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Abstract: The entropy production paradox for anomalous diffusion processes describes
a phenomenon where one-parameter families of dynamical equations, falling between the
diffusion and wave equations, have entropy production rates (Shannon, Tsallis or Renyi)
that increase toward the wave equation limit unexpectedly. Moreover, also surprisingly, the
entropy does not order the bridging regime between diffusion and waves at all. However, it
has been found that relative entropies, with an appropriately chosen reference distribution,
do. Relative entropies, thus, provide a physically sensible way of setting which process is
“nearer” to pure diffusion than another, placing pure wave propagation, desirably, “furthest”
from pure diffusion. We examine here the time behavior of the relative entropies under the
evolution dynamics of the underlying one-parameter family of dynamical equations based
on space-fractional derivatives.
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1. Introduction

Relative entropies, like Kullback-Leibler [1,2] or the Tsallis relative entropy [3–6], provide a means
to discuss (directed) distances between different probability distributions. These measures are usually
not symmetric, so they do not provide a metric on the distributions. Nonetheless, relative entropies allow
the comparison of distributions occurring in a variety of different contexts [7–14]. Here, we will use
these measures to analyze certain features of distributions describing the dynamics of physical systems.

In particular, our motivation is to study anomalous diffusion processes and the corresponding
distribution functions of the dispersing particles. Anomalous diffusion processes differ from classical
diffusion in that the dispersion of particles proceeds faster (superdiffusion) or slower (subdiffusion)
than for the regular case. These anomalous diffusion processes do, for instance, occur in biological
tissues [15,16] or in chemical systems [17]. They can also be observed in porous media [18,19] or
turbulent diffusion [20,21]. Such processes are also important in other areas, like target search [22–24]
or the design of optical materials in which light waves perform a Lévy flight [25].

The theoretical treatment of such processes has lead to the study of evolution equations using
non-linear dependencies on the probability density functions (PDF) [26,27] or employing fractional
derivatives [28–36].

Here, we focus on the space-fractional diffusion equation

∂

∂t
P (x, t) = D

∂α

∂xα
P (x, t) (1)

not as a modeling tool for an interesting class of superdiffusion processes with remarkable
features [37–39], but as a bridge to link the usually unrelated classical diffusion equation (iconic
irreversibility) to the wave equation (iconic reversibility). For that the parameter α must vary between
one (the (half) wave case) and the (the diffusion case). This bridging regime has been analyzed
under different perspectives [40–42] and has shown unexpected features. The space-fractional diffusion
equation represents a family of processes in the bridge regime that can be ordered by the parameter α,
which will be called the bridge ordering.

In [43], the relative entropies (e.g., Kullback-Leibler), in contrast to the regular entropies, order the
PDF’s from Equation (1), because of a monotonic relationship in α, placing the wave and diffusion limits
“farthest” from each other, even if not in a metrical sense. This establishes relative entropies as a natural
measure for the bridging regime. However, [43] considered circumstances at one particular time. This
paper extends the previous work by asking whether this ordering is preserved over all time. This question
is addressed by examining direct computation and deducing asymptotic expressions valid for long times,
based on a saddle point approach.

After briefly setting up the formalism of the known probability densities that solve Equation (1)
and the asymptotic methods that are employed, the time dependence of the Kullback-Leibler entropy is
discussed, and the cross entropy is introduced. Direct computational analysis of the relative entropy is
shown that confirms that the desired monotonic behavior of the relative entropy is persistent at a number
of widely ranging times. Then, the asymptotic form is computed for large time, using the saddle point
method applied to the cross entropy. This yields an asymptotic form valid for the entire relative entropy.
By examining the asymptotic form of the derivative with respect to α, the sign is shown to be preserved,
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confirming monotonicity for large times. Comparisons are made between direct computational analysis
and the resulting asymptotic forms, showing good agreement.

Completing the picture, a similar treatment is performed for Tsallis relative entropies (q 6= 1),
resulting in similar outcomes. Monotonicity is preserved at finite values and asymptotically. An
interesting feature is noted, namely that for the Tsallis relative entropies, the values are bounded, which
is not so for the Kullback-Leibler case.

