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Abstract: Assessing spatial model performance often presents challenges related to the 

choice and suitability of traditional statistical methods in capturing the true validity and 

dynamics of the predicted outcomes. The stochastic nature of many of our contemporary 

spatial models of land use change necessitate the testing and development of new and 

innovative methodologies in statistical spatial assessment. In many cases, spatial model 

performance depends critically on the spatially-explicit prior distributions, characteristics, 

availability and prevalence of the variables and factors under study. This study explores the 

statistical spatial characteristics of statistical model assessment of modeling land use 

change dynamics in a seven-county study area in South-Eastern Wisconsin during the 

historical period of 1963–1990. The artificial neural network-based Land Transformation 

Model (LTM) predictions are used to compare simulated with historical land use 

transformations in urban/suburban landscapes. We introduce a range of Bayesian 

information entropy statistical spatial metrics for assessing the model performance across 

multiple simulation testing runs. Bayesian entropic estimates of model performance are 

compared against information-theoretic stochastic entropy estimates and theoretically-derived 

accuracy assessments. We argue for the critical role of informational uncertainty across 

different scales of spatial resolution in informing spatial landscape model assessment. Our 

analysis reveals how incorporation of spatial and landscape information asymmetry 
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estimates can improve our stochastic assessments of spatial model predictions. Finally our 

study shows how spatially-explicit entropic classification accuracy estimates can work 

closely with dynamic modeling methodologies in improving our scientific understanding of 

landscape change as a complex adaptive system and process. 

Keywords: artificial neural networks; land use change; Bayesian information;  

Bayesian entropy; maximum entropy 

 

1. Introduction 

The transformation of landscapes by humans is well known to be a complex phenomenon directed 

by a host of socioeconomic drivers interacting at multiple spatial and temporal scales [1]. The spatial 

patterns of land use land cover that result from human activity on the landscape are in turn complex 

and very heterogeneous [2]. In many ways, the process and patterns inherent in landscape 

transformations can be viewed as stochastic. Understanding landscape transformation is considered 

one of the eight grand challenges in environmental research [3] as changes in land use land cover 

affect a variety of environmental parameters, such as water quality [4], hydrologic [5] and 

hydroclimatic [6] dynamics, energy balances at the land-atmosphere boundary [7], local and regional 

climate patterns [8], biodiversity [9],  and biogeochemical cycles [10]. Thus understanding landscape 

transformations is important to developing predictive tools that can be used to determine 

environmental impacts of future landscape transformations. 

Unfortunately, traditional statistical accuracy assessment techniques of land change models, although 

essential for validating observed and historical land use changes, fail to capture the stochastic character 

of the dynamics that are simulated [11], especially across multiple scales. Here, we propose new metrics 

and indicators that provide the modeler the ability to extract higher-order information dynamics from 

landscape transformation simulations. Previous work in landscape transformation simulation assessment 

has focused on simple contingency table metrics that measure the relative differences of true positive, 

false positive, true negative and false negative locations [12–14], measures of correct quantity of  

change [11], the pattern of change [13], and/or the relative cost of errors across the simulation  

domain [8]. Although much progress has been made in this area in the last decade, it is also well 

recognized that adequate measures of the simulation itself and model output still need development [15]. 

The research presented here provides a detailed guide for assessing the level of entropy of model 

simulations of landscape transformation. The term information entropy, originates from the 

information-theoretic concept of entropy, conceived by Claude Shannon on his famous two articles of 

1948 in Bell System Technical Journal [16], and expanded later in his book “Mathematical Theory of 

Communication” [17]. Since the mid-20th century, the field of information theory has experienced an 

unprecedented development, especially following the expansion of computer science in almost every 

scientific field and discipline. The concept of entropy in information systems theory allow us to 

allocate quantitative measurements of uncertainty contained within a random event (or a variable 

describing it) or a signal representing a process [18,19]. The literature on assessing spatially explicit 

models of landscape transformation has made substantial steps during the last few years. Many of the 
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metrics and assessment techniques in the past have been treating land use predictions as complex 

signals, and models themselves often are treated as measurement instruments, not different from 

signal-measurement devise assessment in physics experiments [20]. Spatially explicit methods and 

assessment techniques are used in many remote sensing applications [21], wildlife habitat models [22], 

predicting presence, abundance and spatial distribution of animal populations [23], and analyzing the 

availability and management of natural resources [24,25]. In a more theoretical level of analysis, 

spatially explicit methods of model assessment have been used for testing hypotheses in landscape 

ecological models [26,27], addressing statistical issues of uncertainty in modeling [25], or analyzing 

landscape-specific characteristics and spatial distributions [28]. 

Methodologies and techniques as the ones referenced above often maintain and preserve traditional 

statistical approaches to model assessment. Most likely, they test the limitations and assumptions of 

statistical techniques originally designed for analyzing data and variables that do not exhibit spatially 

explicit variation. The majority of studies where spatially explicit methodologies are used most often 

involve relatively simple or linear statistical analyses [29,30], albeit some recent studies have incorporated 

entropy-based statistical considerations in land use transition modeling analyses before [31]. While in 

recent years the assessment of model complexity has been an issue of analysis [32,33], studies have yet 

to include spatial complexity and assessment of stochasticity as an essential element of evaluation and 

analysis. We argue that spatial complexity by itself is not often enough to fully describe and represent 

the complex system dynamics of coupled human and natural systems. The introduction of spatial 

complexity in advanced dynamic modeling environments requires the consideration of stochasticity as 

an essential element of the modeling approach—balancing traditional spatial assessment and game-

theoretic approaches to modeling. The level of uncertainty and incomplete information embedded in 

the components of a coupled natural human—systems often necessitates the introduction of stochasticity as 

a measurable dimension of complexity [34,35]. Stochastic modeling is widely used in simulating 

complex natural and ecological phenomena [36], population dynamics [37], spatial landscape 

dynamics [38], intelligence learning and knowledge-based systems [39], economic and utility 

modeling [40,41], decision-making, Bayesian and Markov modeling [42,43] and many other 

associated fields in science and engineering applications but has yet to be applied in landscape 

transformation modeling 

A natural extension of the related techniques and methodologies would be the development and 

introduction of spatially explicit, stochastic methods of accuracy assessment for simulating complex 

phenomenon. In recent years, methods, techniques, and measures of informational entropy exceed the 

single dimensionality of traditional statistical techniques (i.e., measuring uncertainty of single random 

