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Abstract: It has been suggested that the maximum entropy production (MEP) principle, or 

MEP hypothesis, could be an interesting tool to compute climatic variables like temperature. In 

this climatological context, a major limitation of MEP is that it is generally assumed to be 

applicable only for stationary systems. It is therefore often anticipated that critical climatic 

features like the seasonal cycle or climatic change cannot be represented within this 

framework. We discuss here several possibilities in order to introduce time- varying 

climatic problems using the MEP formalism. We will show that it is possible to formulate a 

MEP model which accounts for time evolution in a consistent way. This formulation leads 

to physically relevant results as long as the internal time scales associated with thermal 

inertia are small compared to the speed of external changes. We will focus on transient 

changes as well as on the seasonal cycle in a conceptual climate box-model in order to 

discuss the physical relevance of such an extension of the MEP framework. 

Keywords: maximum entropy; maximum entropy production; non-equilibrium;  

climate modeling 

 

1. Introduction 

Several decades ago, Paltridge [1] suggested that the stationary state of the climate system could be 

computed through a simple variational principle. An objective or cost function to be optimized was 
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found empirically. This function was later recognized [2] to be the production of thermodynamical 

entropy due to atmospheric and oceanic heat transfers. These results were received with a lot of 

skepticism in the climate community, since there is no widely accepted fundamental physical reason 

for maximizing entropy production, even though such a MEP principle had been proposed by some 

scientists at about the same time [3]. Besides, the Paltridge model is purely thermodynamical and its 

results do not depend on important dynamical effects such as Earth’s rotation rate for instance.  

The original model has some empirical parameters in its radiative formulas: there was some possibility 

that the remarkable agreement between model results and observations did partly result from the 

choices of radiative parameters. The model was mostly seen as a curiosity, and only very few people 

tried to use or analyse it. A nice reformulation of the model with a quasi-analytic solution was given  

by O’Brien [4]. 

In recent years, there has been renewed interest in this type of model. It was suggested that the MEP 

principle could be useful in climate models [5] and new efforts were aimed at justifying this  

idea [6–8]. Still, there is yet no consensus on the applicability of the MEP hypothesis to physics in  

general [9] and to climate modeling in particular [10,11]. Quite possibly, when or if applicable, the MEP 

hypothesis might be only a thermodynamical, or coarse-grained approximation of a more complex 

dynamical reality, whose usefulness depends of the problem considered [12]. In this context, it appears 

nevertheless interesting to investigate how well such a model performs and how far it can be developed. In 

this direction, we have shown earlier [13] that it is possible to formulate a MEP climate model with a 

radiative code based on standard atmospheric formulations, without adjustable parameters, at the cost of 

ignoring the effect of clouds. Though systematically biased towards higher temperatures by about 8 °C, 

this “clear-sky” model is quite successful in reproducing, in annual mean, the meridional energy 

transport and the large scale temperature gradients, but also the climate sensitivity to albedo changes 

when compared with a state-of-the-art general circulation model. This highlights that the successful 

results of Paltridge’s model are probably not fortuitous. 

A potential difficulty of using the MEP hypothesis in a climate model is the necessity to formulate a 

stationary problem. Indeed, it is not clear a priori that such a variational principle can accomodate a 

time-dependent question. The climate system is characterized by a strong seasonal cycle and a model 

which predicts only annual mean values, like the current MEP ones, is therefore not very relevant for 

most climatic questions. An interesting extension would be therefore to allow for time-varying 

problems within the MEP formulation. It is beyond the scope of this paper to discuss the physical 

validity or the applicability of the MEP principle to generic or even specific physical problems. We 

will restrict ourself to the presentation and discussion of several conceptual ideas for such a MEP 

climate model that accounts for time-variations, in particular with the goal to reproduce a meaningful 

seasonal cycle. This first example could be used as a basis for further developments, both theoretical 

and applied, concerning MEP principles. 
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2. Formulation of a MEP Climate Model 

2.1. The Annual Mean Stationary Model 

First, we will formulate our MEP climate model in its annual mean version. We are interested in 

computing the temperature Ti at each point i, where i = 1 to N (N being the number of “points” or 

“boxes” in the spatial domain of interest). A generic model layout is given on Figure 1. 

Figure 1. A generic climate model consists of boxes with temperatures Ti exchanging 

radiative fluxes rik and rki with space and boxes on the same vertical column, and turbulent 

heat fluxes Fji with neighbouring boxes. This can be summarized in a net radiative input 

Ri(Tk) = ∑k(rki − rik) and the non-radiative heat convergence γi = ∑j Fji. 