2. Stable Distributions

The solution of the space-fractional diffusion equation can be expressed in terms of a stable
distribution, S (x|α, β, γ, δn;n) [37,43,44], given as

Pα(x, t) = S
(
x|α, 1, (Dα t)

1/α, 0; 1
)

=
1

(Dα t)1/α
S

(
x

(Dα t)1/α

∣∣∣∣α, 1, 1, 0; 1

)
(2)

where Dα = −D cos
(
απ
2

)
and the parameters are chosen appropriately with

β = 1 (3)

γ =
[
−D t cos

(απ
2

)]1/α
= (Dα t)

1/α (4)

δ1 = 0 (5)

n = 1 (6)

An important feature of stable distributions is their so-called fat tails, i.e., the probability density in
the tails falls off with a power law rather than exponentially, thus leading to the non-existence of higher
moments. Fat tails are responsible for the non-existence of the Kullback-Leibler entropy for certain
combinations of stable distributions.

The following presents properties of stable distributions needed for the calculations below. The stable
distribution rescales as

S (x|α, β, γ, δn;n) =
1

γ
S

(
x− δn
γ

∣∣∣∣α, β, 1, 0;n

)
(7)

For the parameters discussed here, the support of the stable distributions is the full real line. Apart from
special cases, there are no general closed representations of the stable distribution in terms of elementary
functions. However, the density at a certain point x can be expressed as an integral

S (x|α, β, 1, 0; 1) =
1

π

∫ ∞
0

e−u
α

cos(xu+ ζ uα) du (8)

where ζ = −β tan(απ
2

). For x = 0, the integral can be evaluated in closed form, leading to

S (0|α, β, 1, 0; 1) =
1

απ
Γ

(
1

α

)
cos (θ0 ) [cos(α θ0)]

1
α (9)
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where θ0 = − arctan(ζ)/α and Γ(x) is the Gamma function. Similarly, there are expressions for the
derivatives of the density based on Equation (8). The 2k-th and the (2k + 1)-th derivatives with respect
to x are

S(2k)(x|α, β, 1, 0; 1) =
(−1)k

π

∫ ∞
0

u2ke−u
α

cos(xu+ ζ uα) du (10)

S(2k+1)(x|α, β, 1, 0; 1) =
(−1)(k+1)

π

∫ ∞
0

u2k+1e−u
α

sin(xu+ ζ uα) du (11)

We will need the first two derivatives at x = 0, which can again be expressed in closed form as

S(1)(0|α, β, 1, 0; 1) = − 1

π
Γ

(
3

α

)
[cos(α θ0)]

2
α sin(2 θ0) (12)

S(2)(0|α, β, 1, 0; 1) = − 1

π
Γ

(
4

α

)
[cos(α θ0)]

3
α cos(3 θ0) (13)

For β = 1 and angles in (−π/2, π/2)

θ0 = − 1

α
arctan

(
tan

(2− α) π

2

)
=
π

2
− π

α
(14)

The abbreviations

S(n)
α (x) = S(n)(x|α, 1, 1, 0; 1)

Γn =
Γ(n

α
)

Γ( 1
α

)
(15)

Ψn = Ψ
(n
α

)
=

Γ′
(
n
α

)
Γ
(
n
α

)
will be used in the following. Ψ is the digamma function. Thus, Equations (12) and (13) become

S(1)
α (0) = −αΓ3 sin

(
2π

α

)[
− cos

(απ
2

)]1/α
Sα (0) (16)

S(2)
α (0) = −αΓ4 sin

(
3π

α

)[
− cos

(απ
2

)]1/α
Sα (0) (17)

For α = 2, Equation (1) reduces to the classical diffusion equation. That is reflected in its solution
PD(x, t), which is the well-known Gaussian. That solution can also be expressed in terms of a stable
distribution for α = 2 as

PD(x, t) = S
(
x| 2, 1,

√
D t, 0; 1

)
= N (0, 2D t) (18)

=
1

2
√
πD t

exp

(
− x2

4D t

)
(19)

where N (µ, σ2) is the normal distribution with mean µ = 0 and variance σ2 = 2D t [44].
In the limit α → 1, the scale parameter, γ =

