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Abstract: A quantum entropy space is suggested as the fundamental arena describing the 

quantum effects. In the quantum regime the entropy is expressed as the superposition of 

many different Boltzmann entropies that span the space of the entropies before any 

measure. When a measure is performed the quantum entropy collapses to one component. 

A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s 

quantum potential in terms of the quantum entropy are provided. The space associated with 

the quantum entropy determines a distortion in the classical space of position, which 

appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like 

gauge potential produces a deformation of the moments which changes the classical action 

in such a way that Bohm’s quantum potential emerges as consequence of the non classical 

definition of entropy, in a non-Euclidean information space under the constraint of a 

minimum condition of Fisher information (Fisher Bohm- entropy). Finally, the possible 

quantum relativistic extensions of the theory and the connections with the problem of 

quantum gravity are investigated. The non classical thermodynamic approach to quantum 

phenomena changes the geometry of the particle phase space. In the light of the 

representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel 

gravity), the change of geometry in the phase space introduces quantum phenomena in a 

natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the 

geometry of space-time is highly coupled with a quantum potential whose origin is not the 

Schrödinger equation but the non classical entropy of a system of many particles that 
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together change the geometry of the phase space of the positions (entanglement). In this 

way the non classical thermodynamic changes the classical geodetic as a consequence of 

the quantum phenomena and quantum and gravity are unified. Quantum affects geometry 

of multidimensional phase space and gravity changes in any point the torsion in the 

ordinary four-dimensional Lorenz space-time metric. 

Keywords: Quantum entropy; Fisher information; Weyl-like gauge potential; Bohm’s 

quantum potential; Fisher-Bohm entropy; quantum geometrodynamics; quantum theories 

of gravitation; teleparallel gravity 

 

1. Introduction 

The advantage of a geometric representation of physical phenomena is not only the elegance, but 

also and above all the immediate visualization of processes. In the first part of the article, we will 

consider the entropy of a quantum system as a vector of the superposition of many different entropies 

whose values are conditioned by the observer and will provide a new suggestive reading to Rovelli’s 

relational quantum mechanics. Any observer makes the system in superposition collapse to a classical 

value of entropy, i.e., he/she fixes classical information by a measurement. When the observer does not 

interact with a quantum system, the composed system given by the quantum microsystem + observer is 

in an entangled state. When the observer interacts with the microsystem under consideration thus 

becoming an active element, the composed system given by the quantum microsystem + observer is in 

a pure state and follows the non classical thermodynamics defined by a quantum multidimensional 

space of entropies.  

In the second part of the article, fixed the background of the rectangular coordinates of the entropy, 

we will show that the non linear relation of the average values of the phase space with the different 

observed entropy generates an information manifold of the phase space with Fisher metric. By the 

covariant derivatives in a general form represented by the Morphogenetic system illustrated in the 

mathematical appendix, the Bohm quantum potential by a minimum principle of the average action is 

obtained as Fisher metric or information metric in the phase space. In this approach, the Bohm 

quantum potential emerges as a consequence of the classical equilibrium condition in the quantum 

entropy space. Fisher information metric in the curved phase space can be considered as an 

information medium whose deformation or curvature justify the usual quantum phenomena. In the non 

classical entropic picture the curvature of space indicates the Weyl-like gauge potential connected with 

Fisher metric. Because Bohm’s quantum potential is a consequence of the Schrödinger equation and 

vice versa, one can give a thermodynamic justification of the quantum mechanics modeled by 

Schrödinger equation. In this approach, we will also unify quantum and gravity theories for Bohm’s 

representation in general relativity. All the quantum phenomena disappear when the vacuum curvature 

in phase space is zero, the Fisher metric is the Euclidean metric and the Weyl-like gauge potential that 

is function of all particles’ positions is zero.  
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2. Quantum Mechanics from Vector of Boltzmann Entropies 

In his paper The Statistic Origin of Quantum Mechanics Klein [1] takes into consideration three 

different levels of the role played by probability in Physics passing from the classical scenario to the 

quantum one: “With regard to the role of probability, three types of physical theories may be distinguished: 

1. Theories of type 1 are deterministic. Single events are completely described by their known 

initial values and deterministic laws (differential equations). Classical mechanics is obviously 

such a theory. We include this type of theory, where probability does not play any role, in our 

classification scheme because it provides a basis for the following two types of theories. 