 

The local heat conservation can be written as follows:  

( )i
i i k i

dT
c R T

dt
   (1)

where Ri(Tk) corresponds to the net radiative balance of box i (in W), given as an explicit function of 

temperatures (Ti, but also the temperatures Tk of boxes which exchange radiatively with box i, i.e., 

boxes in the same vertical column), ci are the heat capacities of each box (J.K−1), and γi are the heat 

convergences due to atmospheric fluxes. The MEP principle states that, in the stationarity situation  

(i.e., when dTi/dt = 0) the entropy production associated with γi should be maximum, under the 

constraint of global energy conservation. Indeed, the convergences γi are “internal” to the system and 

must sum up to zero. In other words, according to the MEP hypothesis, the solution of the problem is a 

stationary point of the Lagrange function:  
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where β is the Lagrange multiplier associated with global energy conservation. The right term is 

obtained by using Equation (1) in its stationary version, i.e., γi = −Ri(Tk). Note that β is an inverse 

temperature, and it could be interesting to define Tg = (1/β) as the “global temperature” of the Earth. 
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We will see below in simplified cases, that Tg is indeed some global “averaged” temperature. The 

variational problem in Equation (2) can be solved formally as follows:  

0
2

( )1
0 k i

k
i i k i

L R R T

T T T T

  
 

  
      

  
  (3)

00 ( )ii

L
R T




   (4)

For a given value of β, we can in principle solve the system of N Equations (3) in the variables Ti 

thus giving a solution Ti(β). Though typically non-linear, this system appears well-behaved in cases of 

interest. The matrix (∂Rk/∂Ti) is sparse since the radiative fluxes Ri will depend on the temperatures of 

the same vertical column only, but not on other neighbouring points. The Equation (4) can be 

expressed as a function of β only, which therefore gives a solution. 

The only inputs of such a model are a discretization of the domain of interest, and the  

radiative functions Ri(T). The model is purely thermodynamical and there is no need to use a  

“spatially structured” discretization since there is at this stage no vector calculus at all: the boxes do 

not need to be on a structured grid. If we restrict ourselves to a “clear sky” situation and neglect the 

effect of clouds, the radiative functions Ri(T) can be computed from standard formulations, assuming 

prescribed levels of greenhouse gases in the atmosphere (H2O, CO2, O3), as well as a given surface 

albedo. This model was studied in Herbert et al. [13] on a 72 × 96 horizontal regular grid with a 

surface level and one atmospheric level, and also for many levels in a vertical temperature profile [14]. 

2.2. A Simplified Version of the Previous Model 

In order to introduce time variations or the annual cycle, it is interesting to formulate a simplified 

version of the model described above, that can be easily solved analytically. We will make here the 

hypothesis that the radiative functions Ri(T) are not only linear in T (which is a relatively mild 

hypothesis, since the true radiative functions are smooth functions of T with the dominant contribution 

being of the form σT4, and therefore can be linearized at least in a neighborhood of the solution of the 

problem); but also that Ri(T) are local, i.e., depend only on the box temperature Ti: Ri = Ri(Ti). This  

last hypothesis is certainly not valid for a vertical atmospheric temperature profile, but it allows for  

quite nice simplifications of the above equations, and therefore for much better insights into the  

generic problem. 

We therefore have Ri = bi (T0i − Ti) where T0i is the temperature that box i would have in the  

absence of any non-radiative exchange with other boxes, i.e., if γi = 0. We can therefore call it the 

“radiative temperature” of box i. Note also that the coefficients bi are extensive quantities (in W.K−1) 

locally proportional to the size (area or volume) of box i. With this drastic simplification, the above 

problem leads to the following simple solution:  
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In other words, the global inverse temperature β is some kind of weighted averaged of the radiative 

temperatures T0i using the (extensive) coefficients bi as weights, while the local temperatures Ti are the 

geometric means between the local radiative temperature T0i and the global temperature Tg. It appears 

here quite obvious and natural that the solution is unique and bears some simple physical signification. 

2.3. A Two-Box Example 

In order to illustrate the above MEP solutions, we will present results in the simplest possible 

situation. Let’s assume that the Earth climate can be represented by only two boxes, a tropical one and 

a polar one, as represented in Figure 2. 

Figure 2. A simple case with a two-box model. 

