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Abstract: In classical thermodynamic, maximum power obtained from system  

(or minimum power supplied to system) defined as availability (exergy), but availability 

term is only used for reversible systems. In reality, there is no reversible system,  

all systems are irreversible, because reversible cycles doesn’t include constrains like time 

or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits 

of the all basic thermodynamic cycles and to provide finite-time exergy models for 

irreversible cycles and to obtain the maximum (or minimum) available power for 

irreversible (finite-time exergy) cycles. In this study, available power optimization and 

performance limits were defined all basic irreversible thermodynamic cycles, by using first 

and second law of thermodynamic. Finally, these results were evaluated in terms of cycles’ 

first and second law efficiency, COP, power output (or input) and exergy destruction. 

Keywords: available work; finite-time thermodynamic; finite-time exergy; irreversibility; 

refrigeration; heat pump; power cycles 
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Nomenclature 

.

A  available work for the actual cycles (kW) 

c  specific heat (kJ/kgK) 
COP  coefficient of performance 
ExD  exergy destruction (kW) 
I  internal irreversibility parameter 
k  ratio of specific heats 
K  sum of specific heats (kJ/kgK) 
m mass flow (kg/s) 
n  polytrophic coefficient 
r  cut-off ratio 
R  ideal gas constant (kJ/kgK) 
Q  heat (kW) 

T  temperature(K) 
W  power (kW) 
x  dimensionless compression ratio or dimensionless pressure ratio 

parameter 
Subscripts 
B  Brayton 
C  condenser  
CI  compression injection engine 
cr  critical point 
e  Ericsson engine 
S  Stirling 
h  heat pump 
H  high 
hr  heat pump or refrigeration 
L  low 
r  refrigerator 
R  Rankine 
S  Stirling 
SEr  Stirling or Ericsson engine 
SI  spark injection engine 
op  optimum point 
Greek letters 
  ratio of the highest and the lowest temperature of the cycle 
  compression ratio 
  heat conductance (kW/K) 
  isentropic coefficient 
  efficiency  
  pressure ratio 
  a coefficient for Ericsson and Stirling engines 
σ entropy generation (kW/K) 
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1. Introduction 

In classical thermodynamics, availability (or exergy) is used for defining maximum power that can 

be obtained from the system. However, classical thermodynamics doesn’t consider constraints causing 

irreversibility, it uses for reversible systems only. Unlike reversible processes, actual processes 

generate entropy. Entropy generation are resulted from external irreversibilities, which are caused by 

the heat transfer through finite temperature difference, and internal irreversibilities, which are caused 

by friction etc. For improving more efficient and providing environmentally less harmless 

thermodynamic cycles, one must effort to decrease entropy generation while maximizing work output. 

Finite-time thermodynamic can enable us to more realistic thermal cycles [1–3]. In order to obtain the 

most efficient thermodynamic cycles finite-time exergy approach must be evaluate for the engineers 

and scientists. In this study, methods were described to find out optimum (or critical) point for all 

cycles. These methods include to determine maximum available work output for the power generation 

cycles and minimum available work input for the heat pump and refrigeration cycles. In the literature, 

there are many theoretical researches about finite time exergy, but no for the application of the  

thermal cycles [4–27]. 

2. Thermodynamic Analysis 

In this section, generalized availability function at Equation (1) [6] was applied to all basic thermal 

cycles separating as two parts:  

(i) Power cycles. 

(ii) Heat pump and refrigeration cycles.  

. . .

1 o
H o

H

T
A Q T

T


 
   

 
 (1) 

Equation (1) submitted by Sienutcyz and Spakovsky [6] consists of available work output  

(exergy output) and entropy production (exergy destruction). This Equation could be applied for 

thermodynamic cycles. Optimization parameters selected as non-dimensional compression parameter 

for SI, CI, Stirling cycles and non-dimensional pressure parameter for irreversible Brayton and 

Ericsson cycles. Compression and pressure ratios are most important design parameters for gas power 

cycles. Because these parameters affects directly of system’s temperatures and pressures among the 

cycle process. Evaporator and condenser temperatures are main parameters for Rankine, heat pump 

and refrigerator cycles. Design parameters were investigated detail at following sections. 

Assumptions made for cycles are as follows:  

 Assumptions are listed for the cycles. 

 For irreversible Rankine, heat pump and refrigeration cycles. 

 All processes are irreversible. 

 Systems follow a continuous pattern. 

 Heat exchangers’ dimensions are limited and convection coefficients are constant. 
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For irreversible SI, CI, Stirling—Ericsson and Brayton cycles:  

 All processes are irreversible. 

 Specific heats are constant and average specific heats are used. 

 Piston friction is neglected. 

 Powering fluid is air, which is the ideal gas. 

 Polytrophic coefficients are constant and an average polytrophic coefficient is identified for  

each cycle. 