[
−D t cos

(
απ
2

)]1/α, of the stable distribution goes
to zero and the mode (i.e., maximum of the distribution) x̂α → −D t. This constitutes a time-moving
δ-distribution centered at −D t, representing the one-sided solution of the wave equation with an initial
δ-distribution.
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Writing Equation (1) in the α = 1 limit(
∂

∂t
−D ∂

∂x

)
P (x, t) = 0 (20)

When the operator
(
∂
∂t

+D ∂
∂x

)
is applied to Equation (20), the standard wave equation is recovered,

ensuring that solutions of Equation (20) are also solutions of the full wave equation. Equation (20) thus
reflects one of two operator factors for the wave equation, and it is known, accordingly, as the half wave
equation. The classical advection equation also reduces to the half wave equation in the one-dimensional
solenoidal case.

3. Relative Entropies

Kullback-Leibler entropy (“Kullback” for short) between two probability density functions, Pa(x, t)
and Pb(x, t), is defined in this context as

K(Pa(x, t), Pb(x, t)) =

∫ ∞
−∞

Pa(x, t) ln

(
Pa(x, t)

Pb(x, t)

)
dx (21)

which is the q = 1 limit of the Tsallis relative entropy

Tq(Pa(x, t), Pb(x, t)) =
1

q − 1

(∫ ∞
−∞

P q
a (x, t)P 1−q

b (x, t) dx− 1

)
(22)

These can both be regarded as mean values of appropriately chosen functions. K(Pa, Pb) can be regarded
as the mean of ln (Pa/Pb), while Tq(Pa, Pb) can be seen as the shifted mean of (Pa/Pb)

q−1. In the
following, we shall see that in the large time limit, the density function Pa with respect to which these
averages are taken, will become sharply peaked, making the saddle point method a natural way [45] to
get to asymptotic expressions for long times.

4. Saddle Point Asymptotic Expansion

In general, the saddle point approach [46] can be used to provide asymptotic expansions of integrals
of the form:

I(A) =

∫ y2

y1

f(y) eAg(y)dy (23)

where f(y) and g(y) are real functions, and we consider large positive values of A. If g(y) is unimodal
and has its maximum at y0, then with increasing A, the function eAg(y) will become more and more
peaked, so that only values of f(y) close to y0 will contribute significantly to the integral. This induces
an asymptotic series expansion in powers of 1/

√
A. Setting z =

√
A(y − y0),

I(A) =
f(y0) e

Ag(y0)

√
A

∫ ∞
−∞

ez
2 g′′(y0)/2

(
1 +

∞∑
n=1

A−n/2Pn(z)

)
dz (24)

=
f(y0) e

Ag(y0)

√
A

√
2 π

−Ag′′(y0)

(
1 +

∞∑
n=1

C2n

An

)
(25)
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Here, Pn(z) are polynomials in z, and C2n contain derivatives of the functions f(y) and g(y), evaluated
at y0. In particular, one finds

C2 = − f2
4 f0 g2

+
f1 g3

8 f0 g22
+

g4
32 g22

− 5 g23
192 g32

, (26)

where fi = ∂i

∂yi
f(y)

∣∣∣
y=y0

and gi = ∂i

∂yi
g(y)

∣∣∣
y=y0

. While higher orders can be determined, we here will

use the expansion only up to order 1/A.

5. Kullback-Leibler Entropy Time Dependence by Direct Computational Analysis

In [43], on which this paper builds, it was shown that the Kullback and Tsallis relative entropy might
serve to order solutions of the space-fractional diffusion Equation (1) at a particular time. Here, we show
that this property extends over time. One complication dealt with previously is that K(Pα, PD) does not
exist, due to the fat tails of Pα. Thus, the focus was on K(PD, Pα), which does exist.

The Kullback is given by

K(PD, Pα) =

∫ ∞
−∞

PD(x, t) ln

(
PD(x, t)

Pα(x, t)

)
dx

=

∫ ∞
−∞

PD(x, t) lnPD(x, t) dx−
∫ ∞
−∞

PD(x, t) lnPα(x, t) dx

= −1/2 (1 + ln (4πD t)) +K†(PD, Pα) (27)

where K†(PD, Pα) is known as the cross entropy.

