
† =

∑
j,j′ Ljj′σj′ , and using the invariance of the trace norm under unitary transformations, the

quantum correlation distance in Equation (25) can be rewritten as

C(ρAB) =
1

4
tr

∣∣∣∣∣±∑
j

tj UσjU
† ⊗ V σjV †

∣∣∣∣∣ =
1

4
tr

∣∣∣∣∣∑
j

tj σj ⊗ σj

∣∣∣∣∣ (28)

Determining the eigenvalues of the Hermitian operator
∑

j tj σj ⊗ σj is a straightforward 4 × 4 matrix
calculation using the standard representation of the Pauli sigma matrices. Summing the absolute values
of these eigenvalues then yields the explicit expression

C(ρAB) =
1

4
[|t1 + t2 + t3|+ |t1 + t2 − t3|+ |t1 − t2 + t3|+ | − t1 + t2 + t3|]

=
1

2
max{t1 + t2 + t3, 2t1} (29)

for the quantum correlation distance, in terms of the singular values of the spin covariance matrix.
For example, for the Werner state ρAB = p|ψ〉〈ψ|+ (1− p)/4 I⊗ I , where |ψ〉 is the singlet state and

−1/3 ≤ p ≤ 1 [19], one has T = −pI and hence that t1 = t2 = t3 = |p|. The corresponding correlation
distance is therefore 3|p|/2, which is greater than the classical maximum of unity for p > 2/3.

Equation (29) also allows the qubit entanglement criterion (10) to be directly compared with the
strongest known criterion based on the spin covariance matrix [20]:

t1 + t2 + t3 > 2
√

(1− tr[ρ2A]) (1− tr[ρ2B]) (30)

For the above Werner state this criterion is tight, indicating entanglement for p > 1/3. Hence, the
main interest in weaker entanglement criteria based on quantum correlation distance lies in their direct
connection with non-classical values of the classical correlation distance.

5. Tight Lower Bound for Quantum Mutual Information

Here Equation (11) is derived for the case ρA = ρB = 1
2
I . Evidence is provided for the conjecture that

Equation (11) in fact holds for all two-qubit states, including a partial generalisation of Equation (11)
when only one of ρA and ρB is maximally-mixed.

5.1. Derivation for Maximally-Mixed ρA and ρB

The tight lower bound for quantum mutual information in Equation (11), for maximally-mixed
reduced states, is plotted in Figure 2 below (top solid curve). Also plotted for comparison are the
Pinsker lower bound in Equation (8) (bottom solid curve), and classical lower bound in Equation (9)
(dashed curve). The dotted vertical line indicates the value of C0 ≈ 0.72654 in Equation (11). It is seen
that quantum correlations can violate the classical lower bound for correlation distances falling between
C0 and 1.

To derive Equation (11) for ρA = ρB = 1
2
I , note first that Equation (23) reduces to

ρAB = 1
4
[I ⊗ I +

∑
j,k Tjk σj ⊗ σk]. By the same argument given in Section 4.2, this can be transformed

via local unitary transformations to the state

ρ̃AB =
1

4

[
I ⊗ I +

∑
j

rj σj ⊗ σj

]
(31)
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where rj = αtj , α = ±1, and t1 ≥ t2 ≥ t3 ≥ 0 are the singular values of the spin covariance matrix
T . Since the quantum mutual information and quantum correlation distance are invariant under local
unitary transformations, one has I(ρAB) = I(ρ̃AB) and C(ρAB) = C(ρ̃AB). Hence Equation (11) only
needs to be demonstrated for ρ̃AB.

Figure 2. Lower bounds for the quantum mutual information between two qubits.
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The mutual information of ρ̃AB is easily evaluated as

I(ρ̃AB) = S(ρ̃A) + S(ρ̃B)− S(ρ̃AB) = log 4−H(p0, p1, p2, p3) (32)

where p0 = 1
4
(1−r1−r2−r3), p1 = 1

4
(1−r1+r2+r3), p2 = 1

4
(1+r1−r2+r3), p3 = 1

4
(1+r1+r2−r3)

are the eigenvalues of ρ̃AB. Inverting the relation between the rj and pj further yields

tj = αrj = α[1− 2(p0 + pj)], t1 + t2 + t3 = α(1− 4p0) (33)

and hence the correlation distance follows from Equation (29) as

C(ρ̃AB) = C :=
1

2
max{α(1− 4p0), α(1− 4p0 + 1− 4p1)} (34)