Internal irreversibility parameter is more than one ( I  > 1) for all cycles. Environmental  

temperature (To) is accepted as 298.15 K for all cycles. Other assessment criteria using this study 

except for finite-time exergy output (or input) can be defined as following:  

Fist law efficiency:  
.

.1 L

H

Q

Q
    (2) 

Exergy destruction:  
.

oExD T   (3)

Second law efficiency:  

.
1

1 o
H

H

ExD

T
Q

T

  
 
 

 

 
(4) 

2.1. Power Generation Cycles 

In this section, thermodynamic cycles that produce power will be examined in detail. Effects of 

obtained optimization values were presented in the results. 

2.1.1. Thermodynamic Analysis of Irreversible Rankine Cycle 

Recently, Rankine cycle has gained importance thanks to an increase in the search for new energy 

technologies and more efficient systems, because this cycle can generate power with organic powering 

fluids that enable the use of energy sources at low temperatures. In addition to this, facilities which 

power with a conventional Rankine cycle that uses coal as fuel and bottom cycle of the cogeneration 

systems are still widely used. Emissions that are sent out by these facilities to the environment because 

of the global warming and entropy production must be reduced to a minimum for the more efficient 

cycles. In Figure 1, the T-s diagram of an irreversible Rankine cycle is seen. 
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Figure 1. T-s (temperature-entropy) diagram of irreversible Rankine cycle  

(TH = high temperature, TL = low temperature). 

 

From the first law of thermodynamics:  

. . .

,, , net RH R L RQ Q W   (5) 

where, 
.

,net RW  (power output), 
.

,H RQ  (added heat) and 
.

,L RQ  (rejected heat). Added and rejected heat 

can be defined as:  

 
.

, , ,, E R H R E RH RQ T T   and  
.

, , ,, C R C R L RL RQ T T   (6) 

where,   (the heat conductance) and TH (the combustion temperature).  

From the second law of thermodynamics:  

. .

, ,

, ,

0H R L R

E R C R

Q Q

T T
   or 

. .
.

, ,

, ,

H R L R
R

E R C R

Q Q
I

T T
  (7) 

where, RI  ( internal irreversibility parameter for Rankine cycle). Entropy generation is:  

. .
.

, ,

, ,

L R H R
R

L R H R

Q Q

T T


 
  
 
 

 (8) 

.

RA  (available work output of the Rankine cycle) can be obtained from the Equations (1) and (5)–(8):  

  .
, , , , , ,

, ,

E R H R E R E R L R R C R o

R
E R L R

T T T T I T T
A

T T

  
  (9) 

As seen at Figure 5 Rankine cycle has an optimum point maximizing available work output.  

The derivative of the Rankine cycle’s available work output (finite time-exergy) function according to 

the evaporator temperature is equalized to zero 

.

,

0R

E R

A

T

  
 
 

 and optimum temperatures can be seen as 

follow:  
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, ,

, ,

,
E R op

R C R H R o

L R

T
I T T T

T
  (10) 

Unlike evaporator temperature, as seen Figure 7, condenser temperature has linear effects on the 

available work output and has not an optimum point. However, linear change Equation of the available 

work output with condenser temperature can be defined with regression:  

,400 0.7288R C RA T   (R2=1) (11) 

where, R2 is the coefficient of determination for the regression. 

2.1.2. Thermodynamic Analysis of Irreversible Spark Injection (SI) and Compression Injection (CI) Cycles 

Internal combustion engines are the most widely used power cycles. When the emissions released 

by these cycles are taken into consideration, they have serious negative effects on the environment. 

Although it is estimated that fossil fuels will deplete soon, it can be said that internal combustible 

engines could be used in power production, by considering the studies that are carried out on fuels 

which can be produced in a laboratory. If we take into account the harmful effects on the environment 

and relatively low efficiencies, the importance of designing internal combustible engines in an 

environmental friendly way becomes apparent. Temperatures and pressures in the process of SI and CI 

engines are the function of compression ratio. That’s why, compression ratio selected as optimization 

parameter. In this section, SI and CI engines were optimized by taking finite-time exergy into 

consideration. Figure 2 show the T-s diagram of analyzed engines. 

Figure 2. T-s (temperature-entropy) diagram of irreversible SI, CI and Brayton cycles  

(TH = high temperature, TL = low temperature) [27,28]. 

 

2.1.2.1. Irreversible SI Engine 

From the first law of thermodynamics:  

. . .

,, , net SIH SI L SIQ Q W   (12) 

where, 
.

,net SIW  (power output), 
.

,H SIQ  (added heat) and 
.

,L SIQ  (rejected heat). Added and rejected heat 

can be defined as:  
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   
. .

. .