 

The stationary MEP principle can be easily illustrated here. The local energy conservation in 

Equation (1) gives Q = F12 = γ2 = − γ1, which leads to T1 = T01 − Q/b and T2 = T02 + Q/b. The unknown 

or implicit meridional flux Q is obtained through the maximisation of the entropy production σ = γ1/T1 

+ γ2/T2 as shown in Figure 3. 

Figure 3. The entropy production σ = γ1/T1 + γ2/T2 = b x [(T02 + x)−1 − (T01 − x)−1] as a 

function of the heat flux x = Q/b. Here T01 = 300 K and T02 = 280 K. It is quite clear that 

this function has a unique positive maximum between the two roots obtained for Q = x = 0 

(purely radiative case) and for the isothermal situation x = (T01 − T02)/2. This maximum is 

given by Equations (5) and (6). 
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This equilibrium situation has been already described and discussed in numerous papers, both for 

theoretical cases, but also for the climate of several planets in the solar system [15,16]. In this paper we 

will focus on the time varying problem. 

3. A Time-Dependent MEP Formulation with Integrated Entropy Production 

The natural and simplest possible extension of the MEP hypothesis to a time varying problem is to 

maximize the entropy production integrated over time. This turns out to be rather straightforward as 

illustrated below. 

3.1. The Model Equations 

In order to write a time dependent version of Equations (3) and (4), we need to relax the stationarity 

assumption. In fact, in the general case, we can substitute the γi from Equation (1) in order to obtain a 

new Lagrange function:  

    1
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L T T dt dt c T R T
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        
   
     (7)

where all variables are now functions of time. The summation is now over space (discrete index i) and 

over time (continuous variable t). Though not in the context of seasonal variations, a rather similar 

formulation was suggested earlier [17] where the maximisation of entropy production was performed 

at each time step in a simple model, in order to investigate the notion of dynamical stability of the 

MEP equilibrium. It should be emphasized that β = β(t) must depend of time, since the heat 

convergences γi should sum up to zero at all time. In other words, the “heat transports through time” 

are explicitly and solely given by ci dTi/dt while “through space” we have both explicit heat fluxes 

associated with Ri(Tk) and implicit ones with γi. The Lagrange function is now a functional of both Ti 

and its time derivative T'i = dTi/dt. This new variational problem is well-known in classical mechanics, 

and the solution is given by the Euler-Lagrange equations. This leads to: 
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with β' = dβ/dt. These equations are very similar to Equations (3) and (4) and formally their resolution 

is similar. For a given function β(t), we can obtain its time-derivative β'(t) and we thus can solve 

system Equation (8) to obtain the temperatures Ti(t) at each point i. After substitution in Equation (9) 

we obtain a differential equation in β(t), β'(t) and β"(t), whose resolution solves the problem. In order 

to get some insight into this solution, we will use the above linear approximation for the radiative 

functions. We will also assume that the system under consideration is homogeneous, in the sense that 

the ratio ci/bi is here a fixed constant a. Note that a is a time which represents the thermal inertia of the 

system. In this particular situation, we get a very simple solution for the system of Equation (8): 
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where α = α(t) is the inverse square root of β(t) − a β'(t). After substitution into Equation (9) we get a 

simple linear differential equation for α(t), whose solution will therefore solve the problem:  
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where T'0i is the time derivative of T0i. Note that Equations (10) and (11) are quite similar to their 

stationary equivalents in Equations (5) and (6).  

There are two time scales in this equation. The first time scale is given by 1/τ~T'0i/T0i, i.e., the speed 

of external changes. The second one is the constant a which reflect the thermal inertia of the medium. 

In particular, when the heat capacities ci, and therefore the constant a, are vanishingly small, we obtain 

a “quasi-stationary” solution: we get the exact same formula as in Equations (5) and (6), though here 

the temperatures T0i(t) are assumed to depend on time. This is equivalent to the “quasi-static” 

approximation used in classical thermodynamics. 

We can also consider the opposite situation with the thermal inertia a being extremely large. In this 

case, Equation (11) becomes:  
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(12)

In other words, the temperatures will readjust rapidly to the changing forcing T0i(t) through the 

global function α∞(t) given by Equation (12), even if the heat capacities are infinite. This does not 

seem physically very relevant, and we are here probably outside the validity range of the MEP 

hypothesis. As we will see below, this adjustment may be interpreted in terms of (potentially 

unrealistically) large “implicit heat fluxes” that will enforce a maximum entropy production. This is 

illustrated in the following example. 