events or variables) and will research moving to analyzing multi-dimensional signals. Furthermore, 

applying the techniques of spatial entropy [44,45] will allow landscape transformation modelers to 

analyze entropy patterns in two-dimensional space. Within these lines, we introduce a case study of 

land use change in the South-Eastern Wisconsin region, and compare the historical empirical data with 

simulations. We argue that estimating and interpreting the results of a stochastic model is not simply a 

question of model calibration, but should incorporate considerations of stochasticity and specificity of 

the historical and predicted datasets used for the analysis. The spatiotemporal distribution and 

frequency of the events under study (i.e., land use change transitions), require study of the prior and 

posterior informational context and content under which those transitions occur and emerge. For 
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example, issues of spatial emergence [46,47], residential urban and suburban locational patterns of 

development [48–51], alternative scenarios and trajectories of spatial change [52,53], etc., provide 

some insight on the multitude of dimensionality and stochasticity embedded within the complex 

coupled human-environmental system of interactions related to landscape transformation. 

The analysis provided in this paper aims to provide a suite of spatially explicit metrics that go 

beyond traditional statistical calibration and parameter estimation of model predictions, but attempts to 

provide a statistically sound and comprehensive insight into information-theoretic aspects of the 

modeled phenomena under study, and explore the parameter space and confines of our predictions. We 

will show that often it is not enough to ask how well a certain model predicts historical transitions, but 

we need to determine how well our posterior model estimations are performing given our prior 

information and ability to predict such transformations. 

2. Case Study Description 

The study presented here is based on simulating historical urban spatial dynamics using Artificial 

Neural Network (ANN) tools applied to a large metropolitan area of South-Eastern Wisconsin (SEWI) 

located in the Midwest U.S.A The details of the simulation can be found in a recent paper by 

Pijanowski et al. [14], where the modeling dynamics and a comprehensive description of the LTM 

modeling mechanism and experimental design is deployed. The nature of landscape transformations is 

described in Pijanowski and Robinson [2]. Description of the LTM model is also provided in 

Pijanowski et al. [13,54,55]. 

2.1. Sampling Methodology 

The SEWI project area includes the city of Milwaukee and its wider suburban area [56]. The land 

use changes that occurred in the SEWI region during the period 1963–1990 are considerable. Most 

urban growth has taken place in the suburban metropolitan Milwaukee region, and the areas around 

medium and large cities in the region (Figure 1). The county of Waukesha, located in the west side of 

the city of Milwaukee, has witnessed the majority of suburban changes, but highly scattered urban and 

suburban changes have occurred in the remaining counties both to the north (Washington and Ozaukee 

counties) and south (Walworth, Racine and Kenosha counties) of the city of Milwaukee. The large size 

of the area under study, and the enormous differences in rates of urban change allows us to test the 

ability to perform extensive training and learning simulations using the LTM applied across a range of 

areas experiencing different urbanization rates To address this test of the robustness of our approach, a 

comprehensive sampling methodology has been implemented (see also Pijanowski et al. in review). 

The regional extent of the SEWI area was divided into equal-area square boxes of  

2.5 square kilometers (or 6,889 cells of 30 m2 resolution). The square sampling boxes vary in both the 

number of cells that experienced urban change during the 1963–1990 period, and the amount of 

exclusionary land zones (urban zones in 1963, paved roads, water bodies, protected areas, etc.). Both 

parameters affect the modeling performance and the ability to assess comparatively the accuracy of the 

modeling predictions.  
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Figure 1. Historical urban changes (1870–2000) and land use changes in the SEWI region, 

1963–1990. 

 

While statistical techniques can be used to model specific exclusionary zoning, as within a Markov 

transition probability framework, such as the one proposed by Sun et al. [31], the LTM modeling 

framework [57] treats such zones as external to the analysis and uses a form of masking layer to 

achieve such exclusion. Theoretically, such exclusionary zones can become subject to urban transitions 

if their exclusionary properties are lifted (e.g., rezoning transportation areas or roads), yet, such 

transitions are unlikely to happen within the modeling timeframe, and consequently unlikely to be part 

of urban planning. A random sampling scheme was implemented for this modeling exercise ensuring 

comparative assessment of the quantities and spatial patterns of land use change in the region. This 

approach involved the following steps. First, the regional sampling boxes were ranked and classified 

using a combined index of both the proportion of urban change and the proportion of exclusionary 

zone within the sampling box. The resultant combined ranking index takes into account both changes 

within the sampled boxes and represents the ratio between the percentage of urban change and the 

percentage of variation in exclusionary zone areas (note that in the LTM, an exclusionary zone is 

defined as the map area where model pattern training and simulation are not implemented, i.e., these 

are areas that are not candidates for landscape transformation. Examples of these zones include map 

areas that are already in non-transitional uses, such as current urban, road and transportation system 

extents; preserved natural areas, etc.), across the sampled boxes: 

% ( )

% ( )




s

urban
I

exclusionary
 (1)

where s = the number of area sampling boxes in the landscape. 

From the continuous sampling index values derived from the previous step, two threshold values of 

the sampling index were used to define three classification index regions for random sampling. The 

sampling boxes were placed into three sequential classification pool groups (group A, B and C), 

according to the following rules (thresholds): 



Entropy 2013, 15 2485 

 

 

A 0 0.5

  :  B 0.5 1

C 1

 
  
 

s

s

s

if I

Sampling Pool Group if I

if I

 (2)

The sampling pool classification in Equation (2) follows a nested hierarchical scheme, that is, the 

prospective sampling pool of each consequent group is contained in the previous one (i.e., sampling 

pool for group C is fully contained in group B’s sampling pool, and sampling pool for group B is fully 

contained within group A’s sampling pool). Such a classification scheme allows the testing of the 

effects of increased exclusionary zone area to the model performance in the simulations. Sampling 

pool group A contains all boxes in the sampling region. Sampling pool group B contains only 

sampling boxes that have no more than double the percentage of exclusionary area than the percentage 

of urban change area. Finally, sampling pool group C contains only the sampling boxes that have no 

more than equal or more percentage of urban change area than exclusionary zone area within them. 