Theories of type 2 have deterministic laws but the initial values are unknown. Therefore, no 

predictions on individual events are possible, despite the fact that deterministic laws 

describing individual events are valid. In order to verify a prediction of a type 2 theory a large 

number of identically prepared experiments must be performed. We have no problems to 

understand or to interpret such a theory because we know it is just our lack of knowledge which 

causes the uncertainty. An example is given by classical statistical mechanics. Of course, in 

order to construct a type 2 theory one needs a type 1 theory providing the deterministic laws. 

2. It is possible to go one step further in this direction increasing the relative importance of 

probabilityeven more. We may not only work with unknown initial values but with unknown 

laws as well. In the type 3 theories there are no deterministic laws describing individual 

events, only probabilities can be assigned. There is no need to mention initial values for particle 

trajectories any more (initial values for probabilistic dynamical variables are still required).” 

In the type 3 theories we have unknown laws so the entropy is dependent on the observer. Any 

observer by a measure can see only one of the possible values of the vector of entropies. While in 

classical thermodynamics the entropy has the same value and structure for any observer and the 

observer cannot change the physical form of the entropy, in the quantum regime before any measure 

the entropy is the superposition of many different possible entropies that span the space of the 

entropies or quantum entropy space. When a measure is performed the quantum entropy space given 

by the superposition of different Boltzmann entropies collapses to one component. The vector of the 

entropies one for any observer can be expressed as follows: 

log1 11
log2 22

...

log

S k dy

S k dy

S k dyn nn

 

 

 

  

  

  








 (1)

where ( , ,... , , ,..., )1 2 1 2x x xq pj j      

and where k is the Boltzmann constant, x and θ are the phase space positions of the particles and 

parameters (such as average of the positions) of the probability distribution respectively. One has to 

remark here that the parameters’ distributions can differ one from another also as regards the number 

of parameters characterizing them and that the distributions can be characterized by many different 

parameters, including the average coordinates, but not limited only to these ones. For the equilibrium 
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condition the probability for any observer is equal in any position x and is function only of the 

parameters. So we have: 

1
( , ,... , , ,..., )1 2 1 2 ( , ,..., )1 2
x x xq pj j Wj p
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where W are the number of the microstates for the same parameters θ as temperatures, pressures etc.  

In this case S is a vector of Boltzmann entropies one for any observer in the non classical space of 

entropies ( S1 , S2,….,Sn ). Now we have: 

log

,

WSk kJ
k j j j
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 (4)

where J is a rectangular metric. For the mathematical appendix A we have the metric in the parameter 

space of the average position of the particles in the curved phase space in this way: 
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where F is the quadratic and symmetric Fisher metric [2,3]. We have also that: 

  1,  JJF ji  (7)

, 1( )h k TF J J     (8)

where ∑ is the covariant matrix of the Cramer Rao lower bound. 

The interpretation of quantum mechanics from a vector of Boltzmann entropies whose values are 

conditioned by the observer can be considered as a new elegant and suggestive way to formulate 

relational quantum mechanics. The central tenet of relational quantum mechanics [4–7] is that there is 

no meaning in saying that a certain quantum event has happened or that a variable of the system S has 

taken the value q: rather, there is meaning in saying that the event q has happened or the variable has 

taken the value q with respect to another system O. The apparent contradiction between the two 

statements that a variable has or has not a value is resolved by indexing the statements with the 

different systems with which the system in question interacts. Quantum events only happen in 

interactions between systems, and the fact that a quantum event has happened is only true with respect 

to the systems involved in the interaction. The unique account of the state of the world of the classical 

theory is thus fractured into a multiplicity of accounts, one for each possible “observing” physical 

system. On the basis of the mathematical formalism developed in this section, one can say that the non 
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classical space of the entropies (whose values are conditioned by the observer) is the fundamental 

entity that explains in what sense, when a quantum event happens, it happens only with respect a 

peculiar observing physical system. In quantum mechanics, one can say that a variable of a quantum 

system takes the value q because the vector of different Boltzmann entropies collapses to one specific 

entropy which corresponds with the value q of the variable under consideration: an interaction between 

the quantum system and an observer happens which produces the collapse of the quantum vector of 

entropies into one specific entropy and the observer involved in this interaction measures just the value 

q of the variable under consideration. 