3, 2, 4, 1,, ,,
1 1
SI SISI SI SI

SI SI SI SIH SI L SI
SI SI

m K k m K
Q T T Q T T

k k
   

 
 (13) 

for SI engine:  

1, 4,

2, 3,

SI SI
SI

SI SI

V V

V V
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1, 4,

SI SI

SI SI
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x
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, , ,SIn SI
SI SI SI SI SI SI
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T
x T T x

T
      

3,
4,

SI
SI

SI

T
T

x
 , , ,2 3 , ,4 1SI v SI v SIK c c   , ,2 3,

,4 1,

v SI
SI

v SI

c
k

c




  
(14) 

where, ε (compression ratio), x (dimensionless compression ratio parameter), α (ratio of the highest 

temperature to lowest temperature), K (sum of the specific heats) and k (the ratio of specific heats). 

From the second law of thermodynamics:  

. .

, ,

3, 1,

0H SI L SI

SI SI

Q Q

T T
   or 

. .

, ,

3, 1,

H SI L SI
SI

SI SI

Q Q
I

T T
  (15) 

where, SII  (internal irreversibility parameter for SI engine). SII  and 
.

,H SIQ  can be obtained from the 

Equations (12)–(15),  

SI
SI

SI SI

x
I

k
  

(16) 

 
.
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,
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1

SI SI SI SI SI
H SI
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m K T x
Q
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 


 
 
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(17) 

Entropy generation is:  

. .
.

, ,

1, 3,

L SI H SI
SI

SI SI

Q Q

T T


 
  
 
 

 (18) 

Using Equation (1) and (12)–(18) 
.

SIA  (available work for the SI engine) is obtained as:  

  
 

.

.
1,

1

SI SI SI SI SI SI SI o

SI
SI SI

m K x T x k T
A

k x

  



 (19) 

Here, in order to detect optimum compression rate, a derivative of the SI engine according to the 

compression rate of its finite-time exergy function is equalized to zero 

.

0SI

SI

A

x

  
 
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 and corresponding 

value is:  

,
1,

SI o
SI op

SI SI

T
x

T k


  (20) 
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2.1.2.2. Irreversible CI Engine 

From the first law of thermodynamics:  

. . .

,, , net CIH CI L CIQ Q W   (21) 

where, 
.

,net CIW  ( power output), 
.

,H CIQ  (added heat) and 
.

,L CIQ  (rejected heat). Added and rejected heat 

can be defined as:  

   
. .

. .

3, 2, 4, 1,, ,,
1 1
CI CICI CI CI

CI CI CI CIH CI L CI
CI CI

m K k m K
Q T T Q T T

k k
   

 
 (22) 

For CI engine:  

1,

2,

CI
CI

CI

V

V
  , 2,

1,

CI

CI
CI

T
x

T
 , 4,

3,

CI CI

CI CI

T w

T x
    1CIn

CI CIx   , 3,

1,

CI
CI

CI

T

T
 , 2, 1,CI CI CIT T x , 3,

4,
CI CI

CI
CI

T w
T

x
 , 

1CIn
CIw r   , ,2 3, ,4 1,CI p CI v CIK c c   , ,2 3,

,4 1,

p CI
CI

v CI

c
k

c




  
(23) 

where, ε (compression ratio), x (dimensionless compression ratio parameter), r (cut-off ratio),  

w (dimensionless cut-off ratio parameter) α (ratio of the highest temperature to lowest temperature),  

K (sum of the specific heats) and k (ratio of specific heats). From the second law of thermodynamics:  

. .

, ,

3, 1,

0H CI L CI

CI CI

Q Q

T T
   or 

. .

, ,

3, 1,

H CI L CI
CI

CI CI

Q Q
I

T T
  (24) 

where, CII  (internal irreversibility parameter for CI engine). CII  and 
.

,H CIQ  can be obtained from the 

Equations (21)–(24):  

 
 

CI CI CI CI
CI

CI CI CI CI

w x
I

k x x

 






 (25) 

 
.

.
1,

,
1

1

CI CI CI CI CI
H CI

CI

m K T x
Q

k

 


 
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 

 
(26) 

Entropy generation is:  

. .
.

, ,

1, 3,

L CI H CI
CI

CI CI

Q Q

T T


 
  
 
 

 (27) 

Using Equation (1) and (21)–(27) 
.

CIA  (available work output) is obtained as:  

    
 

.

. 1, 1,

1

CI CI CI o CI CI CI CI CI CI CI CI o

CI
CI CI

m K x T k T x k T x w T
A

k x

  



 (28) 
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Here, in order to detect the optimum compression rate, a derivative of CI engine according to the 

compression rate of its finite-time exergy function is equalized to zero 

.