The members (sampling boxes) of each sampling pool group (A, B, and C) have been ranked and 

assigned to the 30th percentile according to their ascending proportion of urban change within the 

sample box. From each 30-tile, one sampling box was randomly selected using a random number 

generator algorithm. The seed of the random number generator was renewed before each sampling 

operation. The final outcome of the random sampling procedure was three sampling groups (varying 

on the ascending ratio of urban to exclusionary zone area), containing thirty 2.5 square kilometer 

sampling boxes each (varying on the percent of urban change), shown in Figure 2 below: 

Figure 2. SEWI random sampling groups A, B and C. 

 

2.2. Simulation Modeling Parameterization 

The LTM model requires three levels of parameterization: (a) the simulation drivers of land use 

change; (b) the training and testing neural network pattern creation; and, (c) the network simulation 

parameter definition. Details on the theoretical neural network simulation parameterization of the LTM 

are reported in the literature by Pijanowski et al. [13,54]. Explicit description of the modeling 

enterprise in the SEWI region are also reported in the Pijanowski et al. [14] paper. In short, eight 
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simulation distance drivers of land use change have been used to parameterize the LTM simulations 

(urban land in 1963, historical urban centers in 1900, and distance to rivers, lakes and water bodies, 

highways, state and local roads, and Lake Michigan). The simulation model uses every other cell  

(50% of the cells) as neural network training pattern, and the entire region for network model testing. 

Finally, the network is trained for 500,000 training cycles by resetting and iterating the network node’s 

weight configuration every 100 training cycles, and outputting the network node structure and the 

mean square error of the network convergence every 100 cycles in a file. Thus for each of the  

90 sampled boxes, the simulation output a total of 5,000 network files and MSE values for a grand 

total of 450,000 simulation result files. For simplicity of presentation, in each of the sampled boxes, 

forty-four of these network output files are selected for visualization of the results. Due to the nature of 

the neural network learning dynamics, learning patterns follow a negative exponential increase through 

training iterations. Thus, a negative exponential scale has been chosen to visualize the results (more 

frequent samples in lower network training cycles, less frequent samples in higher training cycles). 

The simulation results for urban change predictions in 1990 are assessed against historical land use 

changes in 1990 from existing data provided by the Southeastern Wisconsin Regional Planning 

Commission [56]. 

3. Simulation Accuracy Assessment Methodology 

The paper by Pijanowski et al. [14] reports three relative conventional statistical metrics for the 

quantitative accuracy assessment of the model performance. Namely, the percent correct metric 

(PCM), the Kappa metric (K), and the area under the receiver operator characteristic curve (AROC) 

metric. The PCM metric is a simple proportional measure of comparison, while the K and AROC 

metrics take into account the confusion matrix and the omission and commission errors of the 

simulation. In addition to these conventional metrics (the discussion involving these three metrics is 

largely omitted from this paper. The reader can consult the corresponding literature, and the 

Pijanowski et al. paper [14] for more information. Only their value and performance for the simulation 

experiments in the SEWI region will be reported) three alternative sets of metrics are presented here. 

The first complementary set is the diagnostic odds ratio for positive (predicted change) and negative 

(predicted no change), the second complimentary set are the Bayesian predictive value of a positive 

and negative classification (PPV and NPV) metrics, and the third set is what we call the Bayesian 

conversion factor (Cb) metric, combined the second set using several estimation criteria. These 

alternative sets of metrics measure a stochastic level of information entropy (hereafter simply as 

entropy) in the simulated land use change system. They represent different aspects or dimensions of 

the predictive value of entropy embedded in the simulation model results, and thus, can enhance our 

understanding of inherent simulation dynamics and the entropy of spatial patterns resulting from land 

transformation (Figure 3). 
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Figure 3. An overview of the analysis sequence process provided in this study. The value 

of the spatial accuracy assessment and the reduction in classification uncertainty increases 

from left to right. 

 

3.1. Basic Definitions 

Spatial accuracy assessment requires three major assumptions. The first assumption focusses on the 

underlying process being simulated. In any given landscape, two theoretical observers (e.g., a simulation 

model and an observed historical map, or a simulation model and another simulation model, or an 

observed historical map and an alternative historical map) are assumed to be observed properties of the 

same underlying process (i.e., represent “real” land transformation). The second assumption is based 

on the observers themselves. Observers are assumed to face a theoretical level of uncertainty 

(regardless the degree of, small or large). A simulation model is facing uncertainty on its predicted 

landscape as a part of the problem formulation (and thus a trivial assumption), but observed historical 

landscapes are also subject to an implicit degree of uncertainty (i.e., measurement errors, remote 

sensing classification errors, etc.). These degrees of uncertainty are also not necessarily equal between 

the two observers. The third assumption involves the assessment process itself. It assumes that the two 

observers acquire their observations (classification) independently from each other. In other words, the 

historically observed land use map and the simulation results are independent (or, the modeling 

predictions are not a function of the real change in the maps). The independence assumption is easy to 

determine in the case of assessing a simulated and an observed landscape, but it becomes nontrivial 

when non-parametric analysis is used to compare two modeled landscapes, in cases where the same 

model with a different configuration is used. 

The parametric approximation of spatial accuracy assessment is based on the confusion matrix [58,59] 

shown in Table 1. For binary land use changes (i.e., presence-absence of a transition), the confusion 

matrix becomes a 2 × 2 square matrix with exhaustive, and mutually exclusive elements. 
  

Bayes Convergence 
Factor (Cb)

•Kernel density estimation
•Dominance criterion
•Estimating prevalence 
threshold for accuracy 
assessment classification

Bayes Predictive 
Values (PV)

•Positive Predictive Value 
(PPV)

•Negative Predictive Value 
(NPV)

•Density estimation

Diagnostic Odds 
Ratio (DOR)

•Likelihood ratio of a 
positive classification 
(LR+)

•Likelihood ratio of a 
negative classification  
(LR-)
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Table 1. Confusion matrix for binary spatial accuracy assessment. Simulated versus 

historical land use change (TN: true negative, TP: true positive, FN: false negative, FP: 

false positive, SN: simulated negative, SP: simulated positive, RN: real negative, RP: real 

positive, GT: grand total) 

 Observed  

S
im

u
la

te
d

  0 1  

0 TN FN SN 

1 FP TP SP 

  RN RP GT 

A nonparametric approximation of spatial accuracy assessment employs the use of the confusion 

matrix in somewhat more complex forms. It assesses the sensitivity coefficient as the observed fraction 

of agreement between the two assessed landscapes, or, in other words, the probability of correctly 

predicting a transition when this transition actually occurred in the observed historical data. 