3. From Vector of Boltzmann Entropies to Bohm’s Quantum Potential 

In Section 2, we have shown that a non classical entropy space can lead to a new interesting reading 

of Rovelli’s relational quantum mechanics. However, as is known, Rovelli’s relational quantum 

mechanics points towards the reconciliation between irreversibility (collapse of the wave function and 

thus the standard interpretation of quantum mechanics) with the reversibility of the Lorentzian 

observers. Rovelli’s approach indeed continuously turns each question on the collapse of the wave 

function. So, the wave function collapse remains the “fifth postulate” of quantum mechanics and 

diffuses the Von Neumann chain hidden dangers in a network of observers. In this regard, from the 

viewpoint of the standard interpretation of quantum mechanics and somewhat also of relational 

quantum mechanics, one can say that no collapse has happened until the information about the 

interaction between the quantum microsystem under consideration and the observer has arrived in this 

observer’s brain. If an observer A has the information that the measurement has happened but an 

observer B has not had an interaction with the microsystem under consideration and thus has the 

information that the measurement has not happened, this implies that for the observer B the measured 

system and the brain of the first observer (A) have both remained in a superposition. This leads to the 

conclusion that “subjectively” a collapse of the wave function has occurred relative only to a peculiar 

observer’s consciousness state, but “objectively” there is no collapse [8].  

Let us pose the following example: before an observer A measures the spin of an electron S, it is in 

a superposition state. Before this observer A has any contact with the electron, the apparatus O, or their 

environment, they are altogether in a superposition state. After looking at the apparatus, there is no 

longer superposition relative to his/her consciousness. However, relative to another observer B the 

combined state of the electron S, the apparatus O and the brain of the observer A can remain in 

superposition until B himself gets in contact with A, O, S, or the environment of S, O and A. As a 

consequence it seems legitimate to argue that a wave function is always relative to something, or, 

better, to somebody. There can be no “objective” wave function. In the standard interpretation of 

quantum mechanics, and consequently in relational quantum mechanics too, a wave function can be 

always considered as relative to some observer. Thus the collapse of the wave function can be always 

considered as a subjective collapse. Relative to a given observer A, a wave function is collapsing all 

the time: whenever the information (direct or indirect — through the environmental degrees of 

freedom) about the outcome of measurement reaches the observer A. Instead, there is no collapse if we 

contemplate other observers B, C, D, … performing their experiments. On the basis of these 

considerations, according to the authors of this article, it seems legitimate to conclude that—since an 

observer can always be defined for everything is in a superposition state—the quantum superposition 
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and the quantum entanglement between given systems can be considered as the fundamental reality of 

the universe. But such aspect has not at all to be considered as “subjective”: at the origin of the 

universe there were no observers; in a double-slit experiment the electrons’ pattern does not depend on 

an observer!  

What we mean to say is that the wave-function is not a mysterious ghost who vanishes when the 

measurement arrives, but something which acts on the matter and determines the conditions of the 

measurement itself [9]. Quantum mechanics pictures the world also without observers: it is possible to 

eliminate the mystery of the collapse in a realistic picture by recognizing the contextual nature of the 

quantum measurement. In this chapter, by making use of the non classical space of the entropies we 

will provide a new interesting reading of Bohm’s version of quantum mechanics in which the quantum 

potential emerges as a deformation of the information medium determined by the vector of the space 

of Boltzmann entropies [10,11]. Finally, remember that these “strange problems” of QM arise from the 

fact that-contrary to what is being said-it is not a “fundamental” theory (or “complete”, in the 

Einstein’s sense). A clarification of the problems of wave/particle duality require a rethinking in terms 

of Quantum Field Theory, maybe the only “realistic” interpretation of quantum mechanics, which is 

beyond our goals [12,13] 

In virtue of the formalism developed in the mathematical appendix A we have: 

 (9)

which, if:  

 (10)

leads to the following equation:  

 (11)

Thus one obtains a deformation of the derivative for the non Euclidean geometry which is given by  

the relation: 

 (12)

where:  

 
(13)

is a Weyl-like gauge potential [14–16]. 