Figure 1. The Kullback-Leibler entropy, K(PD, Pα), is plotted over α for different times t.
One can see that for all times, K(PD, Pα) exhibits a monotonic decreasing behavior, thus
confirming the bridge ordering property of K(PD, Pα).
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The previous analysis of K(PD, Pα) at t = 1 showed that the Kullback was compatible with the
bridge ordering. However, here in Figure 1, we show K(PD, Pα) as a function of α for a wide range
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of different times (t = 100, 102, 104, 106). The label DCA stands for “Direct Computational Analysis.”
For the analysis, K(PD, Pα) is obtained by a numerical scheme that makes use of the fact that the tail
behavior of the stable distributions is known analytically. Here and in all other figures, we set D = 1.
As for α→ 1, Pα approaches a δ-distribution. Thus, our direct computations were restricted in practice
to α ∈ [1.01, 2].

In Figure 1, for all cases, K(PD, Pα) falls off quickly for α close to one, but more slowly near
α = 2. The monotonic relation between K(PD, Pα) and α confirms that the bridge ordering at t = 1

is maintained across a wide interval of times. Note here that the graph of K(PD, Pα) for t = 1 crosses
those at later times. Thus, while the graph shows curves monotonic in α for fixed t, they are not generally
monotonic in t for fixed α.

6. Kullback-Leibler Entropy for Long Times

Though ordering is preserved for a wide range of times, that does not mean that the ordering is
preserved for long times. Thus the long-time behavior of K(PD, Pα) is deduced in the following.

The cross entropy from Equation (27) becomes

K†(PD, Pα) = −
∫ ∞
−∞

1√
2π σ

e−
x2

2σ2 lnS (x|α, 1, γ, 0; 1) dx

= ln γ −
∫ ∞
−∞

1√
2 π σ

e−
x2

2σ2 lnSα

(
x

γ

)
dx (28)

where we have made use of Equation (7) and the normalization property of the Gaussian. Using the
substitution y = x/γ we then get

K†(PD, Pα) = ln γ − γ√
2π σ

∫ ∞
−∞

e−
y2 γ2

2σ2 lnSα (y) dy (29)

Note that due to γ = (Dα t)
(1/α), σ =

√
2D t

σ

γ
=

√
2D t

(Dα t)(1/α)
=

√
2D

D
(1/α)
α

t1/2−1/α (30)

is an α-dependent quantity, where the exponent of t is always negative for 1 < α < 2. It follows that for
t→∞, the inverse ratio γ

σ
will diverge. For large t, it will be large too, and thus, we can now make use

of the saddle point method.
Using the results of Section 4 together with the following definitions

A =
(γ
σ

)2
(31)

f(y) = lnSα (y) (32)

g(y) = −y
2

2
(33)

and noting that the maximum of g(y) is at y0 = 0, we obtain an asymptotic expansion for the
cross entropy
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K†(PD, Pα) = ln γ − lnSα (0)√
2 π σ

γ

√
2 π(
γ
σ

)2
(

1 +
∞∑
n=1

C2n

An

)
(34)

= ln γ − lnSα (0)

[
1 +

C2

A
+O

(
1

A2

)]
(35)

Combining Equations (27) and (35), we conclude

K(PD, Pα) =− 1

2
[1 + ln (4πD t)] +

ln (Dα t)

α
− lnSα (0)

[
1 +

C2

A
+O

(
1

A2

)]
(36)

∼K1 +K2(t) +

(
1

α
− 1

2

)
ln t (37)

where K1 is a constant in time, and for 1 < α < 2, the factor multiplying ln t is positive. K2(t) decays
with time, and thus, for large times, K(PD, Pα) will diverge.