0CI

CI

A

x

  
 
 

 and corresponding 

value is:  

,
1

CI CI o
CI op

CI

w T
x

k T


  (29)

2.1.3. Thermodynamic Analysis of Irreversible Brayton Cycles 

Since the Brayton cycle generates an ideal model for continuous combustion gas turbines, it has an 

importance in thermodynamic optimization studies. There are various studies examining parameters 

such as maximum power, maximum power density, and thermal efficiency of the Brayton cycle under 

finite time, finite area and finite rate restrictions and which determine its performance limits [29–55]. 

Temperatures and pressures in the process of Brayton cycle are the function of pressure ratio. That’s 

why, pressure ratio selected as optimization parameter. Figure 2 shows the T-s diagram of the 

irreversible Brayton cycle. From the first law of thermodynamics:  

. . .

,, , net BH B L BQ Q W   (30) 

Where, 
.

,net BW  (power output), 
.

,H BQ  (added heat) and 
.

,L BQ  (rejected heat). Added and rejected heat 

can be defined as:  

   
. .

. .

3, 2, 4, 1,, ,,
1 1
B BB B B

B B B BH B L CI
B B

m K k m K
Q T T Q T T

k k
   

 
 (31) 

for Brayton cycles:  

1,B oT T , 2, 3,
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B B
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B B
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( 1)B
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n
B Bx 
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 , 3,

1,

B
B

B

T

T
 , 2, 1,B B BT T x , 3,

4,
B

B
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T
T

x
 , 

,2 3, 2,4 1,B p B p BK c c   , ,2 3,

,4 1,

p B
B

p B

c
k

c




  
(32) 

where, ν (pressure ratio), x (dimensionless pressure ratio parameter), α (ratio of the highest temperature 

to lowest temperature), K (sum of the specific heats) and k (ratio of specific heats). From the second 

law of thermodynamics:  

. .

, ,

3, 1,

0H B L B

B B

Q Q

T T
   or 

. .

, ,

3, 1,

H B L B
B

CI B

Q Q
I

T T
  (33) 

where, BI  (internal irreversibility parameter for Brayton cycle). BI  and 
.

,H BQ  can be obtained from the 

Equations (30)–(33),  
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(35) 

Entropy generation is:  

. .
.

, ,

1, 3,

L B H B
B

B B

Q Q

T T


 
  
 
 

 (36) 

Investigating Equations for Baryton cycle available work output is equal to power output at this cycle. 

Using Equation (1) and (30)–(36) 
.

BA  (available work output for the Brayton cycle) is obtained as:  

  
 

.
.

1, 1

1

B B B B B B B
B

B B

m K T x k x
A

k x

  



 (37) 

Here, in order to detect optimum pressure rate, a derivative of the Brayton cycle according to the 

compression rate of its finite-time exergy function is equalized to zero 

.

0B

B

A

x

  
 
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 and corresponding 

value is:  

,
B

B op
B

x
k


  (38)

2.1.4. Thermodynamic Analysis of Irreversible Stirling and Ericsson Cycles 

Ericsson and Stirling engines have attracted the attention of several generations of engineers and 

physicists due to their theoretical potential to provide high conversion efficiency that approached those 

of the Carnot cycle. However, use of these engines did not prove to be successful due to relatively poor 

material technologies available at that time. As the world community has become much more 

environmentally conscious, further attention in these engines has been again received because these 

engines are inherently clean and thermally more efficient. Moreover, as a result of advances in material 

technology, these engines are currently being considered for variety of applications due to their many 

advantages like low noise, less pollution and their flexibility as an external combustion engine to 

utilize a variety of energy sources or fuels. These engines are also under research and development for 

their use as heat pumps, replacing systems that are not ecological friendly and environmentally 

acceptable. Nowadays, the popularity of these engines is growing rapidly due to their many advantages 

like being more efficient, less pollution levels and their flexibility as external combustion engines to 

utilize different energy sources such as solar energy. The central receiver and parabolic dish  

solar systems based Stirling/Ericsson heat engine is more efficient and suitable for both the  

terrestrial [56,57] and non-terrestrial [58,59] solar installations. In the literature, Erbay and Yavuz, 
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investigated irreversible Stirling and Ericsson engines [60–63]. In this study their model was adopted 

for the analyzing of the Stirling-Ericsson engines. Temperatures and pressures in the process of the 

Stirling and Ericsson engines are the function of compression and pressure ratios. That’s why, 

compression and pressure ratios selected as optimization parameters. In Figure 3, it can be seen that 

analyzed Stirling-Ericsson engines T-s Diagram. 

Figure 3. T-s (temperature-entropy) diagram of irreversible Stirling-Ericsson cycle  

(TH = high temperature, TL = low temperature) [60–63]. 

 

From the first law of thermodynamics:  

. . .

,, , net SEH SE L SEQ Q W   (39) 

where, 
.

,net SEW  (power output), 
.

,H SEQ  (added heat) and 
.