Symbolically (S = simulated, R = real): 

Pr( 1 | 1)   

TP

sensitivity S R
TP FN

 (3)

Similarly, the specificity coefficient in Equation (4) represents the observed fraction of agreement 

between two assessed maps, or, in other words, the probability of correctly predicting the absence of 

transition, when this transition is absent from the historically observed data. Symbolically: 

1 Pr( 0 | 0)    


TN
specificity S R

TN FP
 (4)

A theoretically perfect agreement between the two observers would require that: 

Pr( 1| 1) Pr( 0 | 0)  or,  1      S R S R sensitivity specificity  (5)

The degree of deviation from the rule as defined in Equation (5), represents the degree of deviation 

from a perfect agreement between the two classifications, or the degree of disagreement between a 

modeled (simulated) and an observed (historical) landscape transition. The theory of statistical 

probabilities suggests that a random (fully uncertain) classification between the probabilities denoted 

by sensitivity and specificity coefficients would be: 

1
2

 sensitivity specificity  (6)

In other words, for each classification threshold (e.g., amount of urban change) in our assessment, a 

given cell has an equal (prior) chance (50%) to undergo a land use change transition, not unlike the 

tossing of a coin. 
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3.2. Bayesian Diagnostic and Predictive Metrics 

3.2.1. Diagnostic Odds Ratio (DOR) 

Using the definitions of sensitivity and specificity in the previous session, we can compute the 

likelihood ratio metric [60,61]. In a binary (Boolean) classification scheme, there are two forms of 

likelihood ratios: the likelihood ratio of a positive classification (LR+), and the likelihood ratio of a 

positive classification (LR-). The likelihood ratios are connected with levels of sensitivity and 

specificity directly [62] as such: 

1and
1

   

sensitivity sensitivityLR LR

specificity specificity
 (7)

The likelihood ratios obtained for a binary classification can be used to compute the value of an 

index for diagnostic inference, namely, the diagnostic odds ratio (DOR) index. The DOR represents 

simply the ratio of the positive to the negative likelihoods: 

(1 ) (1 )
 

   
sensitivity specificityLRDOR

LR specificity sensitivity
 (8)

The DOR can be interpreted as an unrestricted measure of the classification accuracy [62], but 

suffers from serious limitations, since both LR+ and LR- are sensitive to the threshold value  

(cut-off point) of the classification [63]. Thus, DOR can be used as a measure of the classification 

accuracy in cases where, (a) the threshold value of the binary classification is somewhat balanced 

(around 0.5), or; (b) when comparing classification schemes that have the same threshold value  

(e.g., in the case of simulation runs that are unbalanced but face similar threshold values).  

3.2.2. Bayesian Predictive Values for Positive and Negative Classification (PPV/NPV) 

In place of the simple and practically limited DOR index to assess the robust spatial model accuracy, 

a Bayesian framework of assessment can be used. It uses the likelihood ratios (LR+ and LR−) to estimate a 

posterior probability classification based on the information embedded in the dataset. Strictly 

speaking, the model accuracy obtained by the confusion matrix (and consequently the sensitivity and 

specificity values), represents a prior probabilistic assessment of the model’s accuracy. This assessment is 

subject to the threshold value of the classification scheme. Obtaining a classification scheme that is 

robust enough to allow us to estimate model accuracy for a range of thresholds requires the 

computation of the conditional estimates [64]. This represents a posterior probabilistic assessment of 

the model’s accuracy, which can be achieved using Bayes’ Theorem. Computing the posterior Bayes 

probabilities for a positive and negative classification can be achieved using a general equation form: 

Pr( ) Pr( )Pr( | )
Pr( ) Pr( ) Pr( ) Pr(1 )




 

 
   

x cPPV x c
x c x c

 (9)

and: 

Pr( ) Pr(1 )Pr( |1 )
Pr( ) Pr(1 ) Pr( ) Pr( )




 

   
   

x cNPV x c
x c x c

 (10)

where: 
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PPV: the Bayes predictive value of a positive classification metric;  

NPV: the Bayes predictive value of a negative classification metric;  

x+,x-: the positive and negative values of the classification, and;  

c: the prevalence threshold for which a value is positive if it is larger or equal from (computed using 

a ML nonparametric estimation). 

The PPV and NPV values can be computed from the sensitivity and specificity values (and thus 

from the confusion matrix) as follows: 

(1 ) (1 )


    
sensitivity prevalencePPV

sensitivity prevalence sensitivity prevalence
 (11)

and: 

(1 ) (1 )
(1 ) (1 )

  
    

specificity prevalenceNPV
specificity prevalence sensitivity prevalence

 (12)

In reality, the nature of the relationship between Bayesian predictive values and prevalence is likely 

to be nonmonotonic and can be defined by the posterior Bayesian estimator properties, namely the 

posterior density estimation [60,65]. 

To understand the role of the posterior Bayesian estimation, a theoretical problem formulation is 

provided in Figure 4. Part (a) of the figure provides a hypothetical prior density estimation of a binary 

classification scheme across a continuous range of classification thresholds (prevalence). For a given 

transitional change (e.g., presence of land use change), the prevalence threshold ranges from zero 

(purely negative) to one (purely positive). The left density curve represents the absence of a transition 

(negative classification), while the right density curve represents the presence of a transition (positive 

classification). As explained in the first section, when we lack any additional information about the 

classification threshold, the best uncertain choice (maximum entropy classification) is to assume an 

equal probability between the two classes (present, absent). In most of the cases involving spatial 

accuracy assessment, an uncertain prior is the best choice. Unlike the ROC curve method, where 

accuracy is assessed using a nonparametric estimation (without the use of a distribution function), the 

Bayesian estimation is based in a parametric assessment of the classification accuracy (or, at least a 

semiparametric assessment). In such an uncertain classification, we can vary only the spread of the 

distribution (i.e., the width of the density distribution) for each of the classes, but not the location of 

the threshold. As a consequence, the amount and proportions of the false negative (FN) and false 

positive (FP) allocations are affected only by the difference of the mean value of each of the transitions 

to the threshold. The more this difference is positive, the more likely it is for the transition to be 

present, while the more the difference is negative, the more likely it is for the transition to be absent. 
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Figure 4. Properties of the Bayesian estimation in binary classification scheme: (a) prior 

density estimation; (b) posterior density estimation, negative prevalence; (c) posterior 

density estimation, positive prevalence 

 

Thus, a posterior density Bayesian estimation allows us to estimate the probability densities of the 

classifications by adjusting the “true” height and “true” width of the density distributions. 