3.2. The Two-Box Case with a Step Change 

As a proof of concept for time varying problems, we will first discuss the two-box situation when 

submitted to a step-like change at some given time t = 0. This will allow for a much simpler discussion 

of the physical relevance of the model. To avoid discontinuities, we will use an hyperbolic tangent to 

represent a change that will occur over a characteristic time τ:  

01 01 01 01 02 02 02 02

1 tanh( / ) 1 tanh( / )
( ) ( )        ( ) ( )

2 2
S E S S E St t

T t T T T T t T T T
             

   
 (13)

The model will jump from one equilibrium {T1
S,T2

S} at the start (for large negative times) to a new 

one {T1
E,T2

E} at the end (for large positive times), as given in the previous section, with a transition 

near time t = 0 obtained by solving Equation (11), thus giving the time evolution {T1(t),T2(t)}. As 

discussed above, we might also be interested in the limit case a = 0 (“quasi-stationary” or “quasi-static” 

solution) that will be called {T0
1(t),T

0
2(t)}, and in the limit case a = ∞, noted below {T∞

1(t), T∞
2(t)}.  
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Figure 4 below is presenting the results obtained for a smaller than τ. We see that the computed 

solution behaves as expected, jumping from one equilibrium to the other, with a time delay of order a 

when compared to the “quasi-static” solution {T0
1(t),T

0
2(t)}. The implicit heat flux Q between the two 

boxes also behaves as expected, changing from large values when the temperature gradient is large at 

the beginning, to smaller ones when the gradient is reduced. It is worth emphasizing that, in contrast to 

traditional models, there is here no a priori link between Q and the temperature gradient (T1 − T2). It is 

possible to define a posteriori a heat exchange coefficient k as k = Q/(T1 − T2). In traditional models, 

this ratio is severely constrained by some dynamical processes or even fixed. Here, its time evolution 

can therefore be used to track possible inconsistencies. In Figure 4b, changes in k are rather smooth and 

small. In the quasi-stationary case (dotted blue line), changes in k are vanishingly small (they are 

second order in ∆T/T). 

Figure 4. (a) The time evolution of the two-box temperatures {T1(t),T2(t)} (thick lines,  

T1 in red and T2 in blue) together with the corresponding external forcing {T01(t),T02(t)} 

(thin lines). The limit solutions {T0
1(t),T

0
2(t)} and {T∞

1(t),T
∞

2(t)} are represented by dashed 

lines. (b) The corresponding heat flux q = (Q/b) = (T01 − T1) − a T'1 (thick red line) and the 

ratio q/(T1 − T2) (thick blue), with the quasi-stationary solution as dashed lines. Here we 

have used T01
S = 300 K, T02

S = 280 K, T01
E = 303 K, T02

E = 290 K, τ = 1 and a = 0.3. 

(a) (b) 

A rather different behaviour is observed in Figure 5, when the transition is much more abrupt. Here 

the solution T1(t) first decreases, which is physically quite unexpected since both external forcings 

correspond to warming. In fact T1(t) is first following the T∞
1(t) limit solution before converging 

slowly towards the equilibrium T1
E. The corresponding heat flux shows a very large transient 

associated with the rapid change in the forcing, that cannot be absorbed by the heat reservoirs due to 

the large heat capacities. Accordingly, changes in k are also very large and abrupt. 

But an even more interesting behaviour is obtained in Figure 6. Here, we are in a quasi-symmetrical 

situation, with the warm box being cooled, and the cold box being warmed by approximately the same 

amount. Even when using a very large thermal inertia a, we observe that there is almost no time lag 

between the external forcing T0i(t) and the model response. In fact, independently of the thermal 

inertia, the two limit solutions T0
i(t) and T∞

i(t) become very close. In case of perfect symmetry, the 

difference simply vanishes. Indeed, in this case, it can be seen in Equation (12) that the solution α∞(t) 

is a constant. This implies that the global inverse temperature β(t) is also a constant, and in fact the 

same constant as in the quasi-stationary situation. In other words, the “global temperature Tg” does not 
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change, whatever the internal thermal inertial time scales. Again, this is obviously not quite physically 

relevant. Interestingly, the effect of thermal inertia is fully transfered to the implicit heat flux Q, and 

the effective coefficient k diverges and becomes negative, as shown on Figure 6b. 

Figure 5. Same as Figure 4, with τ = 0.1 and a = 1.0. 

 

Figure 6. Same as Figure 4, with T01
S = 290 K, T02

S = 280 K, T01
E = 281 K, T02

E = 290 K,  

τ = 1 and a = 1.5. 