,L SEQ  (rejected heat). Added and rejected heat 

can be defined as:  

 
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(41) 

where, ε (compression ratio), ν (pressure ratio), x (dimensionless compression ratio parameter for 

Stirling engine and dimensionless pressure ratio for Ericsson engine), α (ratio of the highest 

temperature to lowest temperature), θ (dimensionless coefficient for Ericsson and Stirling engines),  
n (polytrophic coefficient), λ (isentropic coefficient), HT  (high temperature) and LT  (low temperature). 

From the second law of thermodynamics:  

. .

, ,

4 2

0H SE L SEQ Q

T T
   or 

. .

, ,

4 2

H SE L SE
SE

Q Q
I

T T
  (42) 
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where, SErI  (internal irreversibility parameter for Stirling and Ericsson engines). SEI  can be obtained 

from the Equations (39)–(42):  
1

SE
SE

I
x

  (43) 

Entropy generation is:  

. .
.

, ,

, ,

L SE H SE
SE

C SE E SE

Q Q

T T


 
  
 
 

 (44) 

Using Equations (1) and (39)–(44) 
.

SEA  (available work output for the Stirling and Ericsson engines) is 

obtained as:  

  . .
,

2,
,

1o SE L SE SE SE
SE SE SE SE

L SE SE

T T x x
A m RT

T x




  
   

 
 (45) 

Here, in order to detect an optimum pressure rate for the Ericsson cycle or an optimum compression 

rate for the Stirling cycle, a derivative of cycle of Stirling-Ericsson cycles according to the 

compression of their finite-time exergy function is equalized to zero 

.

0SE

SE

A

x

  
 
 

 and corresponding 

value is:  

,
,

o
SE op

SE L SE

T
x

T
  (46)

2.2. Heat Pump and Refrigeration Cycles 

Heat pump and refrigeration cycles operate with the same cycle requiring power. Cycles which are 

more efficient and less harmful to the environment must be designed by reducing the power obtained 

from outside resource and reducing entropy generation. In this section, limits of these cycles were 

determined by using finite-time exergy. Figure 4 shows the T-s diagram of irreversible heat pump and 

refrigerator cycles. 

Figure 4. T-s (temperature-entropy) diagram of irreversible heat pump and refrigerators 

cycles (TH = high temperature, TL = low temperature). 
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2.2.1. Thermodynamic Analysis of General Irreversible Heat Pump and Irreversible Refrigerator Systems 

From the first law of thermodynamics:  

. . .

,, , net hrH hr L hrQ Q W   (47) 

where, 
.

,net hrW  (power input), 
.

,H hrQ  (added heat) and 
.

,L hrQ  (rejected heat). Rejected and added heat 

can be defined as:  

 
.

, ,, hr H hr E hrH hrQ T T   and  
.

, ,, hr C hr L hrL hrQ T T   (48) 

where,   (heat conductance). From the second law of thermodynamics:  

. .

, ,

, ,

0L hr H hr

E hr C hr

Q Q

T T
   or 

. .

, ,
,

, ,

H hr L hr
H hr

C hr E hr

Q Q
I

T T
  (49) 

where, hrI  (internal irreversibility parameter for heat pump or refrigerator cycle). Entropy generation is:  

. .
.

, ,

, ,

H hr L hr
hr

H hr L hr

Q Q

T T


 
  
 
 

 (50) 

Using Equation (1) and Equations (47)–(50) 
.

hrA  (available work input for the heat pump and 

refrigeration cycles) is obtained as:  

    . , , , , , , , , ,

, , ,

2E hr H hr L hr E hr hr C hr L hr H hr o H hr o E hr

hr
H hr L hr E hr

T T T I T T T T T T T
A

T T T

   
  (51) 

As seen at Figures 19 and 23, heat pump and refrigeration cycles haven’t an optimum point 

minimizing available power input, but there is a critical point maximizing power output input. The 

derivative of the heat pump—refrigerator cycle according to evaporator and temperature is equalized 

to zero 

.

,

0hr

E hr

A

T

  
 
 

 and it can be provided critical temperature as:  

 , ,
2
,

, ,
,

2C hr o H hrhr L hr
E cr hr

oH hr

I T T T T

T T
T


  (52) 

Unlike evaporator temperature, as seen Figures 19 and 23, condenser temperature has linear effects on 

the available power input and has not an optimum point. However, Equation of linear change of the 

available work input with condenser temperature can be defined with regression:  

,10.281 0.0276hr C hrA T   (R2 = 1) (53) 

where, R2 is the coefficient of determination for the regression. 
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3. Results and Numerical Examples 

In this section, optimum points for all basic thermodynamic cycles were determined and they were 

discussed in detail for each cycle separately. Numerical examples were selected in a way that would be close 

to the values met in practice and by using references [29–55] for irreversible Brayton cycle, [56–63] for 

irreversible Stirling and Ericsson cycles, [64–88] foe irreversible SI and CI cycles, [89–103] for 

irreversible refrigeration and heat pump cycles and [104] for irreversible Rankine cycle.  