We can perform a nonparametric estimation of the probability density function in the data by using 

a kernel density estimator such as the Epanechnikov stochastic kernel estimation [66]. The general 

equation of the kernel density function is [67,68]: 

1

1ˆ ( )


 
 
 

 
N

i
K

i

x X
f x K

Nh h
 (13)
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where: 

fk : an unknown continuous probability density function; 

h: a smoothing parameter; 

K(z): a symmetric kernel function, and; 

N: the total number of independent observations of a random sample XN. 

The equation for the Epanechnikov kernel density function is [67]: 

23 1(1 ) 5 5
( ) 54 5

0







   


z if z
K z

otherwise
 (14)

The choice of the Epanechnikov kernel density estimator is based on the high efficiency of this 

form in minimizing the asymptotic mean integrated square errors, AMISE [69,70], and it is often used 

in Neural Network computational learning [71]. While other estimators can be used to perform such 

kernel density estimation, the Epanechnikov estimator represents the most widely used and simpler 

form of the family of estimators. 

3.2.3. Bayesian Convergence Factor (Cb) 

It is possible to derive an alternative accuracy metric that combines the two Bayesian predictive 

values, PPV and NPV, into a single, unified coefficient. The use of such a coefficient to measure 

classification and model accuracy is that it allows us to estimate not only a unique prevalence 

threshold, but also an optimal prevalence region for which our estimated accuracy is high for both 

positive and negative classifications. The analysis provided in the previous paragraph in the case of 

PPV and NPV metrics depends mainly on the choice of the kernel density estimation function and the 

continuous interval bandwidth used [67,72], or any other probability density function used for 

estimation. A unified Bayesian coefficient that measures the level of convergence between positive 

and negative predictive values permits us to derive a more robust prevalence region that smoothes the 

effect of density estimation selection. In other words, it provides us with a more global measure of 

model and classification assessment. 

We have chosen to call this coefficient the Bayes convergence factor, Cb. A simple form of the 

factor can be defined as: 

 1

1 ( )





  


  b

PPV NPV if PPV NPV
C

NPV PPV if PPV NPV
 (15)

A higher level of the Bayes convergence factor thus denotes a higher probability of convergence 

between a positive and a negative predictive value or probabilities of change. Because of the 

probability properties of such a coefficient, and the fact that always PPV + NPC ≤ 1 (the probability of 

change cannot exceed 1.0), the range of the Cb coefficient will be: 0 ≤ Cb ≤ 1.0. This simple form of 

the Bayes convergence factor is shown in the theoretical curve Cb (A) of Figure 5a. We can see that the 

allocation of the positive and negative classification probabilities in the Cb function represents a form 

of a triangular density function with minimum value of zero, maximum value of 1.0, and mean value 

of 0.5. A triangular density function provides a minimal amount of information about the relationship, 

configuration and pattern between the positive and negative predictive values in a model. As shown in 
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Figure 5a, these predictive values by themselves may be better represented by non-linear relationships 

(e.g., kernel density estimators). Thus, a better convergence factor can be found that reflects a degree 

of nonlinearity in the modeling classification assessment. 

Figure 5. (a) Theoretical distribution density functions for the Bayes convergence metric (Cb): 

(A) triangular; (B) adjusted normal; and (C) asymmetric normal. (b) Variations of the 

asymmetry parameter, α, in the expected normal form of the Bayes convergence factor. 

 

An alternative form of the Bayes convergence factor can be symbolically calculated using a normal 

density distribution function, adjusted to a continuous scale between 0 and 1.0. The equation of the 

Normal density function is: 

2

2
( )

21ˆ ( , , )
2


 



 
 
  
 



 
x

Nf x e  (16)

For a normal distribution with x = 0 and σ = 0.5, we can model the behavior of the mean value,  

by setting: 

  PPV NPV  (17)

and thus: 

 

 

2

2

2

0
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2

1ˆ (0, ,0.5)
2 (0.5)

0.797885



 
      

 
 
 

 


 

  

 

PPV NPV

N

PPV NPV

f PPV NPV e

e

 (18)

We can also adjust for the coefficient scale (0 to 1.0) by multiplying the previous equation by a 

normalization factor: 

1 0.797885
2

  (19)

The adjusted normal form of the Bayes convergence factor, can expressed as: 
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 22  PPV NPV
bC e  (20)

The adjusted normal density distribution function of the Cb coefficient can be seen as the curve Cb (B) 

of Figure 5(a), and in our data can be estimated by a Normal or Epanechnikov kernel density function. 

The previous two forms of the Cb metric assume implicitly that the combined effect of the positive 

and negative classification processes in our model is symmetric toward achieving a better model (and 

classification) accuracy. It is appropriate for modeling landscape transformations where the presence 

of a transition implies the absence of a negative transition. In many spatial modeling processes, 

simulating binary change with such an implicit assumption cannot be made easily. For example, a 

model (such as LTM) that simulates land use change is parameterized and learns to recognize patterns 

on drivers of change related to a positive land use transition effect only. Model training and testing 

based on drivers of the transitional presence does not necessarily convey information on the 

probability of the absence of such a transition, as it is likely that other or additional drivers of the 

absence of the transition may be in effect over an ensemble of landscapes. Consequently, we can 

derive a better form of the Bayes conversion function by assuming a biased or asymmetric join 

distribution among the predictive values of positive and negative classification. Such an asymmetry 

would favor more positive than negative classifications, assuming that the model learns more about the 

transitional patterns from a combination of a high positive and low negative predictive value, rather 

than from a high negative and low positive predictive value (since the sum of the predictive values 

equals 1). The latter is especially important in estimating empirical distributions derived from unbiased 

real-world data, which is clearly in the SEWI case study. The amount of area that undertakes urban 

land use transition in the data is considerably less than the amount of area that observes an absence of 

such transition, and implementing an asymmetric Bayesian prior distribution would assign more 

weight in the positive (presence of transition) than in the negative (absence of transition) land areas. 