 

It should be emphasized that, within the MEP principle, there is no a priori reason to constrain k in 

any way. For instance, in a meteorological context it is possible to transport heat “uphill” from cold to 

warmer regions, through latent heat or mechanical energy transports. The MEP principle suggests that 

such apparent local or temporary violations of the Second Law are favoured when the corresponding 

global entropy production is increased. But obviously, it is necessary to discuss the physical relevance 

of such cases. The alternative is to enforce additional constraints (e.g., positivity of k): this is also quite 

straightforward in the MEP context as we will show later. 

3.3. The Two-Box Case with a Seasonal Cycle 

Our initial motivation is linked to the representation of the seasonal cycle in a MEP climate model.  

In this case, the forcing time scale is one year, whereas the largest thermal inertia is associated with 

ocean mixed layer, with a typical value of a of the order of about two weeks to a month. A priori,  

we are here in the situation where inertial time scales are smaller than the forcing changes. This is 

indeed the case in Figure 7 where we have used a simple sinusoidal forcing given by (in Kelvin): 

01 01 01  02 02 02  ( ) cos(2 )       ( ) cos(2 )T t T T t T t T T t        (14)
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As expected, the resulting temperatures {T1(t),T2(t)} lag the forcing with a time scale of order a.  

The amplitude of the response is slightly smaller than in the quasi-stationary case (i.e., without thermal 

inertia), as expected from a damped response. As before, there is a consistent, though non constant, 

relationship between the heat flux Q and the temperature gradient (T1 − T2), with a larger flux when the 

gradient is larger. 

Figure 7. (a) The time evolution of the two-box temperatures {T1(t),T2(t)} (thick lines,  

T1 in red and T2 in blue) together with the corresponding external forcing {T01(t),T02(t)} 

(thin lines) and the quasi-stationary solution (dashed lines). T01 = 300 K, ∆T01 = 3 K,  

T02 = 280 K, ∆T02 = 10 K; (b) The corresponding heat flux q = (Q/b) = (T01 − T1) − a T'1 

(thick red line) and the ratio q/(T1 − T2) (thick blue), with the quasi-stationary solution as 

dashed lines. Here we have used a = 0.1. 

(a) (b) 

When the thermal inertia is larger, as illustrated in Figure 8, for a = 0.5, i.e., when the thermal 

inertia time constant is equal to half the periodicity of the forcing, we observe that the lags are very 

different in the cold box and in the warm one. Again, this appears to be a quite non-physical result.  

We note also that the induced heat flux Q and therefore also the ratio Q/(T1 − T2) become negative 

during the cycle, with heat flowing from the cold reservoir towards the warm one. 

Figure 8. Same as Figure 7, with a = 0.5. 
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But again, the most interesting situation is the almost symmetrical one shown in Figure 9.  

As in the step-like situation, there is no more lag between forcing and response. This is again due to an 

almost constant “global temperature” Tg = 1/β. The rather large thermal inertia leads to quite 

unrealistic heat fluxes. 

Figure 9. Same as Figure 7, with T01 = 290 K, ∆T01 = −9 K, T02 = 280 K, ∆T02 = 10 K, a = 0.5. 

 

4. A Relaxation Formulation 

Seasonal climatic variations are almost symmetrical with respect to the equator. Obviously, the 

above formulation is unlikely to provide reasonable results for a seasonal MEP climate model.  

We therefore need to investigate other possible formulations in order to build such a model. The root 

of the difficulty identified on the above examples (again, beyond the lack of any well-established 

physical justification) is linked to the reduction of the dimensionality of the problem. Indeed, the 

simple MEP formulation outlined above, though quite appealing, reduces a N-dimensional dynamical 

system to a 1-dimensional one that involves only one “global temperature” Tg, with all other 

temperatures being unequivocally linked to it. In the symmetrical 2-box cases, this unique degree of 

freedom is constant by symmetry, and the thermal inertia does not appear in local temperatures, but 

only in implicit fluxes.In fact, any global variational formulation of the problem is likely to lead to the 

same problem. 

It seems therefore important to keep as many degrees of freedom as in the original problem, that is a 

N-dimensional dynamical system. If Equation (1) is to be used, we need to specify how to compute the 

implicit convergences γi as functions of the forcing or state variables. The easiest way to write a 

consistent MEP closure of this problem is to assume a relaxation to the MEP quasi-stationary solution:  

0( )i
i i k i

dT
c R T

dt
   (15)

where γi
0 is the heat convergence associated with the quasi-stationary solution T0

i. This set of equations 

for the energy conservation can equivalently be written as:  

0( ) ( )i
i i k i k

dT
c R T R T

dt
   (16)

As in the previous case, this formulation is likely to be valid for vanishingly small heat capacities ci. 