Equation (32) implies that a tight lower bound for I(ρ̃AB) corresponds to a tight upper bound for
H(p0, p1, p2, p3). To determine the maximum value of H(p0, p1, p2, p3), for a fixed correlation distance
C, consider first the case α = 1. The ordering and positivity conditions on tj then require

p1 ≤ p2 ≤ p3, p0 + pj ≤
1

2
(j = 1, 2, 3) (35)

(implying p0 ≤ 1/4). Further, from Equation (34), C = 1
2

max{1 − 4p0, 1 − 4p0 + 1 − 4p1}. Hence,
if p1 ≤ 1/4, then C = 1 − 2(p0 + p1) ≤ 1, implying the constraint p0 + p1 = (1 − C)/2. Noting the
concavity of entropy, the maximum possible entropy under this constraint corresponds to equal values

p0 = p1 = (1− C)/4, p2 = p3 = (1 + C)/4 (36)

(which are compatible with the above conditions on the pj). Conversely, if p1 ≥ 1/4 then
C = (1− 4p0)/2 ≤ 1/2, and hence p0 = 1/4− C/2 is fixed, implying by concavity that the maximum
possible entropy corresponds to

p0 = 1/4− C/2, p1 = p2 = p3 = 1/4 + C/6 (37)
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(which again satisfies the required conditions on the pj). It follows that the maximum possible entropy
is (i) the maximum of the entropies

H1(C) := H((1− C)/4, (1− C)/4, (1 + C)/4, (1 + C)/4) (38)

H2(C) := H(1/4− C/2, 1/4 + C/6, 1/4− C/6, 1/4− C/6) (39)

for C ≤ 1/2, and (ii) H1(C) for 1/2 < C ≤ 1. However, it is straightforward to show that
H1(C) ≥ H2(C) over their overlapping range. Hence the maximum possible entropy is always H1(C)

for the case α = 1.
For the case α = −1, the conditions on tj require that

p1 ≥ p2 ≥ p3, p0 + pj ≥
1

2
(j = 1, 2, 3) (40)

(implying p0 ≥ 1/4), while from Equation (34) C = 1
2

max{4p0 − 1, 4p0 − 1 + 4p1 − 1)}. Carrying out
a similar analysis to the above, one finds that the maximum possible entropy is (i) the maximum of the
entropies H1(C) and

H3(C) := H(1/4 +Q/2, 1/4−Q/6, 1/4−Q/6, 1/4−Q/6) (41)

for C ≤ 1, and (ii) H3(C) for 1 < C ≤ 3/2.
Numerical comparison shows that H3(C) > H1(C) for C > C0 ≈ 0.72654, and H3(C) ≤ H1(C)

otherwise. Hence, from Equation (32) one has the tight lower bound

I(ρ̃AB) ≥

{
log 4−H1(C), C ≤ C0

log 4−H3(C), C > C0

(42)

Since H1(C) = log 2 + H((1 − C)/2, (1 + C)/2), it follows that Equation (11) holds for ρ̃AB
in Equation (31), and hence for all qubit states with maximally-mixed reduced density operators,
as claimed.

The states saturating the lower bound in Equations (11) and (42) are easily constructed from the above
derivation. In particular, they are given by

ρ(C) :=

{
1
4

[I ⊗ I + C σ1 ⊗ σ1] , C ≤ C0

1
4

[
I ⊗ I − (2C/3)

∑
j σj ⊗ σj

]
, C > C0

(43)

and any local unitary transformations thereof, where the quantum correlation distance of ρ(C) is C
by construction.