The constant K1 and the time-dependent K2(t) can be evaluated further making use of the properties
of the stable distribution. We note that C2 simplifies considerably as dνg(y)/dy ν = 0 for ν > 2. Using

C2 =
1

4Sα (0)

S(2)
α (0)

Sα (0)
−

(
S
(1)
α (0)

Sα (0)

)2
 (38)

we find

K1 =
1

α
lnD − 1

2
ln (4πD)− ln

(
Γ1

απ
sin

π

α

)
− 1

2
(39)

and

K2(t) =
(D t)1−

2
α

2 sin
(
π
α

) [(αΓ4 + α2 Γ3
2) sin

(
3 π

α

)
+ α2 Γ3

2 sin
(π
α

)]
(40)

Figure 2. A comparison between the direct numerical calculation of the Kullback-Leibler
entropy, K(PD, Pα) (DCA), the saddle point method of the zeroth order (SP0) and the saddle
point method of first order (SP1) is shown over logarithmic time t for two different values
of α. One observes that the approximations approach the DCA data points for large times
and fit the data quite well already for t > 1.

-1

 0

 1

 2

 3

 4

 5

10-1 100 101 102 103 104 105 106 107 108

K
(P

D
, P

α)

t

SP0: α = 1.3
SP0: α = 1.7
SP1: α = 1.3
SP1: α = 1.7

DCA: α = 1.3
DCA: α = 1.7



Entropy 2013, 15 2997

In Figure 2, a comparison between the numerical evaluation of K(PD, Pα) (DCA) and its
approximations SP0 and SP1 based on the saddle point method is displayed. Here, SP0 is the
approximation excluding terms of O

(
1
A

)
, while SP1 excludes terms of O

(
1
A2

)
. One sees easily how

the approximations approach the data points obtained by direct numerical calculation for large times.
Especially for α = 1.7, that the quality increases by using the higher order SP1 is obvious. In that case,
SP1 covers nearly all times t > 1. This is not so for α = 1.3, where one sees a sizable deviation for
t < 10. However, all of the asymptotic forms produce good agreement with DCA values for t > 106.

While the long time behavior is thus understood, the short time behavior shows a surprising feature.
For short times, K(PD, Pα) shows an initial decay until a minimum is reached. Only then does the
Kullback start to grow and approach its long time behavior.

In order to understand this effect, the sequence of graphs in Figure 3 shows how the distribution PD

and lnPα change in time. The plots are for t = 100, 102, 104, 106, when α = 1.3. We see that the
Gaussian PD acts like a window that suppresses lnPα, where PD is exponentially small. For small times,
lnPα varies considerably in that window, and thus, it cannot be approximated reasonably by its value
and its first two derivatives at the peak position of the Gaussian. This changes as the time increases.
lnPα becomes flatter and flatter, and for t = 106, the approximation works very well.

Figure 3. Four plots of PD and lnPα over x are given for t = 1 (a), t = 102 (b), t = 104 (c)
and t1 = 106 (d) for α = 1.3. It can be seen that within the width of PD, the distribution lnPα

becomes flatter with increasing time. Thus, lnPα can be approximated well by its function
value and its first two derivatives.
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Based on the asymptotic time behavior of K(PD, Pα), we can now see how K(PD, Pα) changes with
α at a given time t. We do so by taking the derivative of the asymptotic form of K(PD, Pα) with respect
to α

∂

∂α
K(PD, Pα)(t) ∼ ∂

∂α
K1 +

∂

∂α
K2(t)−

1

α2
ln t (41)

For the different terms in Equation (41), we get

∂

∂α
K1 =

1

α
+

1

α2

(
Ψ1 + π cot

(π
α

)
− lnD

)
(42)

∂

∂α
K2(t) =

(D t)(1−
2
α
)

2

(
F1

α
+
F2

α2

)
+

2K2(t)

α2
ln t (43)

where

F1 ≡Γ4 sin

(
3π

α

)
+ 4 Γ2

3 cos
(π
α

)
sin

(
2π

α

)
(44)

F2 ≡Γ4 sin

(
3π

α

)[
Ψ1 − 4 Ψ4 + π cot

(π
α

)
+ 3 π cot

(
3π

α

)
+ lnD

]
+ 2 Γ2

3 sin

(
2π

α

)
cos
(π
α

)(
2 Ψ1 − 6 Ψ3 + π cot

(π
α

)
+ lnD

)
(45)