Now in the classical mechanics the equation of average motion can be expressed, by the definition 

of the action A, in this way: 
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In quantum mechanics we have non-local correlations of momenta and thus the change of the 

geometry of the action: 
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The Fisher information (quantum action) assumes the minimum value when 0A  under Euler 

Lagrange condition: 

 (19)
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where Q is the Bohm quantum potential (in the next equations, for simplicity we are going to denote 
the generic function kW  [defined by Equations (3)] with W ) [17]:  
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It is of great physical interest to note that the Equation (20) connects the Bohm potential to W, 

number of microstates of the system, thus providing a vivid picture of how non-locality modifies the 

probability distribution. In other words, according to Bohm-Hiley “active information” [18], the 

quantum Potential emerges as an informational channel given by the functions W in the non Euclidean 

space of the entropies with Fisher metric. Even the metric assumes here a direct physical meaning, i.e., 

distance as distinguishability between W micro-states. 

The approach of the quantum potential expressed by Equations (12)–(21), which we will call 

Fisher-Bohm Entropy, may be put in comparison with another entropic approach, developed recently 
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in the papers [19,20] according to which the space-temporal distribution of the ensemble of particles 

describing the physical system under consideration is assumed to generate a modification of the 

geometry described by a quantum entropy given by equation: 

ln
2

1
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In the Sbitnev and Fiscaletti papers it was demonstrated that, by starting from the quantum  

entropy in Equation (22)—which was introduced as the degree of order and chaos of the vacuum 

supporting the density of the ensemble of particles associated with the wave function—a new picture of 

non-relativistic de Broglie-Bohm theory emerges in which the quantum potential can be expressed as:  
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be interpreted as the quantum corrector of the potential energy. Therefore, by equating Equations (21) 

and (23) one obtains: 






















jiji

W

W

WW

Wm 

2

2

21

2

1    QQ S
m

S
m

2
2

2
2

22



 (24)

which tells us that the two quantum corrector terms of the energy of the particle  2
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Thus, on the basis of Equations (25) and (26), one can say that the functions W appearing in the 

vector of the superposed Boltzmann entropies Equation (3) are linked with the quantity Equation (22) 

and thus with the density of the particles associated with the wave function under consideration. 

Moreover, introducing the two quantum correctors of the energy given by Equations (25) and (26), the 

quantum Hamilton-Jacobi equation of non-relativistic Bohmian mechanics reads as: 
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Equation (27) provides an energy conservation law in non-relativistic quantum mechanics in the 

space of parameters where the two quantum corrector terms given by relations Equation (25) and (26) 

can be interpreted as a sort of modification of the geometry of the parameter space determined by the 

density of the ensemble of particles associated with the wave function under consideration. Finally, in 

non-relativistic Bohmian mechanics, the quantum potential contains a global information on the 

environment and at the same time it is a dynamical entity derives just from the functions—linked with 

the density of the ensemble of particles associated with the wave function under consideration on the 

basis of Equations (25) and (26). The functions W emerge just as informational lines of the quantum 

potential. It has to be mentioned here another advantage of Bohm’s theory. What is usually defined as 

“background space” in quantum mechanics is nothing but an “open door” on a typical level of 

quantum field theory; it is possible to show that the Feynman integral paths can be correlated with 

Bohm’s quantum potential and the same classic concept of “trajectory” emerges from the dynamics of 

quantum fields [21–24]. 

If we consider, for example, the double slit experiment, the quantum potential is an information 

potential, namely brings a global, instantaneous (in classical language) and active information (in 

Bohm-Hiley acception [18]) on the process and its environment (in fact, it turns out to depend on the 

width of the slits, their distance apart and the momentum of the particle and turns out to modify the 

behaviour of the particle itself), because it is determined by the functions W and its geometric 

properties, which represent its informational lines, and thus by the quantum entropy space. So, if one 

of the two slits is closed the quantum potential changes just because its informational lines represented 

by the functions W geometry change contextually.  