Note that ρ(C) is unentangled for C ≤ C0 (it can be written as a mixture of (1/4)I ⊗ I , |+〉〈+| ⊗
|+〉〈+| and |−〉〈−| ⊗ |−〉〈−|, where σ1|±〉 = ±|±〉). Conversely, ρ(C) is an entangled Werner state
for C ≥ C0 (with singlet state weighting p = 2C/3 > 1/3). Hence, the lower bound in Equations (11)
and (42) can only be achieved by entangled states forC ≥ C0, and cannot be achieved by any two-valued
classical random variables.
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5.2. Conjecture

It is conjectured that Equation (11) is in fact a tight lower bound for any two-qubit state. This
conjecture would follow immediately if it could be shown that

I(ρAB) ≥ I(ρ′AB) (44)

for arbitrary ρAB, where ρ′AB := ρAB − ρA ⊗ ρB + (1/4)I ⊗ I , and where it must further be shown
that ρ′AB is a density operator. The conjecture would then follow since ρ′AB is of the form of ρ̃AB in
Equation (31), and hence I(ρ′AB) satisfies Equation (42).

Partial support for Equation (44), and hence for the conjecture, is given by noting that any ρAB and
corresponding ρ′AB can be brought to the respective forms

ρAB = ρA ⊗ ρB +
1

4

∑
j

rj σj ⊗ σj, ρ′AB =
1

4

[
I ⊗ I +

∑
j

rj σj ⊗ σj

]
(45)

via suitable local unitary transformations, similarly to the argument in Section 4.2. Defining the function

F (r1, r2, r3) := I(ρAB)− I(ρ′AB) (46)

it is straightforward to show that F = 0 and ∂F/∂rj = 0 for r1 = r2 = r3 = 0, consistent with F ≥ 0.
However, it remains to be shown that the gradient ∂F/∂rj = 0 does not vanish for other physically
possible values of rj (other than for the trivially saturating case ρA = ρB = (1/2)I).

The above conjecture is further supported by the generalisation of Equation (11) in the
following section.

5.3. Generalisation to Maximally-Mixed ρA or ρB

It is straightforward to show that the lower bound on quantum mutual information is tight for C ≥ C0

when just one of the mixed density operators is mixed, i.e., if ρA or ρB is equal to (1/2)I .
First, since (1/2)I is invariant under unitary transformations, the same argument as in Section 4.2

implies the state can always be transformed by local unitary transformations to the generalised form

ρ̃AB =
1

4

[
ρ̃A ⊗ ρ̃B + α

∑
j

tj σj ⊗ σj

]
(47)

of Equation (31), where either ρ̃A or ρ̃B equals (1/2)I and α = ±1.
Second, let T denote the “twirling” operation, corresponding to applying a random unitary

transformation of the form U ⊗ U [21]. It is easy to check that by definition T (I ⊗ I) = I ⊗ I ,
T (I ⊗ σj) = 0 = T (σj ⊗ 1) and T (σj ⊗ σj) = T (σk ⊗ σk), for any j and k. Since Werner states are
invariant under twirling [19,21], it follows that T (σj ⊗ σj) = (1/3)

∑
k σk⊗ σk. Using these properties,

one finds that T (ρ̃A ⊗ ρ̃B) = (1/4)I ⊗ I if one of ρ̃A or ρ̃B is maximally mixed, and hence that

T (ρ̃AB) =
1

4

[
I ⊗ I + αt̄

∑
j

σj ⊗ σj

]
= ρ(−3αt̄/2) (48)
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where t̄ := (t1 + t2 + t3)/3 and the second equality holds for C ≥ C0 (but not otherwise), with ρ(C)

defined as per Equation (43). Further, from Equation (29) one has

C(T (ρ̃AB)) = C =
1

2
max{2t̄, 3t̄} = 3t̄/2 (49)

Recalling that ρ(C) saturates Equation (42), an analysis similar to Section 5.1 shows for C ≥ C0 that

I(T (ρ̃AB)) = log 4−H3(−αC) ≥ log 4−H3(C) (50)

with equality for α = −1.
Third, again using T (ρ̃A ⊗ ρ̃B) = (1/4)I ⊗ I , and the property that the relative entropy is

non-increasing under the twirling operation, it follows that

I(ρ̃AB) = S(ρ̃AB‖ρ̃A ⊗ ρ̃B) ≥ S(T (ρ̃AB)‖T (ρ̃A ⊗ ρ̃B)) = I(T (ρ̃AB)) ≥ log 4−H3(C) (51)

for C ≥ C0. Since Werner states are invariant under twirling, this inequality is tight for α = −1, being
saturated by the choice ρ̃AB = ρ(C). Recalling that mutual information and correlation distance are
invariant under local unitary operations, the inequality is therefore tight for any ρAB for which one of ρA
and ρB is maximally mixed, as claimed.