+ 2 Γ2
3 cos

(π
α

) [
π − 3π cos

(
2π

α

)]
Inserting Equations (42)–(45) into Equation (41) and collecting all time-dependent terms leads to

∂

∂α
K(PD, Pα)(t) =

2K2(t)− 1

α2
ln t

+

(
F1

α
+
F2

α2

)
(D t)(1−

2
α
)

2
+

1

α
+

Ψ1 + π cot
(
π
α

)
− lnD

α2
(46)

For large times, this simplifies to:

∂

∂α
K(PD, Pα)(t) ≈ 2K2(t)− 1

α2
ln t ≈ − ln t

α2
< 0 (t→∞) (47)

From Equation (40), we see that |K2(t)| → 0 in the long-time limit. Thus, the Kullback is a monotonic
decreasing function of α in the large time limit, ensuring that it retains its ordering property in α for large
times. This result anchors the ordering property at infinity, already established in the preceding sections
for finite times.

7. The Tsallis Relative Entropy Time Dependence by Direct Computational Analysis

The Tsallis relative entropy provides another means to establish an ordering between PD and Pα.
Contrary to the Kullback case, both Tq(Pα, PD) and Tq(PD, Pα) exist. In [43], we showed that these
two Tsallis relative entropies are defined for 0 ≤ q < 1. Based on this insight, one finds an interesting
relation between the two

Tq(Pα, PD) =
1

q − 1

(∫ ∞
−∞

P q
α(x, t)P 1−q

D (x, t) dx− 1

)
(48)
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and

T1−q(PD, Pα) =
1

(1− q)− 1

(∫ ∞
−∞

P 1−q
D (x, t)P q

α(x, t) dx− 1

)
(49)

from which we obtain

(−q) T1−q(PD, Pα) = (q − 1) Tq(Pα, PD) (50)

It thus suffices to analyze the time behavior of one of the two. Here, we choose Tq(PD, Pα) with

Tq(PD, Pα) =
1

q − 1

∫ ∞
−∞

 e−
x2

2σ2

√
2π σ

q

S (x|α, 1, γ, 0; 1)1−q dx− 1


=

1

q − 1

∫ ∞
−∞

γq−1

(
√

2 π σ)q
exp (− q x2

2σ2 )

Sα

(
x
γ

)q−1 dx− 1

 (51)

Tq(PD, Pα) was determined for four different times (t = 100, 102, 104, 106) by direct computation
analysis. As in the Kullback case, the data were obtained by a numerical integration procedure, which for
the Tsallis case also requires a precise treatment of the known fat tail behavior of the stable distributions.
Figure 4 depicts the results for q = 0.5. One can see that Tq(Pα, PD) decays monotonically with α,
thus showing that it provides an ordering compatible with the bridge ordering for the times presented.
This figure also seems to indicate that Tq(Pα, PD) increases monotonically with time for fixed α. That,
however, is not true. For short times, the DCA data in Figure 6 shows that T0.5(PD, Pα) does not increase
monotonically in time. Instead, it decreases first and then, around t = 1, starts to increase.

Figure 4. For the case of q = 0.5, the Tsallis relative entropy, T0.5(PD, Pα), is given over
α for different times (t = 100, 102, 104, 106). One can observe that with increasing time,
the monotonic decreasing behavior is preserved, and thus, the bridge ordering property of
Tq(PD, Pα) is confirmed.

 0

 0.5

 1

 1.5

 2

 1  1.2  1.4  1.6  1.8  2

T
0.