In conclusion from classical entropy without the introduction of the wave function we have built for 

the different observers a non classical definition of the entropy space whose geometry gives us the non 

local quantum effects. Any component of this entropic space is classic (after “collapse”) but the 

multidimensional space is not classic. This entropy space can be considered as the original entity from 

which we can obtain Bohm’s potential as an intermediate entity to obtain a physical justification of the 

wave representation of the quantum phenomena with the entanglement. 

4. Curved Space-Time Embedded in Phase Space with Fisher Metric as Fusion of  

Quantum with Gravity 

Soon after General Relativity was given its final presentation as a new theory for the gravitational 

field, an attempt to unify gravitation and electromagnetism was made by Weyl in 1918 [25]. His 

proposal did not succeed, but introduced for the first time the notions of gauge transformations and 

gauge invariance. Another attempt in the same direction was made by A. Einstein, about ten years 

later. This attempt was based on the mathematical structure of teleparallelism, also referred to as 

distant or absolute parallelism. Roughly speaking, the idea was the introduction of a tetrad field, a field 

of orthonormal bases on the tangent spaces at each point of the four-dimensional spacetime. The tetrad 

has sixteen components, whereas the gravitational field, represented by the spacetime metric, has only 

ten. According to this approach, General Relativity as a theory that involves only curvature was 

supplemented by Teleparallel Gravity [23], a theory that involves only torsion. This theory, called 

New General Relativity, represented a new way of including torsion in General historical account of 

the teleparallelism. Teleparallel Gravity is found to be completely equivalent to General Relativity.  
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In this case it is sometimes referred to as the Teleparallel Equivalent of General Relativity. Although 

frequently reserved for the three-parameter theory, the name Teleparallel Gravity will be used here as a 

synonymous for the teleparallel equivalent of General Relativity. A fundamental property embodied in 

Teleparallel Gravity is that, due to the equivalence with General Relativity, curvature and torsion are 

able to provide equivalent descriptions of the gravitational interaction. In General Relativity, curvature 

is used to geometrize the gravitational interaction. That is to say, geometry replaces the concept of 

gravitational force, and the trajectories are determined, not by force equations, but by geodesics. 

Teleparallel Gravity, on the other hand, attributes gravitation to torsion, but not through a 

geometrization: it acts as a force. In consequence, there are no geodesics in Teleparallel Gravity, only 

force equations quite analogous to the Lorentz force equation of electrodynamics. The reason for 

gravitation to present two equivalent descriptions lies in its most peculiar property: universality. Like 

the other fundamental interactions of Nature, gravitation can be described in terms of a gauge theory. 

In fact, Teleparallel Gravity is a gauge theory for the translation group. Universality of free fall, on the 

other hand, makes it possible a second, geometrized description, based on the equivalence principle, 

just General Relativity. As the sole universal interaction, it is the only one to allow also a geometrical 

interpretation, and hence two alternative descriptions. From this point of view, curvature and torsion 

are simply alternative ways of representing the same gravitational interaction.  

The next important step is to see what happens to the quantum potential Equation (21) in a 

relativistic version of Bohm’s theory in curved space-time. When we use the teleparallel model of 

gravity with forces in the flat space time, flat space with torsion can be enriched by the quantum 

phenomena that is represented without any forces by the Fisher information metric in the space of the 

particles’ positions (configuration space). To connect the Fisher information to Bohm’s theory we 

introduce new type of forces or gauge potential in Equation (12) for gauge translation in the 

configuration space. The new forces are not function of the space-time point but are function of all 

points of the space where the particles are located in the universe. The forces in the teleparallel model 

of gravity are similar to Lorenz forces, but the forces in the dependent observers entropies in Equation (12) 

are global forces that are defined by all particles together (entanglement). So the movement in this 

quantum gravity system is not a geodetic but we have a deviation for the deformation of the phase 

space due to the entropic distribution for any observer of the particles’ positions (entanglement). All 

the previous quantum gravity effects can be studied by taking under consideration the bohmian 

approach to Klein-Gordon equation developed by F. Shojai and A. Shojai in [26,27], which has the 

merit to provide a geometrodynamic interpretation of relativistic Bohm theory characterized by a 

significant unification of the quantum and gravitational behaviours of matter in a geometric picture. In 

F. Shojai’s and A. Shojai’s model, the quantum Hamilton-Jacobi equation which derives from the 

decomposition of the wave function in its polar form 







iS

exp  has the following form: 

QcmSS exp22 
  (28)

which is Poincarè invariant and has the correct non-relativistic limit and where the quantum potential 

is defined as: 
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 (29)

According to the view suggested in this chapter, on the basis of Equation (21), the space-temporal 

distribution of the ensemble of particles describing the individual physical system under consideration 

is assumed to generate a modification of the geometry, and thus a degree of chaos, of the background 

space linked with the functions W and thus with the quantum Entropy in Equation (3).  