3.1. Irreversible Rankine Cycle 

TH,R = 1000 K, TL,R = 300 K, ,E R  = 1 kW/K and, ,C R  = 1 kW/K are set. Figure 5 shows the 

variation of power output (
.

W ), available work output (
.

A ), and exergy destruction (ExD), of the 

Rankine cycle with regard to evaporator temperature. Evaporator temperature for the Rankine cycle 

was detected as 618.568 K. It is seen that with the increase of evaporator temperature, available work 

output and power output rise up to the optimum evaporator temperature and then they decrease 

logarithmically. In addition to that, exergy destruction decrease while evaporator temperature increase. 

In Figure 6, it can be seen that thermal efficiency (η) and second law efficiency (φ) increase with 

evaporator temperature. It can be seen in Figure 7 that available work output and power output 

decrease with condenser temperature linearly, while exergy destruction increases. In Equation (11), the 

linear function of available work output with regard to the condenser temperature was shown.  

In Figure 8, thermal efficiency, second law efficiency decrease with condenser temperature linearly. 

Figure 5. Effect of TE (evaporator temperature) on the A (available work output for 

irreversible Rankine cycle), W (power output) and ExD (exergy destruction) for 

irreversible Rankine cycle (TC,R =350 K, IR = 1.1). 
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Figure 6. Effect of TE (evaporator temperature) on the η (first law efficiency),  
φ (second law efficiency) for irreversible Rankine cycle (TC,R = 350 K, IR = 1.1).  

 

Figure 7. Effect of TC (condenser temperature) on the A (available work output for 

irreversible Rankine cycle), W (power output) and ExD (exergy destruction) for 

irreversible Rankine cycle (TE,R = 600 K, IR = 1.1). 

 

Figure 8. Effect of TC (condenser temperature) on the η (first law efficiency),  

φ (second law efficiency) for irreversible Rankine cycle (TE,R = 600 K, IR = 1.1). 
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3.2. Irreversible SI Engine 

For numerical calculations, the powering parameters of the SI engine are as follows: T1,SI = 350 K, 

αSI = 4, 
.

SIm  = 0.5 kg/s, kCI = 1.02, KCI = 2.5 kJ/kgK, nSI = 1.37. Figures 9 and 10 show the variation of 

power output (
.

W ), thermal efficiency (η), second law (φ), available work output (
.

A ), exergy 

destruction and the internal irreversibility parameter (I) of the SI engine with regard to compression 

rate. The optimum compression rate for the SI engine was detected as 10.555. It is seen that with the 

increase of the compression rate, available work output and power output rise up to the optimum 

compression rate, then start to decrease. Thermal efficiency and second law efficiency increase, while, 

exergy destruction and the internal irreversibility parameter decrease. The decrease of exergy 

destruction is directly proportional since entropy production is the result of irreversibility. 

Figure 9. Effect of ε (compression ratio) on the A (available work output for irreversible 

SI engine), W (power output) and ExD (exergy destruction) for irreversible SI engine. 
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Figure 10. Effect of ε (compression ratio) on the η (first law efficiency), φ (second law 

efficiency) and I (internal irreversibility parameter) for irreversible SI engine. 
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3.3. Irreversible CI Engines 

For numerical calculations, the powering parameters of the CI engine are as follows: T1,CI = 350 K, 

αSI = 6, 
.

CIm  = 0.5 kg/s, kCI = 1.1, KCI = 3 kJ/kgK, wCI = 1.23, nCI = 1.37. Figures 11 and 12 show the 

variation of power output (
.

W ), thermal efficiency (η), second law efficiency (φ), available work 

output (
.

A ), exergy destruction and the internal irreversibility parameter (I) of the CI engine with 

regard to compression rate. The optimum compression rate for the CI engine was detected as 21.386.  

It is seen that with the increase of the compression rate, available work output and power output rise up 

to the optimum compression rate, then start to decrease. Thermal efficiency and second law efficiency 

increase, while, exergy destruction and the internal irreversibility parameter decrease. The decrease of 

exergy destruction is directly proportional since entropy production is the result of irreversibility. 

Figure 11. Effect of ε (compression ratio) on the A (available work output for irreversible 

CI engine), W (power output) and ExD (exergy destruction) for irreversible CI engine. 
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Figure 12. Effect of ε (compression ratio) on the η (first law efficiency), φ (second law 

efficiency) and I (internal irreversibility parameter) for irreversible CI engine. 