But now each temperature Ti is a dynamical variable with its own evolution, not necessarily linked to 

the evolution of a single global variable like Tg. This system is no more the maximum of a global 
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integrated entropy production functional, i.e., a stationary point of the Lagrange functional L(Ti,T'i,β) 

written in Equation (7). But the heat fluxes are still obtained by assuming that they are constantly 

driving the temperatures towards the instantaneous MEP state, though each temperature has its own 

inertia associated with local heat capacities, or any other deterministic process. In fact, this is 

somewhat reminiscent of systems close to equilibrium, for which thermodynamical fluxes will tend to 

relax the system towards the maximum entropy state. In the following, we apply this new formulation 

to the two-box model studied before. 

4.1. The Two-Box Case with a Step Change 

As expected, the results are very similar to the ones obtained by the previous method when the 

internal time scale a is smaller than the external one τ, since this situation is close to the  

quasi-stationary one. For a rapid external change, we obtain results show in Figure 10, to be contrasted 

with results in Figure 5. By construction, we do not get the previous non-physical result of a decreasing 

temperature T1(t) during the transition. Furthermore, the variations in the implicit heat flux Q as well as 

the effective coefficient k are much smaller than before. This second formulation behaves therefore 

much more consistently than the first one. 

Figure 10. Same as Figure 5 (τ = 0.1 and a = 1.0) with the relaxation formulation. 

 

Figure 11. Same as Figure 6 (τ = 1.0 and a = 1.5) with the relaxation formulation. 

 

In case of the almost symmetrical forcing, we now also have a physically consistent lag between the 

forcing and the model response, as shown in Figure 11. It should be noted that the implicit heat flux Q 

is now chosen to be equal to its quasi-stationary value. Compared to Figure 6, its changes are now 

monotonous. But, as before, it does not change in accordance with the temperature difference  
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T2(t) − T1(t), hence a widly varying effective coefficient k that becomes negative, i.e., with a heat flux 

from the cold box to the warm one, in contradiction with the Second Law. It is of course quite easy to 

constrain the heat flux to flow in the direction of the temperature gradient, which gives the solution 

shown in Figure 12. 

Figure 12. Same as Figure 11 with k constrained to be positive. 

 

4.2. The Two-Box Case with a Seasonal Cycle 

When applying a periodic forcing, in the case of a large thermal inertia, we obtain the results shown 

in Figure 13, that should be compared to Figure 8. Now the lags between forcing and response are 

similar in both boxes, by construction. Though they still vary quite significantly, the heat flux Q and 

the corresponding effective coefficient k are now well-behaved. 

Figure 13. Similarity to Figure 8 (a = 0.5). 

 

When applying a symmetrical forcing, we obtain the results shown of Figure 14, that should be 

compared to Figure 9. Again, in this formulation, we now recover physically relevant lags between 

forcing and response. As above, the heat flux Q may flow from the cold box to the warm one,  

in contradiction with the Second Law something which could easily be corrected by applying the 

proper additional constraint as for Figure 11. 
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Figure 14. Same as Figure 9.  

 

5. Conclusions 

We have extended a simple MEP model to time-varying problems, beyond the classical  

“quasi-stationary” or “quasi-static” cases. We have shown that the formulation of such an extended 

MEP model might lead to non-physical situations in our case study, and that a relaxation formulation is 

more likely to provide physically consistent results than a simple straightforward application of the 

MEP principle. This is particularly true when the internal inertial time scales are comparable to or 

larger than the rate of the external changes, in which cases the internal dynamics needs to be more 

explicitly represented. The formulations presented here can be easily adapted to accommodate for 

additional constraints on the dynamics, for instance with the requirement that heat fluxes should flow 

in the direction of the temperature gradients (i.e., k > 0). 

Our goal was to define a framework for representing a seasonal cycle in a MEP climate model.  

The relaxation formulation outlined in this paper appears to be a reasonable basis in this direction.  

The thermal time scale of the ocean mixed layer being of the order of two weeks over the continents, 

to about one or two months above the oceans [18], we will remain close to a quasi-stationary situation. 

Such a seasonally varying MEP climate model should therefore provide reasonable results without any 

assumption on the dynamics of the system, somewhat similarly to the annual averaged model first 

presented by Paltridge [1]. 
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