5(
P

D
, P

α)

α

DCA: t = 100

DCA: t = 102

DCA: t = 104

DCA: t = 106



Entropy 2013, 15 3000

8. Tsallis Relative Entropy for Long Times

As in the Kullback case, we want to analyze the time dependence further to show that the bridge
ordering is preserved at least for large enough times. The method used is again a saddle point
approximation. Using the substitution y = x/γ, we get

Tq(PD, Pα) =
1

q − 1

[
γq(√

2π σ
)q ∫ ∞

−∞
e−

q y2 γ2

2σ2 Sα (y)1−q dy − 1

]
(52)

The ratio γ
σ

is the same as in the Kullback section and thus, diverges for large times. Based on
Equation (25), we make the following definitions

A =
(γ
σ

)2
(53)

f(y) = Sα (y)1−q (54)

g(y) = −q y
2

2
(55)

Again, the maximum of g(y) is at y0 = 0, and by utilizing Equation (25), we find up to O(1/A2)

Tq(PD, Pα) =
1

q − 1

1
√
q

(
σ

γ

√
2 π Sα (0)

)1−q [
1 +

C2

A
+O

(
1

A2

)]
− 1

q − 1
(56)

Here, C2 depends on q and takes the form

C2,q =
1− q
4 q

S(2)
α (0)

Sα (0)
− q

(
S
(1)
α (0)

Sα (0)

)2
 (57)

Collecting terms, we find the asymptotic time behavior for the Tsallis relative entropy for large t

Tq(PD, Pα) ∼
[√

2 π Sα (0)
]1−q

√
q (q − 1)

[(
σ

γ

)1−q

+ C2,q

(
σ

γ

)3−q
]
− 1

q − 1
(58)

Unlike the Kullback case, this asymptotic form has a finite limit for t → ∞. The limit is 1/(1 − q),
because limt→∞ σ/γ = 0, and both exponents are positive, due to 0 ≤ q < 1. This can be seen in the
unapproximated form, too

Tq(PD, Pα) =
1

q − 1

[
γq(√

2 π σ
)q ∫ ∞

−∞
e−

q y2 γ2

2σ2 Sα (y)1−q dy − 1

]

=
1

q − 1

[
(2 π)

1−q
2

(
σ

γ

)1−q ∫ ∞
−∞

{
1√

2 πΣ2
e−

y2

2 Σ2

}
Sα (y)1−q dy − 1

]
(59)

where Σ = 1√
q

(
σ
γ

)
. We see in the t→∞ limit that the Gaussian becomes a δ-function. The δ-function

picks the value of Sα (y)1−q at y = 0, making the integral finite. The prefactor is decaying towards zero,
and thus, the approach of Tq(PD, Pα) to the limiting value 1/(1− q) is confirmed.
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Figure 5. A comparison of direct numerical calculation of the Tsallis relative entropy,
Tq(PD, P1.3) (DCA), and the saddle point method of the first order (SP1) is given over
logarithmic time t for different values of q.
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Figure 6. A comparison of direct numerical calculation of the Tsallis relative entropy,
T0.5(PD, Pα) (DCA), and the saddle point method of the first order (SP1) is given over
logarithmic time t for different values of α. Note that Tq(PD, Pα) is not monotonic in time
for larger values of α, but has a clear minimum around t = 1.
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The quality of the saddle point approximation is shown in Figures 5 and 6. We compare the saddle
point approximations SP1 of Tq(PD, Pα) with the numerically obtained values (DCA) as a function
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of time. The approach of the approximation to the numerical data depends highly on the choice of
parameters α and q. For small values of α and q, the approximation fits the numerical data relatively
fast, as shown in Figure 5. On the other hand, Figure 6 shows that the approximations work less well for
larger α.

It can also be seen in Figures 5 and 6 that for times t < 1, the asymptotic approach exhibits different
curve shapes depending on the choice of α and q. This can be understood by looking on Equation (58)
after applying Equations (9)–(13) and Equation (57), which leads to

Tq(PD, Pα) ∼

[
2
√
π

(− cos(απ2 ))
1
α
Sα (0)

]1−q
√
q (q − 1)

(D t)(
1
2
− 1
α) (1−q)

[
1 +H2,q · (D t)(1−

2
α)
]
− 1

q − 1
(60)

with

H2,q =
2α (q − 1)

4 q

[
Γ4 sin

(
3π
α

)
(− cos

(
απ
2

)
)

1
α

+ q αΓ3
2 sin2

(
2π

α

)]
(61)