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

0.6

2

3

4

5

6

7

 
 
 I

I (Internal Irreversibility Param
eter)

 
(S

ec
on

d 
L

aw
 E

ff
ic

ie
nc

y)

F

ir
st

 L
aw

 E
ff

ic
ie

nc
y)

 (Compression Ratio)  
  



Entropy 2013, 15 3236 

 

 

3.4. Irreversible Brayton Cycles 

For numerical calculations, the powering parameters of the Brayton cycle are as follows:  

T1,B = 300 K, αB = 3.5, 
.

Bm  = 0.5 kg/s, kCI = 1.1, KCI = 3 kJ/kgK, nB = 1.37. Figures 13 and 14 show the 

variation of power output (
.

W ), thermal efficiency (η), second law efficiency (φ), available work 

output (
.

A ), exergy destruction and the internal irreversibility parameter (I) of the Brayton cycle with 

regard to pressure rate. The optimum compression rate for the Brayton cycle was detected as 8.659. It 

is seen that with the increase of the compression rate, available work output and power output rise up 

to the optimum compression rate, then to decrease. Thermal efficiency and second law efficiency 

increases, while, exergy destruction and the internal irreversibility parameter decrease. The decrease of 

exergy destruction is directly proportional since entropy production is the result of irreversibility. 

Figure 13. Effect of ν (pressure ratio) on the A (available work output for irreversible 

Brayton cyle), W (power output) and ExD (exergy destruction) for irreversible  

Brayton engine.  
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Figure 14. Effect of ν (pressure ratio) on the η (first law efficiency), φ (second law 

efficiency) and I (internal irreversibility parameter) for irreversible Brayton cycle. 
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3.5. Irreversible Stirling and Ericsson Engines 

For numerical calculations, the powering parameters of the Stirling—Ericsson cycle are as follows:  

T1,SE = 350 K, αSE = 3, 
.

Sm  = 0.5 kg/s,   = 5.34, R = 0.287 kJ/kgK, TH,SE = 1000 K, TL,SE = 300 K. 

Figures 15–18 show the variation of power output (
.

W ), thermal efficiency (η), second law efficiency (φ), 

available work output (
.

A ), exergy destruction and the internal irreversibility parameter (I) of Stirling-

Ericsson cycle with regard to compression rate. The optimum compression and pressure rates of the 

Stirling-Ericsson cycle were detected as 3.629. It is seen that with the increase of pressure and 

compression rates, available work output and power output to the optimum compression rate and then 

start to decrease. In addition to that, exergy destruction decrease while evaporator compression or 

pressure ratio. It can be seen that thermal efficiency (η) and second law efficiency (φ) decrease with 

compression or pressure ratio. On the contrary, internal irreversibility parameter rises up with 

compression or pressure ratio. Reason of decreasing at thermal efficiency, second law efficiency and 

increasing at the exergy destruction is to rise of internal irreversibility. Because, increasing at the 

internal irreversibility causes the entropy generation. 

Figure 15. Effect of ε (compression ratio) on the A (available work output for irreversible 

Stirling engine), W (power output) and ExD (exergy destruction) for irreversible  

Stirling engine. 

 

Figure 16. Effect of ε (compression ratio) on the η (first law efficiency), φ (second law 

efficiency) and I (internal irreversibility parameter) for irreversible Stirling engine. 
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Figure 17. Effect of ν (pressure ratio) on the A (available work output for irreversible 

Ericsson engine), W (power output) and ExD (exergy destruction) for irreversible  

Ericsson engine. 

 

Figure 18. Effect of ν (pressure ratio) on the η (first law efficiency), φ (second law 

efficiency) and I (internal irreversibility parameter) irreversible Ericsson engine. 
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3.6. Irreversible Heat Pump and Refrigeration Cycles  

For numerical calculations, the powering parameters of the heat pump and refrigeration cycle are as 
follows: TH,hr = 300 K, TL,hr = 290 K, ,E hr  = 1 kW/K and, ,C hr  = 1 kW/K. Figure 19 show the 

variation of power input (
.

W ), Available power input (
.

A ) and exergy destruction of heat pump cycle 

with regard to condenser temperature. It can be seen in Figures 19 that available power input decreases 

with condenser temperature linearly. Same graphic shows exergy destruction, power input heating load 

of the heat pump cycle increased. In Figure 20, coefficient of performance increase linearly, while 

second law efficiency decrease with condenser temperature logarithmically. In Figure 21 show the 

variation of power input ( ), Available power input ( ) and exergy destruction of heat pump with 

regard to evaporator temperature. With the increase in evaporator temperature exergy destruction, 

power input, heat load in the heat pump cycle decreasing logarithmically. Available work input 

increases until critical temperature condenser temperature and starts to decrease after that value.  

It can be seen that available work input has negative values for the heat pump cycle until 279 K. 