We can formulate such an unequal conversion function by modifying the mean central tendency of 

the previous form, Cb (B). In other words, by simulating a different mean for the adjusted normal 

distribution function. We can call this form, adjusted asymmetric normal density distribution, and for 

the same numerical parameters, x = 0, and σ = 0.5, we can simulate the behavior of the mean value: 

     PPV NPV  (21)

where, α is the degree of asymmetry of our distribution (0 ≤ α ≤ 1). In other words, the parameter α 

denotes the degree of bias in terms of a theoretical least-cost function, or the relative informational 

balance in our model from a positive to negative predictive value. 

The new asymmetric normal distribution will be: 

 
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e

 (22)

and, after adjusting for scale normalization, the final Bayes convergence factor will be: 
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 22    PPV NPV
bC e  (23)

For varying levels of the parameter α, the shape of the latter convergence factor is shown in Figure 5b. 

For α = 0, the equation yields the symmetric normal form of the convergence factor (i.e., shape Cb (B) 

in Figure 5a), while, for α = 1, the equation yields a full asymmetric normal form of the convergence 

factor [i.e., shape Cb (C) in Figure 5(a)]. In an experimental dataset, any form of asymmetric normal 

distribution form of Cb (i.e., for any parameter α) can be estimated by a Normal of Epanechnikov 

kernel distribution function. 

4. Results and Discussion 

In the case of the SEWI region simulation runs, the computed DOR can be used to compare 

classification performance across training cycles (same areas, and same classification thresholds), but 

not across area groups or different simulation boxes. The results shown in Figure 6a signify the 

importance of pattern learning (training) process of improving the classification accuracy in the SEWI 

region experimental simulations. 

The results for the PPV and NPV metrics obtained for the SEWI region and the three simulation 

area groups are shown in Figures 6b,c. Simulation area group C has consistently the higher PPV and 

the lowest NPV throughout the training exercise, a fact that signifies a higher model performance level 

than the ones achieved by simulation area groups A and B. 

Figure 6. (a) Diagnostic Odds Ratio (DOR) index across LTM training cycles in the SEWI 

region. (b) Bayes probability of change given a positive classification (PPV). (c) Bayes 

probability of change given a negative classification (NPV) metric results by simulation 

group in the SEWI region 
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Measuring and treating PPV and NPV as separate metrics of model performance is a rather trivial 

operation, and it is not a very useful or informative tool in assessing spatial model accuracy. However, 

by combining the PPV and NPV metrics into a single graph, we can illustrate the dominance relationships 

and dynamics over an expected prevalence threshold value (i.e., prevalence = 0.5, denoting an 

uninformative prior for the Bayesian classification). Figure 7 shows the dominance relationships 

between PPV and NPV for increasing LTM training cycles. 

Figure 7. Dominance relations between Bayes PPV and NPV metrics: (a) area group A; 

(b) area group B; (c) area group C. 
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In the simulation area group A, the model accuracy is based mainly on the dominant negative 

classification (although this dominance fades over the training process). The accuracy in simulation 

area group B is based on an unstable equilibrium between positive and negative classification 

(especially between 20,000 and 250,000 training cycles), although the overall accuracy is still 

supported by a dominant negative classification scheme. The model accuracy in simulation area C 

depends on a more desirable classification scheme, since after the first 10,000 cycles model accuracy 

depends consistently on a positive classification. 

The analysis of the latter results is based on an expected, i.e., balanced prevalence threshold. As 

explained in the methodology section above, the relationship between Bayesian predictive values and 

prevalence is likely non-linear and a posterior Bayesian density estimator can be used to define this 

relationship more precisely. 

The Bayesian estimation adjustment of the “true” values of the height and width of the SEWI 

empirically obtained distributions is shown in Figure 4 of the previous session. In Figure 4b, the 

changes in the density distributions for the threshold classes shifts the threshold prevalence value 

disproportional to the size and spread of each of the distributions. The posterior Bayesian density 

estimates allow us to evaluate the mean and variance of a new, “informative” prevalence threshold 

(shown with dotted line and shaded areas in Figure 4b). 

The empirically obtained relationship between prevalence and the level of the PPV/NPV is shown 

in Figure 8. The y-axis of the graph represents the prevalence level (classification threshold), while the 

x-axis represents the level of the predictive value (PPV or NPV). The points that belong to the PPV 

and NPV are color-coded. The data points correspond to all sampled simulation runs (44 sampled 

training cycles for each of the 90 boxes in groups A, B and C, a total of 3,960 simulation run results). 

The solid lines in Figure 8 represent the results of the Epanechnikov stochastic kernel estimation as 

methodologically described in the previous session. 

In the SEWI region data, the underlying question that the analysis attempts to address is for which 

prevalence threshold value the “true” predictive value (and accuracy) of the modeled transitional 

classification becomes equal to the “true” absence of such transaction? Graphically, the solution can be 

found by varying the height of the y-axis reference line (horizontal dotted lines in Figure 8) over a 

fixed level of predictive value, where PPV = NPV = 0.5 (vertical dotted line). The y-axis coordinate 

for which the two kernel density estimated lines meet represents the prevalence threshold that 

maximizes the posterior probability of our model accuracy predictions. The behavior of other 

estimators beyond the Epanechnikov model have not been explored in this study, and represents a 

research question for future analysis and investigation. 

Mathematically, the optimal prevalence threshold of the posterior probability distribution exists where: 

 (24)

The difference between the prior and posterior estimation is shown in the vertical distance between 

the y-axis reference lines at the 0.5 prevalence threshold and the one at the meeting point of the two 

kernel density functions (~0.172 in the entire SEWI regions’ simulation data). The posterior estimation 

allows us to threshold at a lower classification level, thus enhancing the accuracy of our predictions. 
  

 ( ) ( )K Kf fx x 
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Figure 8. Relationship between prevalence (y-axis) and the Bayes predictive values, PPV 

and NPV (x-axis). The solid lines represent the Epanechnikov kernel density estimation for 

PPV and NPV. The dotted reference lines identify the coordinates of the difference 

between expected and predicted prevalence thresholds. The colored solid reference lines 

indicate a graphically derived uncertainty bounding threshold. 

 

The results of the empirical data obtained for the SEWI region simulation runs for the varying 

degree of asymmetry in estimating the Bayes Convergence Factor, Cb, are shown in Figure 9a. 