This modification of the geometry of the parameter space defined by the functions W determines a 

quantum potential which, taking account of F. Shojai’s and A.Shojai’s model, produces a quantum 

mass given by equation: 

QmM exp22   (30)

namely:  


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jiji
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2

2
22 21
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1
exp  (31)

Moreover, F. Shojai and A. Shojai showed that, as regards Bohm’s version of Klein-Gordon 

equation, by changing the ordinary differentiating with the covariant derivative and by changing 

the Lorentz metric with the curved metric  inside Equations (28) and (29), it is possible to combine 

the Bohm quantum theory of motion and gravity and to interpret the quantum potential as the 

conformal degree of freedom of the space–time metric. In this picture, the quantum Hamilton-Jacobi 

equation of motion for a particle (of spin 0) in a curved background is the following: 

QcmSSg exp22 
  (32)

where:  




g
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cm
Q
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2
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2
2

22

2

1


 

(33)

is the quantum potential. By utilizing a fruitful observation of de Broglie [28], that the quantum theory 

of motion for relativistic spinless particles is very similar to the classical theory of motion in a 

conformally flat space-time in which the conformal factor is related to Bohm’s quantum potential, the 

quantum Hamilton-Jacobi Equation (32) can be written as: 

22
2

2

cmSSg
M

m
 

  (34)

From Equation (34) one can conclude that the quantum effects are equivalent to the change of the 
space-time metric from g  to:  

 
(35)

which is a conformal transformation. In this way Equation (34) can be written as:  
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22~~~ cmSSg  
  (36)

where  represents the covariant differentiation with respect to the metric .  

In F. Shojai’s and A. Shojai’s model, the important conclusion is thus that the presence of the 

quantum potential is equivalent to a curved space-time with its metric being given by Equation (35), 

i.e., we have obtained that there is a geometrization of the quantum aspects of matter. It seems that 

there is a dual aspect to the role of geometry in physics. The space-time geometry sometimes looks 

like what we call gravity and sometimes looks like what we understand as quantum behaviours.  

In other words, in F. Shojai’s and A. Shojai’s model, the effects of gravity on geometry and the 

quantum effects on the geometry of space-time are highly coupled, the geometric properties which are 

expressed by the quantum potential and which determine the behaviour of a particle of spin zero are 

linked with the curved space-time: the particles determine the curvature of space-time and at the same 

time the spacetime metric is linked with the quantum potential which influences the behaviour of the 

particles [29]. Now, in the approach suggested in this chapter based on the definition Equation (21) of 

the quantum potential as physical entity characterized by information lines linked with the functions W 

namely with the quantum entropy, one can interpret in a clear way why and in what sense the quantum 

potential is the conformal degree of freedom of the space-time metric, why and in what sense the 

effects of gravity on geometry and the quantum effects on the geometry of space-time are highly 

coupled: the key of explanation of these results lies just in the functions W, and thus in the quantum 

entropy, corresponding with the degree of chaos, with the modification of the geometry of the 

parameter space determined by the ensemble of particles associated with the wave function under 

consideration. The space-time which characterizes a relativistic curved space-time (in the presence of a 

particle of spin 0) has a conformal metric which is determined by the functions W (and thus is also 

linked with the quantum entropy) on the basis of equation: 

 
(37)

and the quantum Hamilton-Jacobi equation of motion Equation (36) in this background becomes: 

 (38)