The first factor of Equation (60) is always positive, but because of sin
(
3π
α

)
, H2,q can change sign. This

depends on the parameters α and q, and is insignificant for large t.
Finally, the asymptotic form shows that Tq(PD, Pα) decreases monotonically with α for large

times because

∂

∂α
Tq ∼

[
G1,q +G2,q ln(t)

]
t(

1
2
− 1
α
)(1−q) +

[
G3,q +G4,q ln(t)

]
t(

1
2
− 1
α
)(3−q) (62)

where the Gi, q are constants in t. On 1 < α < 2 and 0 < q < 1, the inequalities(
1

2
− 1

α

)
(3− q) <

(
1

2
− 1

α

)
(1− q) < 0 (63)

hold. Thus, ∂
∂α
Tq will be dominated by the G2,q term in Equation (62) for long times, as it decays most

slowly. Since

G2,q = −
(√

2πSα (0)
)1−q

√
qα2

(√
2D

D
1
α
α

)1−q

< 0 (64)

then

∂

∂α
Tq(PD, Pα) ∼ G2,q ln(t)t(

1
2
− 1
α
)(1−q) < 0 (65)

for large enough times. Thus, like the Kullback case, the Tsallis relative entropy remains monotonically
decreasing in the infinite time limit, confirming its ordering property at both finite times and infinity.
However, while signs remain fixed, the Tsallis case differs from the Kullback case in that the α-slope goes
to zero in the long-time limit, while that slope diverges in the Kullback case. Moreover, the Kullback
also diverges with t, while Tq(PD, Pα) approaches a constant, 1/(1− q), for large t.
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9. Summary

This paper is a sequel to [43], in which relative entropies were introduced to address the physical issue
of irreversibility in the mathematical context of a one-parameter bridging regime between the diffusion
and wave equations. This peculiar regime represents a definitive family of processes between diffusion
and waves representing a direct formal mathematical test of our understanding of the differences between
the reversible and irreversible. Not only does this regime exhibit paradoxical entropy production
behavior (i.e., entropy production rates increase toward the wave limit), but entropy has a maximum in
the interval, which has the consequence that one cannot determine which system is relatively “closer or
further” from the pure diffusion limit by such means. However, the preceding paper showed that relative
entropies could do what neither entropy nor entropy production rates could do: provide an intuitively
sensible ordering, where diffusion stands at a maximum among all other bridge processes which become
well ordered, due to a monotonically decreasing relationship with the parameter α.

The goal of this paper was to extend the treatment in [43] by addressing the issue of time. This paper
asked whether the well-defined ordering produced by relative entropies was just a feature of a single time,
or if the monotonic structure persist over all time. The relevant formalism was briefly set up in two parts.
First, the necessary features of stable distributions, which are solutions to the dynamics in Equation (1),
were presented. Then, the appropriate asymptotic representations of integrals in terms of the saddle
point method were put into place. From this foundation, the two cases of the Kullback-Leibler and
Tsallis relative entropies were explored for long times. Direct numerical computation showed that both
types of relative entropies preserved the α-ordering for a wide range of time-scales. Then, asymptotic
methods were compared to these direct computations, confirming that they agree well with each other for
long times. It was then shown that the ordering did persist in the long-time limit in both cases. However,
the Tsallis and Kullback-Leibler cases differ in that the former reached a finite limit, 1/(1 − q), and its
α-derivative vanished in the limit of long times, while the latter diverged in both relative entropy and
its α-derivative.

Time evolution of relative entropies under a single process, particularly the Kullback-Leibler entropy,
is well known to be connected to H-theorems. Thus, it would not be surprising if the time evolution
of probability densities might make one think, at least initially, in terms of H-theorem questions; so,
it is worth noting parenthetically that this is not an H-theorem scenario. The time evolution in this
context is between pairs of processes belonging to the bridging families and not to a single process.
There is no reason to expect that pairs of densities would relax to each other when subject to different
processes. However, it brings back the issue of different internal quicknesses [40–42], although now
articulated from the standpoint of relative entropies. Moreover, this paper focuses on the ordering
property, which ultimately is about the differences between the densities. Nonetheless, we could consider
nearby processes with infinitesimal differences in families and ask whether an H-theorem-like result
might hold then, but that is a topic for future work.
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