Figure 9. (a) Estimated mean Bayes convergence factor for varying levels of the 

asymmetry coefficient in the SEWI region; (b) Estimated probabilities of transition from 

the empirical values of the Bayes convergence factor (α = 0.25). Data points represent the 

estimated PPV and NPV values in the SEWI region (for all simulation boxes’ sampled 

training cycles). 
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We can see that a somewhat moderate level of asymmetry (α = 0.25) performs consistently better 

throughout the entire model learning process (i.e., training cycles) despite the fact that at the 500,000 

cycles training cycle level, the Bayes Convergence Factor with α = 0.5 performs slightly better. Thus, 

there is evidence in the SEWI simulation runs that a level of asymmetry in the composition of positive 

and negative predictive value of our model exists and thus should be incorporated into our spatial 

accuracy assessment. 

Beyond any visual inspection and inference of our results, it is possible to derive quantitative 

estimates of the dominance of a level of asymmetry present in our simulation runs. As can be seen in 

Figure 9b we can estimate the expected probabilities of transitions, subject to the observed empirical 

values of transitions present in our simulation data. When all the simulation results for the entire SEWI 

region are examined with respect to their observed predictive values, we can estimate such an 

empirical probability distribution as a function of an estimated “true” mean (location parameter) and 
standard deviation (scale parameter) of each of the forms of Bayes Convergence Factor,  ˆ ˆ,

b bN C Cf    

using a maximum likelihood estimation (ML) method. The results of such an estimation for the varying 

degree of asymmetry in the Bayes convergence factor in the SEWI data are shown in Table 2. Two 

groups of parameter estimates are included in the analysis: (a) parameter estimates across all SEWI 

simulation training cycles, indicating a robust model performance; (b) parameter estimates only after 

500,000 training cycles in the SEWI simulation runs, indicating a model performance with emphasis 

on maximizing the information flows in modeling transformations in our landscape. 

Table 2. Estimated values for the location (μ) and scale (σ) parameters of the empirical 

asymmetric Bayes Convergence Factor in the SEWI area 

Level Predicted Values for Bayes Convergence Factor 

Selection Level 
Bayes Conversion 
Factor Asymmetry 

Estimated location of 
Normal Distribution (μ) 

Estimated scale of 
Normal Distribution (σ) 

Across all 
training cycles 

α = 0.0 0.5985 0.3027 
α = 0.25 0.5571 0.3411 
α = 0.5 0.4764 0.3740 
α = 0.75 0.3651 0.3685 
α = 1.0 0.2443 0.3092 

After 500,000 
training cycles 

α = 0.0 0.5067 0.3114 

α = 0.25 0.5537 0.3416 

α = 0.5 0.5608 0.3861 

α = 0.75 0.5019 0.4128 

α = 1.0 0.3834 0.3772 

Figure 10 plots the empirically obtained estimated parameters for location (x-axis) against scale  

(y-axis). Such a plot can help us select the best asymptotic form of the Bayes convergence factor using 

a dominance criterion, such as the mean-variance-robustness criterion. A desired probability 

distribution would have an estimated mean value closer to the 0.5 probability threshold (prevalence). 

Thus, estimated location parameters closer to 0.5 are dominant. On the other hand, we want our 

predicted probability distributions to minimize the level of uncertainty in our predictions. Thus, the 



Entropy 2013, 15 2500 

 

 

estimated scale parameters with smaller values are dominant. Finally, a desired probability distribution 

would have relatively consistent estimated values of the location and scale parameters in both robust 

and informational assessments. We can see from Figure 9 that the only asymmetric form of the Bayes 

convergence factor that meets all three dominance criteria is the one with α = 0.25. 

Figure 10. Estimated location (μ) and scale (σ) parameters of selected asymmetric normal 

forms of the Bayes convergence factor from empirical data in the SEWI region:  

(a) robust estimates (across all training cycles); (b) maximum information estimates (after 

500,000 cycles) 

 

We can further enhance the quantitative assessment of the dominant asymmetric form of the Cb 

metric, by computing explicitly the dominance criteria. The three dominance criteria can be combined as: 
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 (25)

where, the symbol “  ” denotes dominant relationships, and:  

i,j: unique combinations of location and scale (i.e., asymmetric forms of the Cb metric); 

m,k: unique groups for testing robustness (i.e., training cycle groupings); 
: mean (location) criterion; 

: variance (scale) criterion; 
   m k m ki j
     : robustness criterion, and  : any value or classification rule. 

The results of the dominance criteria in the SEWI results visualized in Figure 10 are summarized in 

Table 3. The values of the table cells represent the values of the differences in Equation (25). The 

shaded cells signify the dominant asymmetric form of the Bayes convergence factor to be chosen. 

Table 3. Dominance values for assessing the selection of the Cb asymmetric normal form 

in the SEWI region 

M
ea

n
-V

ar
ia

n
ce

 G
ro

u
p

s  Robustness Groups 

All training 

cycles 

500,000 

training cycles 

α = 0.0 1.071 0.071 

α = 0.25 16.744 15.744 

α = 0.5 0.286 −0.714 

α = 0.75 0.987 −0.013 

α = 1.0 1.596 0.596 

Selecting the appropriate asymmetric form of the Bayes convergence factor allows us to infer 

additional information about the overall performance of our model. We can measure the deviation 

from a symmetric normal distribution (expected prior probabilities) that the estimated asymmetric 

form of the Bayesian convergence factor (observed posterior probabilities) yields. The P-P plots of this 

assessment are shown in Figure 11. The thick curve represents the estimated cumulative probability 

distribution of the asymmetric Cb predictive values observed in the SEWI region, estimated from the 

simulation data. The estimated parameters (location, scale) are shown in the right side of each graph. 

The diagonal line represents the expected cumulative probability distribution of a symmetric 

distribution of predictive values (i.e., the expected predictive values at a prevalence threshold of 0.5). 

The parts of the predicted cumulative distribution curve that are above the expected one (diagonal) 

signifies an increase in model accuracy that can be obtained from an asymmetric classification, while 

the parts of the predictive cumulative distribution curve below the expected diagonal line, signifies a 

decrease in model accuracy. The point where the two lines meet (shown as the point of intersection of 

the reference lines), provide us with an estimated empirical prevalence level (threshold value for 

classification) that maximizes the simulated accuracy in our data. The net gain (or loss) in predictive 

value of our model due to the uncertainty in classification is the difference in the area that rests 
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between the expected diagonal line and the estimated observed curve, after determining the optimal 

(dominant) choice of the asymmetric form parameters of the Bayes convergence factor. 

Figure 11. Normal P-P plots for assessing Bayesian convergence simulation performance 

of the SEWI region: (a) across all simulation groups; (b) simulation group A;  

(c) simulation group B; (d) simulation group C. 