Because, exergy destruction is bigger than exergy input until this value. Assuming condenser 

temperature as 370 K, the optimum condenser temperature for the heat pump was detected as 284.234 
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K. In Figure 22, it can be seen that coefficient of performance (COP) increases, while second law 

efficiency (φ) decreases with evaporator temperature for heat pump. Figure 23 shows that available 

power input decreases with condenser temperature linearly for refrigeration cycle and exergy 

destruction, power input of the refrigeration cycle increased, while cooling load is constant. In Figure 24, 

it can be seen that coefficient of performance increase linearly, while second law efficiency decrease 

with condenser temperature logarithmically for refrigeration cycle. In Figure 25, with the increase in 

evaporator temperature exergy destruction, power input, cooling load in the refrigeration cycle 

decreasing logarithmically. Available work input increases until optimum temperature condenser 

temperature and starts to decrease after that value. It can be seen that available work input has negative 

values for the both cycle until 279 K. Because, exergy destruction is bigger than exergy input until this 

value. Assuming condenser temperature as 370 K, the optimum condenser temperature for the 

refrigerator was detected as 284.234 K. Finally in Figure 26, it can be seen that coefficient of 

performance (COP) increases, while second law efficiency (φ) decreases with evaporator temperature 

for refrigerator.  

Figure 19. Effect of TC (condenser temperature) on the QH (heating load), W (power input), 

A (available power input for irreversible heat pump) and ExD (exergy destruction) for 

irreversible heat pump (TE,hr = 280 K, Ihr = 1.1). 
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Figure 20. Effect of TC (condenser temperature) on the COP (coefficient of performance), 

φ (second law efficiency) for irreversible heat pump (TE,hr = 280 K, Ihr = 1.1).  
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Figure 21. Effect of TE (evaporator temperature) on the QH (heating load),  

W (power input), A (available power input for irreversible heat pump) and  

ExD (exergy destruction) for irreversible heat pump (TC,hr = 370 K, Ihr = 1.1).  
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Figure 22. Effect of TE (evaporator temperature) on the COP (coefficient of performance), 

φ (second law efficiency) for irreversible heat pump (TC,hr = 370 K, Ihr = 1.1).  
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Figure 23. Effect of TC (condenser temperature) on the QL (cooling load),  

W (power input), A (available power input for irreversible refrigerator) and  

ExD (exergy destruction) for irreversible refrigerator (TE,hr = 280 K, Ihr = 1.1). 
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Figure 24. Effect of TC (condenser temperature) on the COP (coefficient of performance), 

φ (second law efficiency) for irreversible refrigerator (TE,hr = 280 K, Ihr = 1.1).  
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Figure 25. Effect of TE (evaporator temperature) on the QL (cooling load), W (power input), 

A (available power input for irreversible refrigerator) and ExD (exergy destruction) for 

irreversible refrigerator for irreversible refrigerator (TC,hr = 370 K, Ihr = 1.1). 
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Figure 26. Effect of TE (evaporator temperature) on the COP (coefficient of performance), 

φ (second law efficiency) for irreversible refrigerator (TC,hr = 370 K, Ihr = 1.1)  
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4. Conclusions 

In this study, available work output or input optimization was made for all basic thermodynamic 

irreversible cycles and the results were discussed. All cycles were evaluated by taking exergy 

destruction, first and second law efficiencies, COP, power output or power input and internal 

irreversibility parameters into account. 

Power generation cycles: 

 For Rankine, Stirling and Ericsson cycles, which are external combustion engines, available 

work output and power output has the very close values. On the contrary, difference of these 

values is much higher at SI, CI and Brayton cycles. 

 While available work output is maximum, power output is maximum too for the all power 

generation cycles. 

 When optimization parameters are increased, first and second law efficiencies decrease and exergy 

destruction internal irreversibility parameter increase for Rankine, Stirling and Ericsson cycles. 

 When optimization parameters are increased, first and second law efficiencies increase and 

exergy destruction internal irreversibility parameter decrease for SI, CI and Brayton cycles. 

 It can be seen that TC parameter should be minimum for Rankine cycle to improve its performance. 

Heat pump and refrigeration cycles: 

 Both cycles’ work input, COP and exergy destruction increase with condenser temperature  

while available work output and second law efficiency decrease. In addition to those,  

heating load increase wit condenser temperature for the heat pump and cooling load decreases 

for the refrigerator. 

 Evaluating evaporator temperature for both cycle, cooling load for the refrigeration cycle heating 

load for the heat pump cycle, exergy destructions and second law efficiencies diminish with 

evaporator temperature, while available work outputs and COP rise up. This point of view, it can 

be said that evaporator temperature should be at low temperature. available power input. 

In addition those, it was determined thermodynamically limits of all cycles in this paper. Because, 

figures drew for operation ranges of cycles, that’s why, it is impossible thermodynamically that cycles 

can’t be operated out of this limits. By regarding the results presented within the scope of this study, 

the actual thermodynamic cycles to be used were aimed to be designed with the least exergy 

destruction and as environmental friendly as possible. 
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