The dual role of the geometry in physics expected by F. Shojai’s and A. Shojai’s model receives 

therefore a new suggestive reading: the real key of reading of the link between gravity and quantum 

behaviours lies just in the functions W, namely in the quantum entropy Equation (3). The effects of 

gravity on geometry and the quantum effects on the geometry of space-time are highly coupled 

because they are both determined by the background space described by the quantum entropy, and thus 

by the functions W. Moreover, in the context of an entropic approach of F.Shojai’s and A. Shojai’s 

model based on a quantum entropy given by Equation (22), it was demonstrated that Bohm’s quantum 

potential for a spinless particle in a curved relativistic space-time is:  
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(39)
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and that the conformal metric Equation (35) is [19]: 
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As a consequence, by equating Equations (37) and (40) one obtains: 
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which tells us that the functions W defining the number of the microstates of the spinless system is 

linked with the density of the ensemble of particles associated with the wave function of the system 

through equations: 
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On the basis of the picture proposed in this chapter, one can say that the quantum particles 

determine the curvature of space-time and at the same time the space-time metric is linked with the 

functions W indicating the informational lines of the motion of the particles. The functions W, the 

informational lines of the quantum potential, and thus the quantum entropy given by the superposition 

of different Boltzmann entropies, appear indeed as real intermediaries between gravitational and 

quantum effects of matter. The functions W, and thus the quantum entropy generates itself a curvature 

which may have a large influence on the classical contribution to the curvature of the space-time.  

5. Conclusions 

In this paper we have provided a new suggestive reading of quantum mechanics by starting from 

the superposition of different Boltzmann entropies one for any observer. In the first part of the article, 

we have seen that, while in classical thermodynamics entropy is defined independently from the 

observer, in quantum mechanics a system can be defined by its entropy whose value is conditioned by 

an observer. The collapse of the vector given by a superposition of different Boltzmann entropies into 

a specific entropy as a consequence of an interaction with an observer introduces a new reading of 

Rovelli’s relational interpretation of quantum mechanics. All this happens because the non-locality can 

be seen as “active information” inaccessible to the classical observer. In the second part of the article, 

given the relation between the number of the microstates W which are functions of the macrostates and 

given the entropies S as Cartesian coordinates, one can move from Euclidean coordinates of the 

entropies, in which the observers are independent, to a non Euclidean space of the parameters (average 

positions). In this background we compute covariant derivatives (Appendix A) in the parameter space 

and we can obtain by entropy the Bohm quantum potential and the quantum effects. So we can show 

that Bohm’s quantum potential is not consequence of the Schrödinger equation but is obtained by a 

non classical entropy of a many particles’ system. From non classical entropy space we can rebuilt the 
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Schrödinger equation. The approach suggested in this background leads to the idea that non classical 

entropy and Fisher information are the origin of Bohm’s quantum potential. This approach has also the 

merit that, in a relativistic curved space-time or teleparallel gravity, the informational quantum entropy 

appears as the real link between gravitational and quantum effects of matter, determining a high 

coupling between the effects of gravity on geometry and the information quantum effects of change of 

the phase space position of the particles. The informational lines associated with the quantum entropy 

introduce a research line which is still widely unexplored, but very promising for the problem of 

quantum gravity.  

Appendix A 

A.1. Tensor, Covariant and Contravariant Derivatives and Morphogenetic System 

In this chapter we rewrite by the morphogenetic theory the classical tensor calculus with possible 

extensions. We will show in short that classical tensor calculus is part of a more general theory 

denoted morphogenetic theory. The aim of this chapter is to prepare the mathematical instruments to 

create the relation between Fisher information, Bohm’s quantum potential and Boltzmann entropy with 

a possible new interpretation of the field theory [30–32]. 

Given the transformation: 

 (44)

we have: 
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For the Jacobian matrix: 
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we have: 
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In the ordinary tensor calculus we have the tensor relations: 
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and: 
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where: 
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where y are the Cartesian coordinates and x are the general coordinates. Moreover, we have: 

 
(52)

where the metric tensor a is calculated by the Jacobian matrix. Now we can write the previous 

expressions in a more general way: 

 (53)
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 (54)

in the morphogenetic system because J is a rectangular matrix we have: 

 (55)

A.2. Commutators in Morphogenetic System and Tensor Derivative 

Given the differential operator D and the vector V whose covariant components are: 

TV = J y
k

 (56)

We have: 

 
(57)

For example, in the classical tensor calculus we have: 
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These are the Christoffel elements for covariant and contravariant derivatives. We can repeat the same 

process for the contravariant components of the vector V.  
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