 

From an initial observation of the models’ accuracy within all simulation runs in the SEWI region, 

shown in sub-graph (a) of Figure 11, the estimated prevalence threshold (= 0.4) does not seem to 

deviate importantly from the expected one (0.5). Shifting the prevalence threshold would provide a 

5.7% increase in the predictive value (informational gain) of the model. But, if we repeat our analysis 

for the SEWI regions’ simulation groups (A, B and C), thus accounting for structural differences in the 

proportion of urban cells and exclusionary areas, we can see that spatial configuration affects 

considerably our actual model performance. For simulation group A, shown in sub-graph (b), the 

model performance is heavily dependent on the negative predictive values (estimated prevalence  

of 0.53 > 0.5), and produces poor overall model predictive values (Cb = 0.436, or a 6.4% decrease in 

mean predictive value of the model). As the proportion of urban to exclusionary increases in the spatial 

composition of our simulation maps, the predictive value of the model increases substantially, and the 
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estimated prevalence level decreases. Especially for group C, shown in sub-graph (d), a gain of 19.2% 

in model performance can be obtained from a shift in model prevalence (from 0.5 to 0.23). 

5. Conclusions 

The analysis described above reveals the magnitude and multi-dimensionality of the spatial 

complexity involved in modeling landscape transformations in mixed and asymmetric landscapes in 

terms of amount and distribution of change. Performing spatial accuracy assessment requires the 

development and utilization of additional, advanced methods of assessment, related both to the 

models’ predictive value in terms of quantity of change, but also to the performance of classifying the 

presence or absence of such a transition. It has been shown above that classification accuracy is closely 

related to the achieved modeling performance, and additional Bayesian metrics have been proposed, 

described and analyzed using the SEWI region case study. These advanced methods take into 

advantage the stochastic character of complex simulation models such as the LTM model, and can be 

used for performing model assessment in many other land change models that use intelligence-based 

tools, such as agent-based models of land use change, or other spatially explicit artificial intelligent 

modeling like cellular automata and genetic algorithms. The metrics described in this paper address 

different aspects of the spatial modeling performance such as assessing the predictive value of the 

model simulations (PPV, NPV, DOR) and estimating empirical convergence curves for enhancing 

classification accuracy (Cb). The proposed metrics, and their assessment methodology, allows the 

researcher and analyst to acquire a more holistic assessment of a models’ spatial accuracy over space 

and time, especially in the presence of uncertainty about the transitional model thresholds. 

The case study of the SEWI region used to illustrate the usage of the metrics, allow us to assess the 

LTM model accuracy for simulating urban changes in the region. All metrics confirm a general 

emergent model accuracy converging towards a 70% upper level for the data analyzed and presented in 

this study (i.e., in the SEWI area urban transitions). We can also see how the amount of urban change 

and exclusionary zones present in our landscapes dramatically affects the performance of the model. 

The latter result raises the significance of adjusting the classification prevalence threshold at spatially 

homogeneous scales in our simulation groups (e.g., implementing different thresholds for groups with 

different classes of urban change). 

The results obtained also allow us to infer that in landscapes where the rate and amount of land use 

change varies substantially, symmetric spatial transition classification schemes are difficult to obtain. 

Instead we can enhance model predictions by assuming asymmetric spatial configurations, and by 

estimating the degree of asymmetry via a spatial stochastic dominance methodology. The practical 

significance of the proposed additional spatial model assessment metrics is that they can provide an 

“informational summary” of the simulated region or landscape ensembles. The use of the analysis and 

the performance of the metrics can help us in a multitude of ways. First, to understand and learn how 

well the model fits to different combinations of presence and absence of transitions in our landscapes, 

not simply how well the model fits our given data. Second, given that most spatial databases suffer 

from incomplete information and pre-simulation measurement errors, we can also derive (estimate) a 

theoretical accuracy that we would expect our model to assess, under the presence of such incomplete 

information data, and thus partially separate model from measurement errors in spatial simulations. 
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Third, to understand the role and pattern of uncertainty in our simulations and model estimations. We 

can compare results across simulation runs (and thus quantitative patterns of change) that tend to 

provide less or more uncertain model performance, and understand the role of spatially-explicit 

patterns and cell configurations to model training and simulation. Fourth, to compare the significance 

or estimation contribution of transitional presence and absence (change versus no change) to our model 

performance, and the contribution of the spatial drivers and variables to the explanatory value of our 

model. Estimating model performance using different combinations of drivers (e.g., instead of groups 

A, B, C in the SEWI region, use of the same sampled boxes with different drivers, or using training 

sets with sequentially dropping a driver at a time), could allow us to estimate the differences in 

informational uncertainty for each driver combination or for single drivers within our simulations. 

Fifth, to compare measurements of informational uncertainty at different scales of spatial resolution. 

Pijanowski et al. [13,57] showed the significance of using a scalable window for sensitivity analysis. 

Assessing model uncertainty of predictions for each of spatial resolutions can also enhance our 

knowledge about modeling at different spatial scales and selecting scales that produce lower 

uncertainty estimates. 

The methodology and metrics developed in this paper allow for the development of a more 

comprehensive dynamic and adaptive modeling methodology. Beyond the aggregate level for which 

the assessment was performed for the purposes of this paper, it is both methodologically and 

computationally feasible to assess and adjust model accuracy at a simulation-to-simulation basis, in 

order to obtain dynamically enhanced simulation results. Especially in the case of agent-based 

modeling such a model assessment methodology can be inversed and iterated to obtain spatially robust 

and diverse future landscape configurations that optimize both the amount and degree of information 

contained in the simulation, and the emergence of stochastically dominant agent strategies. 

Finally, in terms of the “real-world” significance to the community of land use planning 

practitioners, the analyses presented in this paper can be used to highlight a number of issues regarding 

modeling urban transitions, specifically: (a) simple, traditional modeling techniques are not adequate 

to accurately capture the uncertainty present as a direct result of the rarity of the urban/suburban 

changes (e.g., when only small amount of changes are expected or predicted to emerge); (b) accuracy 

assessment and validation modeling properties are very important, especially when comparing 

different models or different areas with varying quantities and characteristics of urban change 

transitions, and; (c) a greater awareness by practitioners of more advanced and stochastic modeling 

techniques can potentially increase the effectiveness of planning efforts.  
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