6. Classically-Correlated Quantum States

It is well known that a quantum system behaves classically if the state and the observables of interest
all commute, i.e., if they can be simultaneously diagonalised in some basis. Hence, a joint state will
behave classically if the relevant observables of each system commute with each other and the state. It is
therefore natural to define ρAB to be classically correlated if and only if it can be diagonalised in a joint
basis [13], i.e., if and only if

ρAB =
∑
j,k

P (j, k)|j〉〈j| ⊗ |k〉〈k| (52)

for some distribution P (j, k) and orthonormal basis set {|j〉⊗ |k〉}. Classical correlation is preserved by
tensor products, and by mixtures of commuting states.

While, strictly speaking, a classically-correlated quantum state only behaves classically with respect
to observables that are diagonal with respect to |j〉⊗ |k〉, they also have a number of classical correlation
properties with respect to general observables [13,22], briefly noted here.

First, ρAB above is separable by construction, and hence is unentangled. Second, since it is diagonal
in the basis {|j〉 ⊗ |k〉}, the mutual information and correlation distance are easily calculated as

I(ρAB) = I(P ), C(ρAB) = C(P ) (53)

and hence can only take classical values.
Third, if M and N denote any observables for systems A and B respectively, then their joint statistics

are given by
PMN(m,n) =

∑
j,k

p(m|j) p(n|k)P (j, k) =
∑
j,k

Sm,n;j,k P (j, k) (54)
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where Sm,n;j,k = p(m|j) p(n|k) is a stochastic matrix with respect to its first and second pairs of indices.
Similarly, one finds

PM(m)PN(n) =
∑
j,k

Sm,n;j,k P (j)P (k) (55)

for the product of the marginals. Since the classical relative entropy and variational distance can only
decrease under the action of a stochastic matrix, it follows that one has the tight inequalities [13,22]

I(PMN) ≤ I(P ) = I(ρAB), C(PMN) ≤ C(P ) = C(ρAB) (56)

with saturation for M and N diagonal in the bases {|j〉} and {|k〉} respectively. Maximising the first
of these equalities over M or N immediately implies the well-known result that classically-correlated
states have zero quantum discord [22].

Finally, for two-qubit systems, Equation (52) implies that ρAB is classically correlated if and only if
it is equivalent under local unitary transformations to a state of the form

ρ′AB =
1

4
[(1 + xσ1)⊗ (1 + yσ1) + r σ1 ⊗ σ1] (57)

where x, y ∈ [−1, 1] and r satisfies Equation (12). Hence, the mutual information is bounded by the
classical lower bound in Equation (9), and ρ(C) in Equation (43) is classically correlated for C ≤ C0.
It follows that the lower bound for quantum mutual information in Equation (11) can be attained by
classically-correlated states if C ≤ C0. Conversely, the minimum possible bound cannot be reached by
any classically-correlated two-qubit state if C > C0.

7. Conclusions

Lower bounds for mutual information have been obtained that are stronger than those obtainable
from general bounds for relative entropy and variational distance. Unlike the Pinsker inequality in
Equation (8), the quantum form of these bounds is not a simple generalisation of the classical form.

Similarly to the case of upper bounds for (classical) mutual information [9], the tight lower bounds
obtained here depend on the dimension of the systems. The results of this paper represent a preliminary
investigation largely confined to two-valued classical variables and qubits. It would be of interest to
generalise both the classical and quantum cases, and to further investigate connections between them.

Open questions include whether a quantum correlation distance greater than the corresponding
maximum classical correlation distance is a signature of entanglement for higher-dimensional systems,
and whether the related qubit entanglement criterion in Equation (10) holds more generally. The
conjecture in Section 5.2, as to whether the quantum lower bound in Equation (11) is valid for all
two-qubit states, also remains to be settled. Finally, it would be of interest to generalise and to better
understand the role of the transition from classically-correlated states to entangled states in saturating
information bounds, in the light of Equation (43) for qubits.
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